Global changes in gene expression associated with phenotypic switching of wild yeast
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24533484
PubMed Central
PMC3930820
DOI
10.1186/1471-2164-15-136
PII: 1471-2164-15-136
Knihovny.cz E-zdroje
- MeSH
- biofilmy MeSH
- fenotyp MeSH
- genom fungální MeSH
- glykoproteiny genetika metabolismus MeSH
- histondeacetylasy genetika metabolismus MeSH
- membránové glykoproteiny genetika metabolismus MeSH
- regulace genové exprese u hub MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika fyziologie ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- FLO11 protein, S cerevisiae MeSH Prohlížeč
- glykoproteiny MeSH
- histondeacetylasy MeSH
- membránové glykoproteiny MeSH
- Saccharomyces cerevisiae - proteiny MeSH
BACKGROUND: Saccharomyces cerevisiae strains isolated from natural settings form structured biofilm colonies that are equipped with intricate protective mechanisms. These wild strains are able to reprogram themselves with a certain frequency during cultivation in plentiful laboratory conditions. The resulting domesticated strains switch off certain protective mechanisms and form smooth colonies that resemble those of common laboratory strains. RESULTS: Here, we show that domestication can be reversed when a domesticated strain is challenged by various adverse conditions; the resulting feral strain restores its ability to form structured biofilm colonies. Phenotypic, microscopic and transcriptomic analyses show that phenotypic transition is a complex process that affects various aspects of feral strain physiology; it leads to a phenotype that resembles the original wild strain in some aspects and the domesticated derivative in others. We specify the genetic determinants that are likely involved in the formation of a structured biofilm colonies. In addition to FLO11, these determinants include genes that affect the cell wall and membrane composition. We also identify changes occurring during phenotypic transitions that affect other properties of phenotypic strain-variants, such as resistance to the impact of environmental stress. Here we document the regulatory role of the histone deacetylase Hda1p in developing such a resistance. CONCLUSIONS: We provide detailed analysis of transcriptomic and phenotypic modulations of three related S. cerevisiae strains that arose by phenotypic switching under diverse environmental conditions. We identify changes specifically related to a strain's ability to create complex structured colonies; we also show that other changes, such as genome rearrangement(s), are unrelated to this ability. Finally, we identify the importance of histone deacetylase Hda1p in strain resistance to stresses.
Zobrazit více v PubMed
Palková Z. Multicellular microorganisms: laboratory versus nature. EMBO Rep. 2004;5(5):470–476. doi: 10.1038/sj.embor.7400145. PubMed DOI PMC
van der Woude MW. Re-examining the role and random nature of phase variation. FEMS Microbiol Lett. 2006;254(2):190–197. doi: 10.1111/j.1574-6968.2005.00038.x. PubMed DOI
Soll DR. High-frequency switching in Candida albicans. Clin Microbiol Rev. 1992;5(2):183–203. PubMed PMC
Soll DR. Candida commensalism and virulence: the evolution of phenotypic plasticity. Acta Trop. 2002;81(2):101–110. doi: 10.1016/S0001-706X(01)00200-5. PubMed DOI
Jain N, Hasan F, Fries BC. Phenotypic switching in fungi. Curr Fungal Infect Rep. 2008;2(3):180–188. doi: 10.1007/s12281-008-0026-y. PubMed DOI PMC
Fries BC, Taborda CP, Serfass E, Casadevall A. Phenotypic switching of Cryptococcus neoformans occurs in vivo and influences the outcome of infection. J Clin Invest. 2001;108(11):1639–1648. doi: 10.1172/JCI200113407. PubMed DOI PMC
Kvaal C, Lachke SA, Srikantha T, Daniels K, McCoy J, Soll DR. Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect Immun. 1999;67(12):6652–6662. PubMed PMC
Goldman DL, Fries BC, Franzot SP, Montella L, Casadevall A. Phenotypic switching in the human pathogenic fungus Cryptococcus neoformans is associated with changes in virulence and pulmonary inflammatory response in rodents. Proc Natl Acad Sci USA. 1998;95(25):14967–14972. doi: 10.1073/pnas.95.25.14967. PubMed DOI PMC
Slutsky B, Staebell M, Anderson J, Risen L, Pfaller M, Soll DR. “White-opaque transition”: a second high-frequency switching system in Candida albicans. J Bacteriol. 1987;169(1):189–197. PubMed PMC
Ramirez-Zavala B, Reuss O, Park YN, Ohlsen K, Morschhauser J. Environmental induction of white-opaque switching in Candida albicans. PLoS Pathog. 2008;4(6):e1000089. doi: 10.1371/journal.ppat.1000089. PubMed DOI PMC
Granek JA, Magwene PM. Environmental and genetic determinants of colony morphology in yeast. PLoS Genet. 2010;6(1):e1000823. doi: 10.1371/journal.pgen.1000823. PubMed DOI PMC
Granek JA, Murray D, Kayrkci O, Magwene PM. The genetic architecture of biofilm formation in a clinical isolate of Saccharomyces cerevisiae. Genetics. 2013;193(2):587–600. doi: 10.1534/genetics.112.142067. PubMed DOI PMC
Kuthan M, Devaux F, Janderová B, Slaninová I, Jacq C, Palková Z. Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol. 2003;47(3):745–754. doi: 10.1046/j.1365-2958.2003.03332.x. PubMed DOI
Šťovíček V, Váchová L, Kuthan M, Palková Z. General factors important for the formation of structured biofilm-like yeast colonies. Fungal Genet Biol. 2010;47(12):1012–1022. doi: 10.1016/j.fgb.2010.08.005. PubMed DOI
Voordeckers K, De Maeyer D, van der Zande E, Vinces MD, Meert W, Cloots L, Ryan O, Marchal K, Verstrepen KJ. Identification of a complex genetic network underlying Saccharomyces cerevisiae colony morphology. Mol Microbiol. 2012;86(1):225–239. doi: 10.1111/j.1365-2958.2012.08192.x. PubMed DOI PMC
Váchová L, Šťovíček V, Hlaváček O, Chernyavskiy O, Štěpánek L, Kubínová L, Palková Z. Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies. J Cell Biol. 2011;194(5):679–687. doi: 10.1083/jcb.201103129. PubMed DOI PMC
Vopálenská I, Šťovíček V, Janderová B, Váchová L, Palková Z. Role of distinct dimorphic transitions in territory colonizing and formation of yeast colony architecture. Environ Microbiol. 2010;12(1):264–277. doi: 10.1111/j.1462-2920.2009.02067.x. PubMed DOI
Srikantha T, Tsai L, Daniels K, Klar AJ, Soll DR. The histone deacetylase genes HDA1 and RPD3 play distinct roles in regulation of high-frequency phenotypic switching in Candida albicans. J Bacteriol. 2001;183(15):4614–4625. doi: 10.1128/JB.183.15.4614-4625.2001. PubMed DOI PMC
Perez-Martin J, Uria JA, Johnson AD. Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J. 1999;18(9):2580–2592. doi: 10.1093/emboj/18.9.2580. PubMed DOI PMC
Bedalov A, Gatbonton T, Irvine WP, Gottschling DE, Simon JA. Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci USA. 2001;98(26):15113–15118. doi: 10.1073/pnas.261574398. PubMed DOI PMC
Aparicio OM, Billington BL, Gottschling DE. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell. 1991;66(6):1279–1287. doi: 10.1016/0092-8674(91)90049-5. PubMed DOI
Robyr D, Suka Y, Xenarios I, Kurdistani SK, Wang A, Suka N, Grunstein M. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell. 2002;109(4):437–446. doi: 10.1016/S0092-8674(02)00746-8. PubMed DOI
Alby K, Bennett RJ. Stress-induced phenotypic switching in Candida albicans. Mol Biol Cell. 2009;20(14):3178–3191. doi: 10.1091/mbc.E09-01-0040. PubMed DOI PMC
Verstrepen KJ, Reynolds TB, Fink GR. Origins of variation in the fungal cell surface. Nat Rev Microbiol. 2004;2(7):533–540. doi: 10.1038/nrmicro927. PubMed DOI
Fidalgo M, Barrales RR, Jimenez J. Coding repeat instability in the FLO11 gene of Saccharomyces yeasts. Yeast. 2008;25(12):879–889. doi: 10.1002/yea.1642. PubMed DOI
Rinckel LA, Garfinkel DJ. Influences of histone stoichiometry on the target site preference of retrotransposons Ty1 and Ty2 in Saccharomyces cerevisiae. Genetics. 1996;142(3):761–776. PubMed PMC
Roncero C, Duran A. Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol. 1985;163(3):1180–1185. PubMed PMC
Ram AF, Wolters A, Ten Hoopen R, Klis FM. A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast. 1994;10(8):1019–1030. doi: 10.1002/yea.320100804. PubMed DOI
Klar AJ, Srikantha T, Soll DR. A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans. Genetics. 2001;158(2):919–924. PubMed PMC
Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, Florens L, Sanderson BW, Hattem GL, Li R. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature. 2010;468(7321):321–325. doi: 10.1038/nature09529. PubMed DOI PMC
Pfau SJ, Amon A. Chromosomal instability and aneuploidy in cancer: from yeast to man. EMBO Rep. 2012;13(6):515–527. doi: 10.1038/embor.2012.65. PubMed DOI PMC
Tan Z, Hays M, Cromie GA, Jeffery EW, Scott AC, Ahyong V, Sirr A, Skupin A, Dudley AM. Aneuploidy underlies a multicellular phenotypic switch. Proc Natl Acad Sci USA. 2013;110(30):12367–12372. doi: 10.1073/pnas.1301047110. PubMed DOI PMC
Slutsky B, Buffo J, Soll DR. High-frequency switching of colony morphology in Candida albicans. Science. 1985;230(4726):666–669. doi: 10.1126/science.3901258. PubMed DOI
Slavikova E, Vadkertiova R. Yeasts and yeast-like organisms isolated from fish-pond waters. Acta Microbiol Pol. 1995;44(2):181–189. PubMed
Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002;350:87–96. PubMed
Cap M, Stepanek L, Harant K, Vachova L, Palkova Z. Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism. Mol Cell. 2012;46(4):436–448. doi: 10.1016/j.molcel.2012.04.001. PubMed DOI
Rabilloud T, Vuillard L, Gilly C, Lawrence JJ. Silver-staining of proteins in polyacrylamide gels: a general overview. Cell Mol Biol (Noisy-le-grand) 1994;40(1):57–75. PubMed
Hawkes R. Identification of concanavalin a-binding proteins after sodium dodecyl sulfate–gel electrophoresis and protein blotting. Anal Biochem. 1982;123(1):143–146. doi: 10.1016/0003-2697(82)90634-0. PubMed DOI
Váchová L, Chernyavskiy O, Strachotová D, Bianchini P, Burdíková Z, Ferčíková I, Kubínová L, Palková Z. Architecture of developing multicellular yeast colony: spatio-temporal expression of Ato1p ammonium exporter. Environ Microbiol. 2009;11:1866–1877. doi: 10.1111/j.1462-2920.2009.01911.x. PubMed DOI
Kibbe WA. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res. 2007;35(Web Server issue):W43–W46. PubMed PMC
Harju S, Fedosyuk H, Peterson KR. Rapid isolation of yeast genomic DNA: Bust n’ Grab. BMC Biotechnol. 2004;4:8. doi: 10.1186/1472-6750-4-8. PubMed DOI PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC
De Preter K, Barriot R, Speleman F, Vandesompele J, Moreau Y. Positional gene enrichment analysis of gene sets for high-resolution identification of overrepresented chromosomal regions. Nucleic Acids Res. 2008;36(7):e43. doi: 10.1093/nar/gkn114. PubMed DOI PMC
Cell Distribution within Yeast Colonies and Colony Biofilms: How Structure Develops
Glucose, Cyc8p and Tup1p regulate biofilm formation and dispersal in wild Saccharomyces cerevisiae
GEO
GSE40625