Transcriptome Remodeling of Differentiated Cells during Chronological Ageing of Yeast Colonies: New Insights into Metabolic Differentiation
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29576850
PubMed Central
PMC5821948
DOI
10.1155/2018/4932905
Knihovny.cz E-zdroje
- MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae cytologie genetika metabolismus MeSH
- stanovení celkové genové exprese metody MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Saccharomyces cerevisiae - proteiny MeSH
We present the spatiotemporal metabolic differentiation of yeast cell subpopulations from upper, lower, and margin regions of colonies of different ages, based on comprehensive transcriptomic analysis. Furthermore, the analysis was extended to include smaller cell subpopulations identified previously by microscopy within fully differentiated U and L cells of aged colonies. New data from RNA-seq provides both spatial and temporal information on cell metabolic reprogramming during colony ageing and shows that cells at marginal positions are similar to upper cells, but both these cell types are metabolically distinct from cells localized to lower colony regions. As colonies age, dramatic metabolic reprogramming occurs in cells of upper regions, while changes in margin and lower cells are less prominent. Interestingly, whereas clear expression differences were identified between two L cell subpopulations, U cells (which adopt metabolic profiles, similar to those of tumor cells) form a more homogeneous cell population. The data identified crucial metabolic reprogramming events that arise de novo during colony ageing and are linked to U and L cell colony differentiation and support a role for mitochondria in this differentiation process.
Department of Medical Genetics Oslo University Hospital and University of Oslo 0450 Oslo Norway
Faculty of Science Charles University BIOCEV 252 50 Vestec Czech Republic
Institute of Microbiology of the Czech Academy of Sciences BIOCEV 252 50 Vestec Czech Republic
Zobrazit více v PubMed
Granek J. A., Kayikci O., Magwene P. M. Pleiotropic signaling pathways orchestrate yeast development. Current Opinion in Microbiology. 2011;14(6):676–681. doi: 10.1016/j.mib.2011.09.004. PubMed DOI PMC
Honigberg S. M. Cell signals, cell contacts, and the organization of yeast communities. Eukaryotic Cell. 2011;10(4):466–473. doi: 10.1128/EC.00313-10. PubMed DOI PMC
Palkova Z., Vachova L. Life within a community: benefit to yeast long-term survival. FEMS Microbiology Reviews. 2006;30(5):806–824. doi: 10.1111/j.1574-6976.2006.00034.x. PubMed DOI
Palkova Z., Vachova L. Yeast cell differentiation: lessons from pathogenic and non-pathogenic yeasts. Seminars in Cell & Developmental Biology. 2016;57:110–119. doi: 10.1016/j.semcdb.2016.04.006. PubMed DOI
Palkova Z., Wilkinson D., Vachova L. Aging and differentiation in yeast populations: elders with different properties and functions. FEMS Yeast Research. 2014;14(1):96–108. doi: 10.1111/1567-1364.12103. PubMed DOI
Cáp M., Stěpánek L., Harant K., Váchová L., Palková Z. Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism. Molecular Cell. 2012;46(4):436–448. doi: 10.1016/j.molcel.2012.04.001. PubMed DOI
Cap M., Vachova L., Palkova Z. Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis. Cell Cycle. 2015;14(21):3488–3497. doi: 10.1080/15384101.2015.1093706. PubMed DOI PMC
Vachova L., Cap M., Palkova Z. Yeast colonies: a model for studies of aging, environmental adaptation, and longevity. Oxidative Medicine and Cellular Longevity. 2012;2012:8. doi: 10.1155/2012/601836.601836 PubMed DOI PMC
Palkova Z., Devaux F., Ricicova M., Minarikova L., Le Crom S., Jacq C. Ammonia pulses and metabolic oscillations guide yeast colony development. Molecular Biology of the Cell. 2002;13(11):3901–3914. doi: 10.1091/mbc.E01-12-0149. PubMed DOI PMC
Palkova Z., Janderova B., Gabriel J., Zikanova B., Pospisek M., Forstová J. Ammonia mediates communication between yeast colonies. Nature. 1997;390(6659):532–536. doi: 10.1038/37398. PubMed DOI
Vachova L., Kucerova H., Devaux F., Ulehlova M., Palkova Z. Metabolic diversification of cells during the development of yeast colonies. Environmental Microbiology. 2009;11(2):494–504. doi: 10.1111/j.1462-2920.2008.01789.x. PubMed DOI
Palkova Z., Forstova J. Yeast colonies synchronise their growth and development. Journal of Cell Science. 2000;113:1923–1928. PubMed
Vachova L., Hatakova L., Cap M., Pokorna M., Palkova Z. Rapidly developing yeast microcolonies differentiate in a similar way to aging giant colonies. Oxidative Medicine and Cellular Longevity. 2013;2013:9. doi: 10.1155/2013/102485.102485 PubMed DOI PMC
Jazwinski S. M. The retrograde response: a conserved compensatory reaction to damage from within and from without. Mitochondrion in Aging and Disease. 2014;127:133–154. doi: 10.1016/B978-0-12-394625-6.00005-2. PubMed DOI PMC
Butow R. A., Avadhani N. G. Mitochondrial signaling: the retrograde response. Molecular Cell. 2004;14(1):1–15. doi: 10.1016/S1097-2765(04)00179-0. PubMed DOI
Sekito T., Thornton J., Butow R. A. Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Molecular Biology of the Cell. 2000;11(6):2103–2115. doi: 10.1091/mbc.11.6.2103. PubMed DOI PMC
Podholova K., Plocek V., Resetarova S., et al. Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies. Oncotarget. 2016;7(13):15299–15314. doi: 10.18632/oncotarget.8084. PubMed DOI PMC
Noble W. S. How does multiple testing correction work? Nature Biotechnology. 2009;27(12):1135–1137. doi: 10.1038/nbt1209-1135. PubMed DOI PMC
Khan A., Mathelier A. Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinformatics. 2017;18(1):p. 287. doi: 10.1186/s12859-017-1708-7. PubMed DOI PMC
DeRisi J. L., Iyer V. R., Brown P. O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 1997;278(5338):680–686. doi: 10.1126/science.278.5338.680. PubMed DOI
Gasch A. P., Spellman P. T., Kao C. M., et al. Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell. 2000;11(12):4241–4257. doi: 10.1091/mbc.11.12.4241. PubMed DOI PMC
Cap M., Vachova L., Palkova Z. Yeast colony survival depends on metabolic adaptation and cell differentiation rather than on stress defense. The Journal of Biological Chemistry. 2009;284(47):32572–32581. doi: 10.1074/jbc.M109.022871. PubMed DOI PMC
Vachova L., Palkova Z. Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. The Journal of Cell Biology. 2005;169(5):711–717. doi: 10.1083/jcb.200410064. PubMed DOI PMC
Váchová L., Chernyavskiy O., Strachotová D., et al. Architecture of developing multicellular yeast colony: spatio-temporal expression of Ato1p ammonium exporter. Environmental Microbiology. 2009;11(7):1866–1877. doi: 10.1111/j.1462-2920.2009.01911.x. PubMed DOI
Cáp M., Váchová L., Palková Z. Yeast colony survival depends on metabolic adaptation and cell differentiation rather than on stress defense. The Journal of Biological Chemistry. 2009;284(47):32572–32581. doi: 10.1074/jbc.M109.022871. PubMed DOI PMC
Thorvaldsdottir H., Robinson J. T., Mesirov J. P. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics. 2013;14(2):178–192. doi: 10.1093/bib/bbs017. PubMed DOI PMC
Yates A., Akanni W., Amode M. R., et al. Ensembl 2016. Nucleic Acids Research. 2016;44(D1):D710–D716. doi: 10.1093/nar/gkv1157. PubMed DOI PMC
Jiang L., Schlesinger F., Davis C. A., et al. Synthetic spike-in standards for RNA-seq experiments. Genome Research. 2011;21(9):1543–1551. doi: 10.1101/gr.121095.111. PubMed DOI PMC
Lardenois A., Liu Y., Walther T., et al. Execution of the meiotic noncoding RNA expression program and the onset of gametogenesis in yeast require the conserved exosome subunit Rrp6. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(3):1058–1063. doi: 10.1073/pnas.1016459108. PubMed DOI PMC
Neil H., Malabat C., d'Aubenton-Carafa Y., Xu Z., Steinmetz L. M., Jacquier A. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature. 2009;457(7232):1038–1042. doi: 10.1038/nature07747. PubMed DOI
van Dijk E. L., Chen C. L., d'Aubenton-Carafa Y., et al. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature. 2011;475(7354):114–117. doi: 10.1038/nature10118. PubMed DOI
Xu Z., Wei W., Gagneur J., et al. Bidirectional promoters generate pervasive transcription in yeast. Nature. 2009;457(7232):1033–1037. doi: 10.1038/nature07728. PubMed DOI PMC
Yassour M., Pfiffner J., Levin J. Z., et al. Strand-specific RNA sequencing reveals extensive regulated long antisense transcripts that are conserved across yeast species. Genome Biology. 2010;11(8, article R87) doi: 10.1186/gb-2010-11-8-r87. PubMed DOI PMC
Dobin A., Davis C. A., Schlesinger F., et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Liao Y., Smyth G. K., Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Love M. I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15(12):p. 550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Risso D., Ngai J., Speed T. P., Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nature Biotechnology. 2014;32(9):896–902. doi: 10.1038/nbt.2931. PubMed DOI PMC
Mangiafico S. rcompanion: functions to support extension education program evaluation. 2017. https://cran.r-project.org/web/packages/rcompanion/index.html.
Palkova Z., Vachova L. Mitochondria in aging cell differentiation. Aging. 2016;8(7):1287–1288. doi: 10.18632/aging.100993. PubMed DOI PMC
Non-Coding RNAs: Regulators of Stress, Ageing, and Developmental Decisions in Yeast?
Mitochondrial Retrograde Signaling Contributes to Metabolic Differentiation in Yeast Colonies
Long Noncoding RNAs in Yeast Cells and Differentiated Subpopulations of Yeast Colonies and Biofilms