Spatially structured yeast communities: Understanding structure formation and regulation with omics tools
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
34712401
PubMed Central
PMC8529026
DOI
10.1016/j.csbj.2021.10.012
PII: S2001-0370(21)00434-7
Knihovny.cz E-zdroje
- Klíčová slova
- Biofilms, Cell differentiation, Colonies, Multicellular yeast structures, Regulation, Spatial community structure,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Single-celled yeasts form spatially structured populations - colonies and biofilms, either alone (single-species biofilms) or in cooperation with other microorganisms (mixed-species biofilms). Within populations, yeast cells develop in a coordinated manner, interact with each other and differentiate into specialized cell subpopulations that can better adapt to changing conditions (e.g. by reprogramming metabolism during nutrient deficiency) or protect the overall population from external influences (e.g. via extracellular matrix). Various omics tools together with specialized techniques for separating differentiated cells and in situ microscopy have revealed important processes and cell interactions in these structures, which are summarized here. Nevertheless, current knowledge is still only a small part of the mosaic of complexity and diversity of the multicellular structures that yeasts form in different environments. Future challenges include the use of integrated multi-omics approaches and a greater emphasis on the analysis of differentiated cell subpopulations with specific functions.
Zobrazit více v PubMed
Tarnita C.E. The ecology and evolution of social behavior in microbes. J Exp Biol. 2017;220:18–24. PubMed
West S.A., Diggle S.P., Buckling A., Gardner A., Griffin A.S. Annual Review of Ecology Evolution and Systematics, Annual Reviews: Palo Alto. 2007. The social lives of microbes; pp. 53–77. 1.
Palková Z., Váchová L. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts. Semin Cell Dev Biol. 2016;57:110–119. PubMed
Vachova L., Palkova Z. How structured yeast multicellular communities live, age and die? FEMS Yeast Res. 2018;18(4):foy033. PubMed
Čáp M., Štěpánek L., Harant K., Váchová L., Palková Z. Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism. Mol Cell. 2012;46(4):436–448. PubMed
Maršíková J., Pavlíčková M., Wilkinson D., Váchová L., Hlaváček O., Hatáková L. The Whi2p-Psr1p/Psr2p complex regulates interference competition and expansion of cells with competitive advantage in yeast colonies. Proc Natl Acad Sci U S A. 2020;117(26):15123–15131. PubMed PMC
Maršíková J., Wilkinson D., Hlaváček O., Gilfillan G.D., Mizeranschi A., Hughes T. Metabolic differentiation of surface and invasive cells of yeast colony biofilms revealed by gene expression profiling. BMC Genomics. 2017;18(1):814. PubMed PMC
Piccirillo S., Morales R., White M.G., Smith K., Kapros T., Honigberg S.M. Cell differentiation and spatial organization in yeast colonies: role of cell-wall integrity pathway. Genetics. 2015;201(4):1427–1438. PubMed PMC
Podholová K., Plocek V., Rešetárová S., Kučerová H., Hlaváček O., Váchová L. Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies. Oncotarget. 2016;7(13):15299–15314. PubMed PMC
Vachova L., Chernyavskiy O., Strachotova D., Bianchini P., Burdikova Z., Fercikova I., Kubinova L., Palkova Z. Architecture of developing multicellular yeast colony: spatio-temporal expression of Ato1p ammonium exporter. Environ Microbiol. 2009;11(7):1866–1877. PubMed
Vachova L., Stovicek V., Hlavacek O., Chernyavskiy O., Stepanek L., Kubinova L., Palkova Z. Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies. J Cell Biol. 2011;194(5):679–687. PubMed PMC
Plocek V., Váchová L., Šťovíček V., Palková Z. Cell distribution within yeast colonies and colony biofilms: how structure develops. Int J Mol Sci. 2020;21(11):3873. PubMed PMC
Alves R., Barata-Antunes C., Casal M., Brown A.J.P., Van Dijck P., Paiva S. Adapting to survive: How Candida overcomes host-imposed constraints during human colonization. PLoS Pathog. 2020;16(5):e1008478. PubMed PMC
Atriwal T., Azeem K., Husain F.M., Hussain A., Khan M.N., Alajmi M.F. Mechanistic understanding of Candida albicans biofilm formation and approaches for its inhibition. Front Microbiol. 2021;12:638609. PubMed PMC
Lohse M.B., Gulati M., Johnson A.D., Nobile C.J. Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol. 2018;16(1):19–31. PubMed PMC
Váchová L., Hatáková L., Čáp M., Pokorná M., Palková Z. Rapidly developing yeast microcolonies differentiate in a similar way to aging giant colonies. Oxid Med Cell Longev. 2013;2013:1–9. PubMed PMC
Palková Z., Janderová B., Gabriel Jir̂í, Zikánová B., Pospíŝek M., Forstová J. Ammonia mediates communication between yeast colonies. Nature. 1997;390(6659):532–536. PubMed
Palkova Z., Forstova J. Yeast colonies synchronise their growth and development. J Cell Sci. 2000;113(11):1923–1928. PubMed
Vachova L., Palkova Z. Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. J Cell Biol. 2005;169(5):711–717. PubMed PMC
Palková Z., Devaux F., R̆ic̆icová M., Mináriková L., Le Crom S., Jacq C. Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell. 2002;13(11):3901–3914. PubMed PMC
Vachova L., Kucerova H., Devaux F., Ulehlova M., Palkova Z. Metabolic diversification of cells during the development of yeast colonies. Environ Microbiol. 2009;11(2):494–504. PubMed
Plocek V., Fadrhonc K., Maršíková J., Váchová L., Pokorná A., Hlaváček O. Mitochondrial retrograde signaling contributes to metabolic differentiation in yeast colonies. Int J Mol Sci. 2021;22(11):5597. PubMed PMC
Wilkinson D., Marsikova J., Hlavacek O., Gilfillan G.D., Jezkova E., Aaløkken R. Transcriptome remodeling of differentiated cells during chronological ageing of yeast colonies: new insights into metabolic differentiation. Oxid Med Cell Longev. 2018;2018 PubMed PMC
DeBerardinis R.J., Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29(3):313–324. PubMed PMC
Čáp M., Váchová L., Palková Z. Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis. Cell Cycle. 2015;14(21):3488–3497. PubMed PMC
Traven A., Jänicke A., Harrison P., Swaminathan A., Seemann T., Beilharz T.H. Transcriptional profiling of a yeast colony provides new insight into the heterogeneity of multicellular fungal communities. PLoS ONE. 2012;7(9):e46243. PubMed PMC
Alves R., Kastora S.L., Gomes-Gonçalves A., Azevedo N., Rodrigues C.F., Silva S. Transcriptional responses of Candida glabrata biofilm cells to fluconazole are modulated by the carbon source. NPJ Biofilms Microbiomes. 2020;6(1):4. PubMed PMC
Mancera E., Nocedal I., Hammel S., Gulati M., Mitchell K.F., Andes D.R. Evolution of the complex transcription network controlling biofilm formation in Candida species. Elife. 2021;10:e64682. PubMed PMC
Št’ovíček V., Váchová L., Kuthan M., Palková Z. General factors important for the formation of structured biofilm-like yeast colonies. Fungal Genet Biol. 2010;47(12):1012–1022. PubMed
Van Nguyen P., Plocek V., Vachova L., Palkova Z. Glucose, Cyc8p and Tup1p regulate biofilm formation and dispersal in wild Saccharomyces cerevisiae. NPJ Biofilms Microbiomes. 2020;6(1):7. PubMed PMC
Reynolds T.B. Going with the Flo: the role of Flo11-dependent and independent interactions in yeast mat formation. J Fungi. 2018;4(4):132. PubMed PMC
Tek E.L., Sundstrom J.F., Gardner J.M., Oliver S.G., Jiranek V. Evaluation of the ability of commercial wine yeasts to form biofilms (mats) and adhere to plastic: implications for the microbiota of the winery environment. FEMS Microbiol Ecol. 2018;94(2):fix188. PubMed
Kuthan M., Devaux F., Janderova B., Slaninova I., Jacq C., Palkova Z. Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol. 2003;47(3):745–754. PubMed
Stovicek V., Vachova L., Begany M., Wilkinson D., Palkova Z. Global changes in gene expression associated with phenotypic switching of wild yeast. BMC Genomics. 2014;15:136. PubMed PMC
Voordeckers K., De Maeyer D., van der Zande E., Vinces M.D., Meert W., Cloots L. Identification of a complex genetic network underlying Saccharomyces cerevisiae colony morphology. Mol Microbiol. 2012;86(1):225–239. PubMed PMC
Vopalenska I., Stovicek V., Janderova B., Vachova L., Palkova Z. Role of distinct dimorphic transitions in territory colonizing and formation of yeast colony architecture. Environ Microbiol. 2010;12(1):264–277. PubMed
Brückner S., Mösch H.U. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2012;36(1):25–58. PubMed
Nguyen P., Hlavacek O., Marsikova J., Vachova L., Palkova Z. Cyc8p and Tup1p transcription regulators antagonistically regulate Flo11p expression and complexity of yeast colony biofilms. PLoS Genet. 2018;14(7) PubMed PMC
Chow J., Starr I., Jamalzadeh S., Muniz O., Kumar A., Gokcumen O., Ferkey D.M., Cullen P.J. Filamentation regulatory pathways control adhesion-dependent surface responses in yeast. Genetics. 2019;212:667–690. PubMed PMC
Araujo D., Henriques M., Silva S. Portrait of Candida species biofilm regulatory network genes. Trends Microbiol. 2017;25(1):62–75. PubMed
Gulati M., Nobile C.J. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect. 2016;18(5):310–321. PubMed PMC
Li P., Seneviratne C.J., Alpi E., Vizcaino J.A., Jin L. Delicate metabolic control and coordinated stress response critically determine antifungal tolerance of Candida albicans biofilm persisters. Antimicrob Agents Chemother. 2015;59(10):6101–6112. PubMed PMC
Wuyts J., Van Dijck P., Holtappels M. Fungal persister cells: the basis for recalcitrant infections? PLoS Pathog. 2018;14(10) PubMed PMC
Tsui C., Kong E.F., Jabra-Rizk M.A. Pathogenesis of Candida albicans biofilm. Pathog Dis. 2016;74(4):ftw018. PubMed PMC
Wall G., Montelongo-Jauregui D., Vidal Bonifacio B., Lopez-Ribot J.L., Uppuluri P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Curr Opin Microbiol. 2019;52:1–6. PubMed PMC
Nobile C.J., Mitchell A.P. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol. 2005;15(12):1150–1155. PubMed
Yang L., Zheng C., Chen Y., Ying H. FLO genes family and transcription factor MIG1 Regulate Saccharomyces cerevisiae biofilm formation during immobilized fermentation. Front Microbiol. 1860;2018:9. PubMed PMC
Fox E.P., Bui C.K., Nett J.E., Hartooni N., Mui M.C., Andes D.R., Nobile C.J., Johnson A.D. An expanded regulatory network temporally controls Candida albicans biofilm formation. Mol Microbiol. 2015;96(6):1226–1239. PubMed PMC
He J., Kim D., Zhou X., Ahn S.J., Burne R.A., Richards V.P. RNA-Seq reveals enhanced sugar metabolism in Streptococcus mutans co-cultured with Candida albicans within mixed-species biofilms. Front Microbiol. 2017;8:1036. PubMed PMC
Vila T., Kong E.F., Montelongo-Jauregui D., Van Dijck P., Shetty A.C., McCracken C. Therapeutic implications of C. albicans-S. aureus mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence. 2021;12(1):835–851. PubMed PMC
Zarnowski R., Westler W.M., Lacmbouh G.A., Marita J.M., Bothe J.R., Bernhardt J. Novel entries in a fungal biofilm matrix encyclopedia. MBio. 2014;5(4):e01333–14. PubMed PMC
Nett J.E., Zarnowski R., Cabezas-Olcoz J., Brooks E.G., Bernhardt J., Marchillo K., Mosher D.F., Andes D.R. Host contributions to construction of three device-associated Candida albicans biofilms. Infect Immun. 2015;83(12):4630–4638. PubMed PMC
Satala D., Karkowska-Kuleta J., Zelazna A., Rapala-Kozik M., Kozik A. Moonlighting Proteins at the Candidal cell surface. Microorganisms. 2020;8(7):1046. PubMed PMC
Zarnowski R., Sanchez H., Covelli A.S., Dominguez E., Jaromin A., Bernhardt J. Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis. PLoS Biol. 2018;16(10) PubMed PMC
Liebana-Jordan M., Brotons B., Falcon-Perez J.M., Gonzalez E. Extracellular vesicles in the fungi kingdom. Int J Mol Sci. 2021;22:7221. PubMed PMC
Rizzo J., Taheraly A., Janbon G. Structure, composition and biological properties of fungal extracellular vesicles. microLife. 2021;2:uqab009. PubMed PMC
Bleackley M.R., Dawson C.S., Anderson M.A. Fungal extracellular vesicles with a focus on proteomic analysis. Proteomics. 2019;19(8) PubMed
Nobile C.J., Fox E.P., Nett J.E., Sorrells T.R., Mitrovich Q.M., Hernday A.D. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell. 2012;148(1–2):126–138. PubMed PMC
Finkel J.S., Xu W., Huang D., Hill E.M., Desai J.V., Woolford C.A. Portrait of Candida albicans adherence regulators. PLoS Pathog. 2012;8(2) PubMed PMC
Holland L.M., Schroder M.S., Turner S.A., Taff H., Andes D., Grozer Z. Comparative phenotypic analysis of the major fungal pathogens Candida parapsilosis and Candida albicans. PLoS Pathog. 2014;10(9) PubMed PMC
d'Enfert C., Janbon G. Biofilm formation in Candida glabrata: What have we learnt from functional genomics approaches? FEMS Yeast Res. 2016;16(1):fov111. PubMed
Bojsen R.K., Andersen K.S., Regenberg B. Saccharomyces cerevisiae - a model to uncover molecular mechanisms for yeast biofilm biology. FEMS Immunol Med Microbiol. 2012;65(2):169–182. PubMed
Reynolds T.B., Fink G.R. Bakers' yeast, a model for fungal biofilm formation. Science. 2001;291(5505):878–881. PubMed
Andersen S.K., Bojsen R, Gro L, Sorensen Rejkjaer, Nielsen Weiss M, Lisby M, Folkesson A, Regenberg B. Genetic basis for Saccharomyces cerevisiae biofilm in liquid medium. G3 (Bethesda) 2014;4(9):1671–1680. PubMed PMC
Yang L., Zheng C., Chen Y., Shi X., Ying Z., Ying H. Nitric oxide increases biofilm formation in Saccharomyces cerevisiae by activating the transcriptional factor Mac1p and thereby regulating the transmembrane protein Ctr1. Biotechnol Biofuels. 2019;12:30. PubMed PMC
Uppuluri P., Acosta Zaldivar M., Anderson M.Z., Dunn M.J., Berman J., Lopez Ribot J.L. Candida albicans dispersed cells are developmentally distinct from biofilm and planktonic cells. MBio. 2018;9(4):e01338–18. PubMed PMC
Ponde N.O., Lortal L., Ramage G., Naglik J.R., Richardson J.P. Candida albicans biofilms and polymicrobial interactions. Crit Rev Microbiol. 2021;47(1):91–111. PubMed PMC
Ellepola K., Truong T., Liu Y., Lin Q., Lim T.K., Lee Y.M. Multi-omics analyses reveal synergistic carbohydrate metabolism in Streptococcus mutans - Candida albicans mixed - species biofilms. Infect Immun. 2019;87(10):e00339–19. PubMed PMC
Legras J.L., Moreno-Garcia J., Zara S., Zara G., Garcia-Martinez T., Mauricio J.C. Flor Yeast: New perspectives beyond wine aging. Front Microbiol. 2016;7:503. PubMed PMC
Zara S., Bakalinsky A.T., Zara G., Pirino G., Demontis M.A., Budroni M. FLO11-based model for air-liquid interfacial biofilm formation by Saccharomyces cerevisiae. Appl Environ Microbiol. 2005;71(6):2934–2939. PubMed PMC
Moreno-Garcia J., Garcia-Martinez T., Moreno J., Mauricio J.C. Proteins involved in flor yeast carbon metabolism under biofilm formation conditions. Food Microbiol. 2015;46:25–33. PubMed
Moreno-Garcia J., Garcia-Martinez T., Moreno J., Millan M.C., Mauricio J.C. A proteomic and metabolomic approach for understanding the role of the flor yeast mitochondria in the velum formation. Int J Food Microbiol. 2014;172:21–29. PubMed
Moreno-Garcia J., Mauricio J.C., Moreno J., Garcia-Martinez T. Differential proteome analysis of a flor yeast strain under biofilm formation. Int J Mol Sci. 2017;18(4):720. PubMed PMC
Zarnowski R., Sanchez H., Andreu C., Andes D., Del Olmo M.L. Formation and characterization of biofilms formed by salt-tolerant yeast strains in seawater-based growth medium. Appl Microbiol Biotechnol. 2021;105(6):2411–2426. PubMed PMC
Freimoser F.M., Rueda-Mejia M.P., Tilocca B., Migheli Q. Biocontrol yeasts: mechanisms and applications. World J Microbiol Biotechnol. 2019;35(10):154. PubMed PMC
Giobbe S., Marceddu S., Scherm B., Zara G., Mazzarello V.L., Budroni M., Migheli Q. The strange case of a biofilm-forming strain of Pichia fermentans, which controls Monilinia brown rot on apple but is pathogenic on peach fruit. FEMS Yeast Res. 2007;7(8):1389–1398. PubMed
Nadal-Ribelles M., Islam S., Wei W., Latorre P., Nguyen M., de Nadal E. Sensitive high-throughput single-cell RNA-seq reveals within-clonal transcript correlations in yeast populations. Nat Microbiol. 2019;4(4):683–692. PubMed PMC
Differential stability of Gcn4p controls its cell-specific activity in differentiated yeast colonies