Cyc8p and Tup1p transcription regulators antagonistically regulate Flo11p expression and complexity of yeast colony biofilms
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29965985
PubMed Central
PMC6044549
DOI
10.1371/journal.pgen.1007495
PII: PGENETICS-D-18-00494
Knihovny.cz E-zdroje
- MeSH
- biofilmy * MeSH
- buněčná adheze fyziologie MeSH
- jaderné proteiny genetika metabolismus MeSH
- membránové glykoproteiny genetika metabolismus MeSH
- mezibuněčná komunikace fyziologie MeSH
- regulace genové exprese u hub * MeSH
- represorové proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CYC8 protein, S cerevisiae MeSH Prohlížeč
- FLO11 protein, S cerevisiae MeSH Prohlížeč
- jaderné proteiny MeSH
- membránové glykoproteiny MeSH
- represorové proteiny MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- TUP1 protein, S cerevisiae MeSH Prohlížeč
Yeast biofilms are complex multicellular structures, in which the cells are well protected against drugs and other treatments and thus highly resistant to antifungal therapies. Colony biofilms represent an ideal system for studying molecular mechanisms and regulations involved in development and internal organization of biofilm structure as well as those that are involved in fungal domestication. We have identified here antagonistic functional interactions between transcriptional regulators Cyc8p and Tup1p that modulate the life-style of natural S. cerevisiae strains between biofilm and domesticated mode. Herein, strains with different levels of Cyc8p and Tup1p regulators were constructed, analyzed for processes involved in colony biofilm development and used in the identification of modes of regulation of Flo11p, a key adhesin in biofilm formation. Our data show that Tup1p and Cyc8p regulate biofilm formation in the opposite manner, being positive and negative regulators of colony complexity, cell-cell interaction and adhesion to surfaces. Notably, in-depth analysis of regulation of expression of Flo11p adhesin revealed that Cyc8p itself is the key repressor of FLO11 expression, whereas Tup1p counteracts Cyc8p's repressive function and, in addition, counters Flo11p degradation by an extracellular protease. Interestingly, the opposing actions of Tup1p and Cyc8p concern processes crucial to the biofilm mode of yeast multicellularity, whereas other multicellular processes such as cell flocculation are co-repressed by both regulators. This study provides insight into the mechanisms regulating complexity of the biofilm lifestyle of yeast grown on semisolid surfaces.
Zobrazit více v PubMed
Bruckner S, Mosch HU (2012) Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 36: 25–58. 10.1111/j.1574-6976.2011.00275.x PubMed DOI
Honigberg SM (2011) Cell Signals, Cell Contacts, and the Organization of Yeast Communities. Eukaryotic Cell 10: 466–473. 10.1128/EC.00313-10 PubMed DOI PMC
Palkova Z (2004) Multicellular microorganisms: laboratory versus nature. EMBO Rep 5: 470–476. 10.1038/sj.embor.7400145 PubMed DOI PMC
Palkova Z, Vachova L (2006) Life within a community: benefit to yeast long-term survival. FEMS Microbiol Rev 30: 806–824. 10.1111/j.1574-6976.2006.00034.x PubMed DOI
Palkova Z, Wilkinson D, Vachova L (2014) Aging and differentiation in yeast populations: elders with different properties and functions. FEMS Yeast Res 14: 96–108. 10.1111/1567-1364.12103 PubMed DOI
Vachova L, Stovicek V, Hlavacek O, Chernyavskiy O, Stepanek L, et al. (2011) Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies. J Cell Biol 194: 679–687. 10.1083/jcb.201103129 PubMed DOI PMC
Palkova Z, Vachova L (2016) Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts. Semin Cell Dev Biol 57: 110–119. 10.1016/j.semcdb.2016.04.006 PubMed DOI
Tan Z, Hays M, Cromie GA, Jeffery EW, Scott AC, et al. (2013) Aneuploidy underlies a multicellular phenotypic switch. Proc Natl Acad Sci U S A 110: 12367–12372. 10.1073/pnas.1301047110 PubMed DOI PMC
Verstrepen KJ, Reynolds TB, Fink GR (2004) Origins of variation in the fungal cell surface. Nat Rev Microbiol 2: 533–540. 10.1038/nrmicro927 PubMed DOI
Vopalenska I, Stovicek V, Janderova B, Vachova L, Palkova Z (2010) Role of distinct dimorphic transitions in territory colonizing and formation of yeast colony architecture. Environ Microbiol 12: 264–277. 10.1111/j.1462-2920.2009.02067.x PubMed DOI
Ishigami M, Nakagawa Y, Hayakawa M, Iimura Y (2004) FLO11 is essential for flor formation caused by the C-terminal deletion of NRG1 in Saccharomyces cerevisiae. FEMS Microbiol Lett 237: 425–430. 10.1016/j.femsle.2004.07.012 PubMed DOI
Reynolds TB, Fink GR (2001) Bakers' yeast, a model for fungal biofilm formation. Science 291: 878–881. 10.1126/science.291.5505.878 PubMed DOI
Stovicek V, Vachova L, Kuthan M, Palkova Z (2010) General factors important for the formation of structured biofilm-like yeast colonies. Fungal Genet Biol 47: 1012–1022. 10.1016/j.fgb.2010.08.005 PubMed DOI
Voordeckers K, De Maeyer D, van der Zande E, Vinces MD, Meert W, et al. (2012) Identification of a complex genetic network underlying Saccharomyces cerevisiae colony morphology. Mol Microbiol 86: 225–239. 10.1111/j.1365-2958.2012.08192.x PubMed DOI PMC
Stovicek V, Vachova L, Begany M, Wilkinson D, Palkova Z (2014) Global changes in gene expression associated with phenotypic switching of wild yeast. BMC Genomics 15: 136 10.1186/1471-2164-15-136 PubMed DOI PMC
Rupp S, Summers E, Lo HJ, Madhani H, Fink G (1999) MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18: 1257–1269. 10.1093/emboj/18.5.1257 PubMed DOI PMC
Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60: 5–15. 10.1111/j.1365-2958.2006.05072.x PubMed DOI
Vinod PK, Sengupta N, Bhat PJ, Venkatesh KV (2008) Integration of global signaling pathways, cAMP-PKA, MAPK and TOR in the regulation of FLO11. PLoS One 3: e1663 10.1371/journal.pone.0001663 PubMed DOI PMC
Barrales RR, Korber P, Jimenez J, Ibeas JI (2012) Chromatin modulation at the FLO11 promoter of Saccharomyces cerevisiae by HDAC and Swi/Snf complexes. Genetics 191: 791–803. 10.1534/genetics.112.140301 PubMed DOI PMC
Bumgarner SL, Dowell RD, Grisafi P, Gifford DK, Fink GR (2009) Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc Natl Acad Sci U S A 106: 18321–18326. 10.1073/pnas.0909641106 PubMed DOI PMC
Halme A, Bumgarner S, Styles C, Fink GR (2004) Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116: 405–415. PubMed
Holmes DL, Lancaster AK, Lindquist S, Halfmann R (2013) Heritable remodeling of yeast multicellularity by an environmentally responsive prion. Cell 153: 153–165. 10.1016/j.cell.2013.02.026 PubMed DOI PMC
Octavio LM, Gedeon K, Maheshri N (2009) Epigenetic and conventional regulation is distributed among activators of FLO11 allowing tuning of population-level heterogeneity in its expression. PLoS Genet 5: e1000673 10.1371/journal.pgen.1000673 PubMed DOI PMC
Smith RL, Johnson AD (2000) Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25: 325–330. PubMed
Varanasi US, Klis M, Mikesell PB, Trumbly RJ (1996) The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits. Mol Cell Biol 16: 6707–6714. PubMed PMC
Matsumura H, Kusaka N, Nakamura T, Tanaka N, Sagegami K, et al. (2012) Crystal structure of the N-terminal domain of the yeast general corepressor Tup1p and its functional implications. J Biol Chem 287: 26528–26538. 10.1074/jbc.M112.369652 PubMed DOI PMC
DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680–686. PubMed
Green SR, Johnson AD (2004) Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae. Molecular Biology of the Cell 15: 4191–4202. 10.1091/mbc.E04-05-0412 PubMed DOI PMC
Malave TM, Dent SY (2006) Transcriptional repression by Tup1-Ssn6. Biochem Cell Biol 84: 437–443. 10.1139/o06-073 PubMed DOI
Wilson WA, Hawley SA, Hardie DG (1996) Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol 6: 1426–1434. PubMed
Hickman MJ, Winston F (2007) Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor. Mol Cell Biol 27: 7414–7424. 10.1128/MCB.00887-07 PubMed DOI PMC
Zhang L, Guarente L (1994) Evidence that TUP1/SSN6 has a positive effect on the activity of the yeast activator HAP1. Genetics 136: 813–817. PubMed PMC
Fragiadakis GS, Tzamarias D, Alexandraki D (2004) Nhp6 facilitates Aft1 binding and Ssn6 recruitment, both essential for FRE2 transcriptional activation. EMBO J 23: 333–342. 10.1038/sj.emboj.7600043 PubMed DOI PMC
Kim SJ, Swanson MJ, Qiu H, Govind CK, Hinnebusch AG (2005) Activator Gcn4p and Cyc8p/Tup1p are interdependent for promoter occupancy at ARG1 in vivo. Mol Cell Biol 25: 11171–11183. 10.1128/MCB.25.24.11171-11183.2005 PubMed DOI PMC
Tanaka N, Mukai Y (2015) Yeast Cyc8p and Tup1p proteins function as coactivators for transcription of Stp1/2p-dependent amino acid transporter genes. Biochem Biophys Res Commun 468: 32–38. 10.1016/j.bbrc.2015.11.001 PubMed DOI
Proft M, Struhl K (2002) Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell 9: 1307–1317. PubMed
Chen K, Wilson MA, Hirsch C, Watson A, Liang S, et al. (2013) Stabilization of the promoter nucleosomes in nucleosome-free regions by the yeast Cyc8-Tup1 corepressor. Genome Res 23: 312–322. 10.1101/gr.141952.112 PubMed DOI PMC
Garcia-Sanchez S, Mavor AL, Russell CL, Argimon S, Dennison P, et al. (2005) Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. Mol Biol Cell 16: 2913–2925. 10.1091/mbc.E05-01-0071 PubMed DOI PMC
Hernday AD, Lohse MB, Nobile CJ, Noiman L, Laksana CN, et al. (2016) Ssn6 Defines a New Level of Regulation of White-Opaque Switching in Candida albicans and Is Required For the Stochasticity of the Switch. MBio 7: e01565–01515. 10.1128/mBio.01565-15 PubMed DOI PMC
Alkafeef SS, Yu C, Huang L, Liu H (2018) Wor1 establishes opaque cell fate through inhibition of the general co-repressor Tup1 in Candida albicans. PLoS Genet 14: e1007176 10.1371/journal.pgen.1007176 PubMed DOI PMC
Lee JE, Oh JH, Ku M, Kim J, Lee JS, et al. (2015) Ssn6 has dual roles in Candida albicans filament development through the interaction with Rpd31. FEBS Lett 589: 513–520. 10.1016/j.febslet.2015.01.011 PubMed DOI
Chen Y, Zhai S, Sun Y, Li M, Dong Y, et al. (2015) MoTup1 is required for growth, conidiogenesis and pathogenicity of Magnaporthe oryzae. Mol Plant Pathol 16: 799–810. 10.1111/mpp.12235 PubMed DOI PMC
Kuthan M, Devaux F, Janderova B, Slaninova I, Jacq C, et al. (2003) Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol 47: 745–754. PubMed
Dowell RD, Ryan O, Jansen A, Cheung D, Agarwala S, et al. (2010) Genotype to phenotype: a complex problem. Science 328: 469 10.1126/science.1189015 PubMed DOI PMC
Granek JA, Magwene PM (2010) Environmental and genetic determinants of colony morphology in yeast. PLoS Genet 6: e1000823 10.1371/journal.pgen.1000823 PubMed DOI PMC
Karunanithi S, Vadaie N, Chavel CA, Birkaya B, Joshi J, et al. (2010) Shedding of the mucin-like flocculin Flo11p reveals a new aspect of fungal adhesion regulation. Curr Biol 20: 1389–1395. 10.1016/j.cub.2010.06.033 PubMed DOI PMC
Bader O, Krauke Y, Hube B (2008) Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris. BMC Microbiol 8: 116 10.1186/1471-2180-8-116 PubMed DOI PMC
Kraushaar T, Bruckner S, Veelders M, Rhinow D, Schreiner F, et al. (2015) Interactions by the Fungal Flo11 Adhesin Depend on a Fibronectin Type III-like Adhesin Domain Girdled by Aromatic Bands. Structure 23: 1005–1017. 10.1016/j.str.2015.03.021 PubMed DOI
Piccirillo S, Honigberg SM (2010) Sporulation patterning and invasive growth in wild and domesticated yeast colonies. Res Microbiol 161: 390–398. 10.1016/j.resmic.2010.04.001 PubMed DOI PMC
Hwang CS, Oh JH, Huh WK, Yim HS, Kang SO (2003) Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Mol Microbiol 47: 1029–1043. PubMed
Fleming AB, Beggs S, Church M, Tsukihashi Y, Pennings S (2014) The yeast Cyc8-Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene. Biochim Biophys Acta 1839: 1242–1255. 10.1016/j.bbagrm.2014.07.022 PubMed DOI PMC
Chujo M, Yoshida S, Ota A, Murata K, Kawai S (2015) Acquisition of the ability to assimilate mannitol by Saccharomyces cerevisiae through dysfunction of the general corepressor Tup1-Cyc8. Appl Environ Microbiol 81: 9–16. 10.1128/AEM.02906-14 PubMed DOI PMC
Lipke PN, Hullpillsbury C (1984) Flocculation of Saccharomyces cerevisiae Tupl Mutants. J Bacteriol 159: 797–799. PubMed PMC
Patel BK, Gavin-Smyth J, Liebman SW (2009) The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion. Nat Cell Biol 11: 344–349. 10.1038/ncb1843 PubMed DOI PMC
Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74: 6041–6052. 10.1128/AEM.00394-08 PubMed DOI PMC
Conlan RS, Tzamarias D (2001) Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J Mol Biol 309: 1007–1015. 10.1006/jmbi.2001.4742 PubMed DOI
Park SH, Koh SS, Chun JH, Hwang HJ, Kang HS (1999) Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae. Mol Cell Biol 19: 2044–2050. PubMed PMC
Schuller HJ (2003) Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43: 139–160. 10.1007/s00294-003-0381-8 PubMed DOI
Barrales RR, Jimenez J, Ibeas JI (2008) Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae. Genetics 178: 145–156. 10.1534/genetics.107.081315 PubMed DOI PMC
Fichtner L, Schulze F, Braus GH (2007) Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c. Mol Microbiol 66: 1276–1289. 10.1111/j.1365-2958.2007.06014.x PubMed DOI PMC
Gromoller A, Lehming N (2000) Srb7p is a physical and physiological target of Tup1p. EMBO J 19: 6845–6852. 10.1093/emboj/19.24.6845 PubMed DOI PMC
Naglik J, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6: 915–926. 10.1111/j.1462-5822.2004.00439.x PubMed DOI
Schachtschabel D, Arentshorst M, Nitsche BM, Morris S, Nielsen KF, et al. (2013) The transcriptional repressor TupA in Aspergillus niger is involved in controlling gene expression related to cell wall biosynthesis, development, and nitrogen source availability. PLoS One 8: e78102 10.1371/journal.pone.0078102 PubMed DOI PMC
Mao X, Li Y, Wang H, Cao F, Chen J (2008) Antagonistic interplay of Swi1 and Tup1 on filamentous growth of Candida albicans. FEMS Microbiol Lett 285: 233–241. 10.1111/j.1574-6968.2008.01236.x PubMed DOI
Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541–1553. 10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K PubMed DOI
Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30: e23 PubMed PMC
Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, et al. (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21: 947–962. 10.1002/yea.1142 PubMed DOI
Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/ polyethylene glycol method. Methods Enzymol 350: 87–96. PubMed
Vachova L, Chernyavskiy O, Strachotova D, Bianchini P, Burdikova Z, et al. (2009) Architecture of developing multicellular yeast colony: spatio-temporal expression of Ato1p ammonium exporter. Environ Microbiol 11: 1866–1877. 10.1111/j.1462-2920.2009.01911.x PubMed DOI
Vachova L, Kucerova H, Devaux F, Ulehlova M, Palkova Z (2009) Metabolic diversification of cells during the development of yeast colonies. Environ Microbiol 11: 494–504. 10.1111/j.1462-2920.2008.01789.x PubMed DOI
Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138: 141–143. PubMed
Masuda T, Tomita M, Ishihama Y (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res 7: 731–740. 10.1021/pr700658q PubMed DOI
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, et al. (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13: 2513–2526. 10.1074/mcp.M113.031591 PubMed DOI PMC
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, et al. (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13: 731–740. 10.1038/nmeth.3901 PubMed DOI
Bester MC, Pretorius IS, Bauer FF (2006) The regulation of Saccharomyces cerevisiae FLO gene expression and Ca2+ -dependent flocculation by Flo8p and Mss11p. Curr Genet 49: 375–383. 10.1007/s00294-006-0068-z PubMed DOI
Roberts RL, Fink GR (1994) Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8: 2974–2985. PubMed
Obornik M, Vancova M, Lai DH, Janouskovec J, Keeling PJ, et al. (2011) Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of apicomplexa, Chromera velia. Protist 162: 115–130. 10.1016/j.protis.2010.02.004 PubMed DOI
Palkova Z, Devaux F, Ricicova M, Minarikova L, Le Crom S, et al. (2002) Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 13: 3901–3914. 10.1091/mbc.E01-12-0149 PubMed DOI PMC
Removal of Manganese and Copper from Aqueous Solution by Yeast Papiliotrema huenov
Cell Distribution within Yeast Colonies and Colony Biofilms: How Structure Develops
Glucose, Cyc8p and Tup1p regulate biofilm formation and dispersal in wild Saccharomyces cerevisiae