In-Lens Band-Pass Filter for Secondary Electrons in Ultrahigh Resolution SEM

. 2019 Jul 19 ; 12 (14) : . [epub] 20190719

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31330942

Grantová podpora
TE01020118 Technology Agency of the Czech Republic
TE01020233 Technology Agency of the Czech Republic

Scanning electron microscopes come equipped with different types of detectors for the collection of signal electrons emitted from samples. In-lens detection systems mostly consist of several auxiliary electrodes that help electrons to travel in a direction towards the detector. This paper aims to show that a through-the-lens detector in a commercial electron microscope Magellan 400 FEG can, under specific conditions, work as an energy band-pass filter of secondary electrons that are excited by the primary beam electrons. The band-pass filter properties verify extensive simulations of secondary and backscattered electrons in a precision 3D model of a microscope. A unique test sample demonstrates the effects of the band-pass filter on final image and contrast with chromium and silver stripes on a silicon substrate, manufactured by a combination of e-beam lithography, wet etching, and lift-off technique. The ray tracing of signal electrons in a detector model predicate that the through-the-lens detector works as a band-pass filter of the secondary electrons with an energy window of about 3 eV. By moving the energy window along the secondary electron energy spectrum curve of the analyzed material, we select the energy of the secondary electrons to be detected. Energy filtration brings a change in contrast in the image as well as displaying details that are not otherwise visible.

Zobrazit více v PubMed

Konvalina I., Müllerová I. The Trajectories of Secondary Electrons in the Scanning Electron Microscope. Scanning. 2006;28:245–256. doi: 10.1002/sca.4950280501. PubMed DOI

Müllerová I., Konvalina I. Collection of secondary electrons in scanning electron microscopes. J. Microsc. 2009;236:203–210. doi: 10.1111/j.1365-2818.2009.03189.x. PubMed DOI

Müllerová I., Frank L. Very low energy scanning electron microscopy. In: Méndez-Vilas A., Diaz J., editors. Modern Research and Education Topics in Microscopy. Volume 2. Publisher Formatex; Badajoz, Spain: 2007. pp. 795–804.

Reimer L. Image Contrast and Signal Processing. In: Schawlow A.L., Tamir T., Siegman A.E., editors. Scanning Electron Microscopy, Physics of Image Formation and Microanalysis. 2nd ed. Springer-Verlag; Berlin/Heidelberg, Germany: 1998. pp. 207–252.

Cazaux J. From the physics of secondary electron emission to image contrasts in scanning electron microscopy. J. Electron Microsc. 2012;61:261–284. doi: 10.1093/jmicro/dfs048. PubMed DOI

Kumagai K., Sekiguchi T. Sharing of secondary electrons by in-lens and out-lens detector in low-voltage scanning electron microscope equipped with immersion lens. Ultramicroscopy. 2009;109:368–372. doi: 10.1016/j.ultramic.2009.01.005. PubMed DOI

Hoang H.Q., Osterberg M., Khursheed A. A high signal-to-noise ratio toroidal electron spectrometer for the SEM. Ultramicroscopy. 2011;111:1093–1100. doi: 10.1016/j.ultramic.2011.06.003. PubMed DOI

Shihommatsu K., Takahashi J., Momiuchi Y., Hoshi Y., Kato H. Formation mechanism of secondary electron contrast of graphene layers on metal substrate. ACS Omega. 2017;2:7831–7836. doi: 10.1021/acsomega.7b01550. PubMed DOI PMC

Chee A.K.W. Fermi level pinning characterization on ammonium fluoride-treated surfaces of silicon by energy-filtered doping contrast in the scanning electron microscope. Sci. Rep. 2016;6:32003. doi: 10.1038/srep32003. PubMed DOI PMC

Rodenburg C., Jepson M.A.E., Inkson B.J., Bosch E.G.T., Humphreys C.J. Energy Filtered scanning electron microscopy: Applications to characterization of semiconductors. J. Phys. Conf. Ser. 2010;241:012074. doi: 10.1088/1742-6596/241/1/012074. DOI

Takafuji A., Murakoshi H., Shinada H., Matsui M., Nishiyama H., Nozoe M. An energy analyzer for high-speed secondary electrons accelerated in inspection SEM imaging. Microelectron. Eng. 2002;61:1083–1088. doi: 10.1016/S0167-9317(02)00542-7. DOI

Heath J.T., Jiang C.S., Al-Jassim M.M. Measurement of semiconductor surface potential using the scanning electron microscope. J. Appl. Phys. 2012;111:046103. doi: 10.1063/1.3684556. DOI

Kazemian P., Mentink S.A.M., Rodenburg C., Humphreys C.J. Quantitative secondary electron energy filtering in a scanning electron microscope and its applications. Ultramicroscopy. 2007;107:140–150. doi: 10.1016/j.ultramic.2006.06.003. PubMed DOI

Mika F., Pokorná Z., Konvalina I., Khursheed A. Possibilities of a secondary electrons bandpass filter for standard SEM. In Recent Trends in Charged Particles Optics and Surface Physics Instrumentation. In: Mika F., Pokorná Z., editors. Proceedings of the 16th International Seminar; Brno, Czech Republic. 4–8 June 2018; Brno, Czech Republic: ACAD Sciences; Inst. Scientific Instruments ASCR, v.v.i.; 2018. pp. 46–47.

Tsurumi D., Hadama K., Kawasaki Y. Energy-filtered imaging in a scanning electron microscope for dopant contrast in InP. J. Electron Microsc. 2010;59:183–187. doi: 10.1093/jmicro/dfq046. PubMed DOI

Rodenburg C., Jepson M.A.E., Bosch E.G.T., Dapor M. Energy selective scanning electron microscopy to reduce the effect of contamination layers on scanning electron microscope dopant mapping. Ultramicroscopy. 2010;110:1185–1191. doi: 10.1016/j.ultramic.2010.04.008. PubMed DOI

Masters R.C., Pearson A.J., Glen T.S., Sasam F.C., Li L., Dapor M., Donald A.M., Lidzey D.G., Rodenburg C. Sub-nanometre resolution imaging of polymer-fullerene photovoltaic blends using energy-filtered scanning electron microscopy. Nat. Commun. 2015;6:6928. doi: 10.1038/ncomms7928. PubMed DOI PMC

Sekiguchi T., Iwai H. Low-pass secondary electron detector for outlens scanning electron microscopy. Jpn. J. Appl. Phys. 2015;54:088001. doi: 10.7567/JJAP.54.088001. DOI

Khursheed A., Karuppiah N. An add-on secondary electron energy spectrometer for scanning electron microscopes. Rev. Sci. Instrum. 2001;72:1708. doi: 10.1063/1.1347376. DOI

[(accessed on 30 May 2019)]; Available online: https://www.fei.com.

Radlička T., Unčovský M., Oral M. In lens BSE detector with energy filtering. Ultramicroscopy. 2018;189:102–108. doi: 10.1016/j.ultramic.2018.03.015. PubMed DOI

Dahl D.A. SIMION for the personal computer in reflection. Int. J. Mass. Spectrom. 2000;200:3–25. doi: 10.1016/S1387-3806(00)00305-5. DOI

Zlámal J., Lencová B. Development of the program EOD for design in electron and ion microscopy. Nucl. Instrum. Methods A. 2011;645:278–282. doi: 10.1016/j.nima.2010.12.198. DOI

Kieft E., Bosch E. Refinement of Monte Carlo simulations of electron-specimen interaction in low-voltage SEM. J. Phys. D Appl. Phys. 2008;41:215310. doi: 10.1088/0022-3727/41/21/215310. DOI

Agostinelli S., Allison J., Amako K.A., Apostolakis J., Araujo H., Arce P., Asai M., Axen D., Banerjee S., Barrand G., et al. GEANT4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A. 2003;506:250–303. doi: 10.1016/S0168-9002(03)01368-8. DOI

Walker C.G.H., Konvalina I., Mika F., Frank L., Müllerová I. Quantitative comparison of simulated and measured signals in the STEM mode of a SEM. Nucl. Instrum. Methods Phys. Res. B. 2018;415:17–24. doi: 10.1016/j.nimb.2017.10.034. DOI

Echlin P. Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis. Springer Science+Business Media; New York, NY, USA: 2009. Sample Cleaning; pp. 235–246. DOI

Materna Mikmeková E., Müllerová I., Frank L., Paták A., Polčák J., Sluyterman S., Lejeune M., Konvalina I. Low-energy electron microscopy of graphene outside UHV: Electron-induced removal of PMMA residues used for graphene transfer. J. Electron Spectrosc. Relat. Phenomena. 2019 doi: 10.1016/j.elspec.2019.06.005. DOI

Mikmeková E., Polčák J., Sobota J., Müllerová I., Peřina V., Caha O. Humidity resistant hydrogenated carbon nitride films. Appl. Surf. Sci. 2013;275:7–13. doi: 10.1016/j.apsusc.2013.03.033. DOI

Pinhas H., Malka D., Danan Y., Sinvani M., Zalevsky Z. Design of fiber-integrated tunable thermos-optic C-band filter based on coated silicon slab. J. Eur. Opt. Soc. Rapid. 2017 doi: 10.1186/s41476-017-0060-x. DOI

Malka D., Danan Y., Ramon Y., Zalevsky Z. A photonic 1 x 4 power splitter based on multimode interference in silicon-gallium-nitride slot waveguide structures. Materials. 2016;9:516. doi: 10.3390/ma9070516. PubMed DOI PMC

Malka D., Cohen M., Turkiewicz J., Zalevsky Z. Optical micro-multi-racetrack resonator filter based on SOI waveguides. Photonics Nanostruct. Fundam. Appl. 2015;16:16–23. doi: 10.1016/j.photonics.2015.07.002. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Quantification of STEM Images in High Resolution SEM for Segmented and Pixelated Detectors

. 2021 Dec 28 ; 12 (1) : . [epub] 20211228

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...