Glucose, Cyc8p and Tup1p regulate biofilm formation and dispersal in wild Saccharomyces cerevisiae

. 2020 Feb 13 ; 6 (1) : 7. [epub] 20200213

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32054862
Odkazy

PubMed 32054862
PubMed Central PMC7018694
DOI 10.1038/s41522-020-0118-1
PII: 10.1038/s41522-020-0118-1
Knihovny.cz E-zdroje

Saccharomyces cerevisiae is a mainly beneficial yeast, widely used in the food industry. However, there is growing evidence of its potential pathogenicity, leading to fungemia and invasive infections. The medical impact of yeast pathogens depends on formation of biofilms: multicellular structures, protected from the environment. Cell adhesion is a prerequisite of biofilm formation. We investigated the adherence of wild and genetically modified S. cerevisiae strains, formation of solid-liquid interface biofilms and associated regulation. Planktonic and static cells of wild strain BRF adhered and formed biofilms in glucose-free medium. Tup1p and Cyc8p were key positive and negative regulators, respectively. Glucose caused increased Cyc8p levels and blocked cell adhesion. Even low glucose levels, comparable with levels in the blood, allowed biofilm dispersal and release of planktonic cells. Cyc8p could thus modulate cell adhesion in different niches, dependently on environmental glucose level, e.g., high-glucose blood versus low-glucose tissues in host organisms.

Zobrazit více v PubMed

Enache-Angoulvant, A. & Hennequin, C. Invasive Saccharomyces infection: a comprehensive review. Clin. Infect. Dis.41, 1559–1568 (2005). PubMed

Perez-Torrado, R. & Querol, A. Opportunistic strains of Saccharomyces cerevisiae: a potential risk sold in food products. Front. Microbiol.6, 1522 (2015). PubMed PMC

Sobel, J. D., Vazquez, J., Lynch, M., Meriwether, C. & Zervos, M. J. Vaginitis due to Saccharomyces cerevisiae: epidemiology, clinical aspects, and therapy. Clin. Infect. Dis.16, 93–99 (1993). PubMed

Diezmann, S. & Dietrich, F. S. Saccharomyces cerevisiae: population divergence and resistance to oxidative stress in clinical, domesticated and wild isolates. PLoS ONE4, e5317 (2009). PubMed PMC

Diezmann, S. & Dietrich, F. S. Oxidative stress survival in a clinical Saccharomyces cerevisiae isolate is influenced by a major quantitative trait nucleotide. Genetics188, 709–722 (2011). PubMed PMC

Klingberg, T. D., Lesnik, U., Arneborg, N., Raspor, P. & Jespersen, L. Comparison of Saccharomyces cerevisiae strains of clinical and nonclinical origin by molecular typing and determination of putative virulence traits. FEMS Yeast Res.8, 631–640 (2008). PubMed PMC

Barchiesi, F. et al. In vitro activity of five antifungal agents against clinical isolates of Saccharomyces cerevisiae. Med. Mycol.36, 437–440 (1998). PubMed

de Groot PW, Bader O, de Boer AD, Weig M, Chauhan N. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot. Cell. 2013;12:470–481. doi: 10.1128/EC.00364-12. PubMed DOI PMC

Reynolds TB, Fink GR. Bakers’ yeast, a model for fungal biofilm formation. Science. 2001;291:878–881. doi: 10.1126/science.291.5505.878. PubMed DOI

Palkova Z, Vachova L. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts. Semin Cell Dev. Biol. 2016;57:110–119. doi: 10.1016/j.semcdb.2016.04.006. PubMed DOI

Verstrepen KJ, Klis FM. Flocculation, adhesion and biofilm formation in yeasts. Mol. Microbiol. 2006;60:5–15. doi: 10.1111/j.1365-2958.2006.05072.x. PubMed DOI

Taff, H. T., Mitchell, K. F., Edward, J. A. & Andes, D. R. Mechanisms of Candida biofilm drug resistance. Future Microbiol.8, 1325–1337 (2013). PubMed PMC

Cormack, B. P., Ghori, N. & Falkow, S. An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science285, 578–582 (1999). PubMed

Guo B, Styles CA, Feng Q, Fink GR. A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc. Natl Acad. Sci. 2000;97:12158–12163. doi: 10.1073/pnas.220420397. PubMed DOI PMC

Hoyer, L. L., Green, C. B., Oh, S. H. & Zhao, X. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family-a sticky pursuit. Med. Mycol.46, 1–15 (2008). PubMed PMC

Kaur, R., Domergue, R., Zupancic, M. L. & Cormack, B. P. A yeast by any other name: Candida glabrata and its interaction with the host. Curr. Opin. Microbiol.8, 378–384 (2005). PubMed

Lambrechts MG, Bauer FF, Marmur J, Pretorius IS. Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc. Natl Acad. Sci. 1996;93:8419–8424. doi: 10.1073/pnas.93.16.8419. PubMed DOI PMC

Vachova L, et al. Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies. J. Cell Biol. 2011;194:679–687. doi: 10.1083/jcb.201103129. PubMed DOI PMC

Vopalenska I, St’ovicek V, Janderova B, Vachova L, Palkova Z. Role of distinct dimorphic transitions in territory colonizing and formation of yeast colony architecture. Environ. Microbiol. 2010;12:264–277. doi: 10.1111/j.1462-2920.2009.02067.x. PubMed DOI

Bojsen, R. K., Andersen, K. S. & Regenberg, B. Saccharomyces cerevisiae—a model to uncover molecular mechanisms for yeast biofilm biology. FEMS Immunol. Med. Microbiol.65, 169–182 (2012). PubMed

Smith RL, Johnson AD. Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem. Sci. 2000;25:325–330. doi: 10.1016/S0968-0004(00)01592-9. PubMed DOI

Nguyen PV, Hlavacek O, Marsikova J, Vachova L, Palkova Z. Cyc8p and Tup1p transcription regulators antagonistically regulate Flo11p expression and complexity of yeast colony biofilms. PLoS Genet. 2018;14:e1007495. doi: 10.1371/journal.pgen.1007495. PubMed DOI PMC

Granek JA, Magwene PM. Environmental and genetic determinants of colony morphology in yeast. PLoS Genet. 2010;6:e1000823. doi: 10.1371/journal.pgen.1000823. PubMed DOI PMC

Meurer, M., Chevyreva, V., Cerulus, B. & Knop, M. The regulatable MAL32 promoter in Saccharomyces cerevisiae: characteristics and tools to facilitate its use. Yeast34, 39–49 (2017). PubMed

Conlan RS, Tzamarias D. Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J. Mol. Biol. 2001;309:1007–1015. doi: 10.1006/jmbi.2001.4742. PubMed DOI

Wilson WA, Hawley SA, Hardie DG. Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr. Biol. 1996;6:1426–1434. doi: 10.1016/S0960-9822(96)00747-6. PubMed DOI

Casamayor Antonio, Serrano Raquel, Platara María, Casado Carlos, Ruiz Amparo, Ariño Joaquín. The role of the Snf1 kinase in the adaptive response of Saccharomyces cerevisiae to alkaline pH stress. Biochemical Journal. 2012;444(1):39–49. doi: 10.1042/BJ20112099. PubMed DOI

Gasch AP, et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 2000;11:4241–4257. doi: 10.1091/mbc.11.12.4241. PubMed DOI PMC

Wile, D. & Wilding, J. P. H. in Clinical Biochemistry: Metabolic and Clinical Aspects. 3rd edn, 273–304 (Elsevier, 2014).

Rodrigues, C. F., Rodrigues, M. E. & Henriques, M. Candida sp. infections in patients with diabetes mellitus. J. Clin. Med.8, 76 (2019). PubMed PMC

Bruen D, Delaney C, Florea L, Diamond D. Glucose sensing for diabetes monitoring: recent developments. Sensors. 2017;17:1866. doi: 10.3390/s17081866. PubMed DOI PMC

Mandal Santi M., Mahata Denial, Migliolo Ludovico, Parekh Aditya, Addy Partha S., Mandal Mahitosh, Basak Amit. Glucose Directly Promotes Antifungal Resistance in the Fungal Pathogen,Candidaspp. Journal of Biological Chemistry. 2014;289(37):25468–25473. doi: 10.1074/jbc.C114.571778. PubMed DOI PMC

Villar, C. C., Kashleva, H. & Dongari-Bagtzoglou, A. Role of Candida albicans polymorphism in interactions with oral epithelial cells. Oral Microbiol. Immun.19, 262–269 (2004). PubMed

Kuthan Martin, Devaux Frédéric, Janderová Blanka, Slaninová Iva, Jacq Claude, Palková Zdena. Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Molecular Microbiology. 2003;47(3):745–754. doi: 10.1046/j.1365-2958.2003.03332.x. PubMed DOI

Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996;24:2519–2524. doi: 10.1093/nar/24.13.2519. PubMed DOI PMC

Sheff, M. A. & Thorn, K. S. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast21, 661–670 (2004). PubMed

Janke C, et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast. 2004;21:947–962. doi: 10.1002/yea.1142. PubMed DOI

Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/ polyethylene glycol method. Methods Enzymol. 2002;350:87–96. doi: 10.1016/S0076-6879(02)50957-5. PubMed DOI

Mowat, E., Butcher, J., Lang, S., Williams, C. & Ramage, G. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J. Med. Microbiol.56, 1205–1212 (2007). PubMed

Cap M, Stepanek L, Harant K, Vachova L, Palkova Z. Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism. Mol. Cell. 2012;46:436–448. doi: 10.1016/j.molcel.2012.04.001. PubMed DOI

Stovicek V, Vachova L, Begany M, Wilkinson D, Palkova Z. Global changes in gene expression associated with phenotypic switching of wild yeast. BMC Genom. 2014;15:136. doi: 10.1186/1471-2164-15-136. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...