Diverse roles of Tup1p and Cyc8p transcription regulators in the development of distinct types of yeast populations
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LQ1604 NPU II
Ministry of Education, Youth and Sports
RVO61388971
Czech Academy of Sciences
CZ.1.05/1.1.00/02.0109 BIOCEV
European Regional Development Fund and Ministry of Education, Youth and Sports
PubMed
30191307
DOI
10.1007/s00294-018-0883-z
PII: 10.1007/s00294-018-0883-z
Knihovny.cz E-zdroje
- Klíčová slova
- Adhesion and invasion, Colony biofilm, Cyc8p and Tup1p, Flocculation, Yeast multicellular structures,
- MeSH
- biofilmy MeSH
- buněčná stěna genetika metabolismus MeSH
- druhová specificita MeSH
- jaderné proteiny genetika metabolismus MeSH
- regulace genové exprese u hub * MeSH
- represorové proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae klasifikace genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- CYC8 protein, S cerevisiae MeSH Prohlížeč
- jaderné proteiny MeSH
- represorové proteiny MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- TUP1 protein, S cerevisiae MeSH Prohlížeč
Yeasts create multicellular structures of varying complexity, such as more complex colonies and biofilms and less complex flocs, each of which develops via different mechanisms. Colony biofilms originate from one or more cells that, through growth and division, develop a complicated three-dimensional structure consisting of aerial parts, agar-embedded invasive parts and a central cavity, filled with extracellular matrix. In contrast, flocs arise relatively quickly by aggregation of planktonic cells growing in liquid cultures after they reach the appropriate growth phase and/or exhaust nutrients such as glucose. Creation of both types of structures is dependent on the presence of flocculins: Flo11p in the former case and Flo1p in the latter. We recently showed that formation of both types of structures by wild Saccharomyces cerevisiae strain BR-F is regulated via transcription regulators Tup1p and Cyc8p, but in a divergent manner. Biofilm formation is regulated by Cyc8p and Tup1p antagonistically: Cyc8p functions as a repressor of FLO11 gene expression and biofilm formation, whereas Tup1p counteracts the Cyc8p repressor function and positively regulates biofilm formation and Flo11p expression. In addition, Tup1p stabilizes Flo11p probably by repressing a gene coding for a cell wall or extracellular protease that is involved in Flo11p degradation. In contrast, formation of BR-F flocs is co-repressed by the Cyc8p-Tup1p complex. These findings point to different mechanisms involved in yeast multicellularity.
Faculty of Science Charles University BIOCEV 252 50 Vestec Czech Republic
Institute of Microbiology of the Czech Academy of Sciences BIOCEV 252 50 Vestec Czech Republic
Zobrazit více v PubMed
Trends Biochem Sci. 2000 Jul;25(7):325-30 PubMed
Mol Microbiol. 2003 Apr;48(1):85-94 PubMed
Cell Microbiol. 2004 Oct;6(10):915-26 PubMed
Mol Microbiol. 2005 Feb;55(4):1222-32 PubMed
Yeast. 1992 Jan;8(1):25-38 PubMed
Mol Biol Cell. 2005 Jun;16(6):2913-25 PubMed
Mol Microbiol. 2006 Apr;60(1):5-15 PubMed
Eukaryot Cell. 2007 Oct;6(10):1736-44 PubMed
Mol Microbiol. 2007 Dec;66(5):1276-89 PubMed
BMC Microbiol. 2008 Jul 14;8:116 PubMed
Cell. 2008 Nov 14;135(4):726-37 PubMed
Nat Cell Biol. 2009 Mar;11(3):344-9 PubMed
Environ Microbiol. 2010 Jan;12(1):264-77 PubMed
Eukaryot Cell. 2009 Dec;8(12):1901-8 PubMed
Curr Biol. 2010 Aug 10;20(15):1389-95 PubMed
Fungal Genet Biol. 2010 Dec;47(12):1012-22 PubMed
J Appl Microbiol. 2011 Jan;110(1):1-18 PubMed
J Cell Biol. 2011 Sep 5;194(5):679-87 PubMed
PLoS Pathog. 2011 Sep;7(9):e1002235 PubMed
Genes Dev. 2011 Dec 1;25(23):2525-39 PubMed
FEMS Yeast Res. 2014 Feb;14(1):96-108 PubMed
PLoS One. 2013 Oct 29;8(10):e78102 PubMed
BMC Genomics. 2014 Feb 17;15:136 PubMed
Biochim Biophys Acta. 2014 Nov;1839(11):1242-55 PubMed
Mol Plant Pathol. 2015 Oct;16(8):799-810 PubMed
FEBS Lett. 2015 Feb 13;589(4):513-20 PubMed
J Microbiol. 2015 Dec;53(12):805-11 PubMed
MBio. 2016 Jan 26;7(1):e01565-15 PubMed
Semin Cell Dev Biol. 2016 Sep;57:110-119 PubMed
Curr Genet. 2017 Aug;63(4):739-750 PubMed
PLoS Genet. 2017 Jun 30;13(6):e1006863 PubMed
PLoS Genet. 2017 Aug 14;13(8):e1006954 PubMed
PLoS Genet. 2018 Jan 16;14(1):e1007176 PubMed
FEMS Yeast Res. 2018 Jun 1;18(4): PubMed
Curr Genet. 2018 Dec;64(6):1239-1243 PubMed
PLoS Genet. 2018 Jul 2;14(7):e1007495 PubMed
J Bacteriol. 1984 Aug;159(2):797-9 PubMed
Yeast. 1995 Apr 30;11(5):435-46 PubMed
Mol Cell Biol. 1996 Dec;16(12):6707-14 PubMed
Science. 1997 Jul 4;277(5322):105-9 PubMed