Cyc8p and Tup1p transcription regulators antagonistically regulate Flo11p expression and complexity of yeast colony biofilms

. 2018 Jul ; 14 (7) : e1007495. [epub] 20180702

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29965985
Odkazy

PubMed 29965985
PubMed Central PMC6044549
DOI 10.1371/journal.pgen.1007495
PII: PGENETICS-D-18-00494
Knihovny.cz E-zdroje

Yeast biofilms are complex multicellular structures, in which the cells are well protected against drugs and other treatments and thus highly resistant to antifungal therapies. Colony biofilms represent an ideal system for studying molecular mechanisms and regulations involved in development and internal organization of biofilm structure as well as those that are involved in fungal domestication. We have identified here antagonistic functional interactions between transcriptional regulators Cyc8p and Tup1p that modulate the life-style of natural S. cerevisiae strains between biofilm and domesticated mode. Herein, strains with different levels of Cyc8p and Tup1p regulators were constructed, analyzed for processes involved in colony biofilm development and used in the identification of modes of regulation of Flo11p, a key adhesin in biofilm formation. Our data show that Tup1p and Cyc8p regulate biofilm formation in the opposite manner, being positive and negative regulators of colony complexity, cell-cell interaction and adhesion to surfaces. Notably, in-depth analysis of regulation of expression of Flo11p adhesin revealed that Cyc8p itself is the key repressor of FLO11 expression, whereas Tup1p counteracts Cyc8p's repressive function and, in addition, counters Flo11p degradation by an extracellular protease. Interestingly, the opposing actions of Tup1p and Cyc8p concern processes crucial to the biofilm mode of yeast multicellularity, whereas other multicellular processes such as cell flocculation are co-repressed by both regulators. This study provides insight into the mechanisms regulating complexity of the biofilm lifestyle of yeast grown on semisolid surfaces.

Zobrazit více v PubMed

Bruckner S, Mosch HU (2012) Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 36: 25–58. 10.1111/j.1574-6976.2011.00275.x PubMed DOI

Honigberg SM (2011) Cell Signals, Cell Contacts, and the Organization of Yeast Communities. Eukaryotic Cell 10: 466–473. 10.1128/EC.00313-10 PubMed DOI PMC

Palkova Z (2004) Multicellular microorganisms: laboratory versus nature. EMBO Rep 5: 470–476. 10.1038/sj.embor.7400145 PubMed DOI PMC

Palkova Z, Vachova L (2006) Life within a community: benefit to yeast long-term survival. FEMS Microbiol Rev 30: 806–824. 10.1111/j.1574-6976.2006.00034.x PubMed DOI

Palkova Z, Wilkinson D, Vachova L (2014) Aging and differentiation in yeast populations: elders with different properties and functions. FEMS Yeast Res 14: 96–108. 10.1111/1567-1364.12103 PubMed DOI

Vachova L, Stovicek V, Hlavacek O, Chernyavskiy O, Stepanek L, et al. (2011) Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies. J Cell Biol 194: 679–687. 10.1083/jcb.201103129 PubMed DOI PMC

Palkova Z, Vachova L (2016) Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts. Semin Cell Dev Biol 57: 110–119. 10.1016/j.semcdb.2016.04.006 PubMed DOI

Tan Z, Hays M, Cromie GA, Jeffery EW, Scott AC, et al. (2013) Aneuploidy underlies a multicellular phenotypic switch. Proc Natl Acad Sci U S A 110: 12367–12372. 10.1073/pnas.1301047110 PubMed DOI PMC

Verstrepen KJ, Reynolds TB, Fink GR (2004) Origins of variation in the fungal cell surface. Nat Rev Microbiol 2: 533–540. 10.1038/nrmicro927 PubMed DOI

Vopalenska I, Stovicek V, Janderova B, Vachova L, Palkova Z (2010) Role of distinct dimorphic transitions in territory colonizing and formation of yeast colony architecture. Environ Microbiol 12: 264–277. 10.1111/j.1462-2920.2009.02067.x PubMed DOI

Ishigami M, Nakagawa Y, Hayakawa M, Iimura Y (2004) FLO11 is essential for flor formation caused by the C-terminal deletion of NRG1 in Saccharomyces cerevisiae. FEMS Microbiol Lett 237: 425–430. 10.1016/j.femsle.2004.07.012 PubMed DOI

Reynolds TB, Fink GR (2001) Bakers' yeast, a model for fungal biofilm formation. Science 291: 878–881. 10.1126/science.291.5505.878 PubMed DOI

Stovicek V, Vachova L, Kuthan M, Palkova Z (2010) General factors important for the formation of structured biofilm-like yeast colonies. Fungal Genet Biol 47: 1012–1022. 10.1016/j.fgb.2010.08.005 PubMed DOI

Voordeckers K, De Maeyer D, van der Zande E, Vinces MD, Meert W, et al. (2012) Identification of a complex genetic network underlying Saccharomyces cerevisiae colony morphology. Mol Microbiol 86: 225–239. 10.1111/j.1365-2958.2012.08192.x PubMed DOI PMC

Stovicek V, Vachova L, Begany M, Wilkinson D, Palkova Z (2014) Global changes in gene expression associated with phenotypic switching of wild yeast. BMC Genomics 15: 136 10.1186/1471-2164-15-136 PubMed DOI PMC

Rupp S, Summers E, Lo HJ, Madhani H, Fink G (1999) MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18: 1257–1269. 10.1093/emboj/18.5.1257 PubMed DOI PMC

Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60: 5–15. 10.1111/j.1365-2958.2006.05072.x PubMed DOI

Vinod PK, Sengupta N, Bhat PJ, Venkatesh KV (2008) Integration of global signaling pathways, cAMP-PKA, MAPK and TOR in the regulation of FLO11. PLoS One 3: e1663 10.1371/journal.pone.0001663 PubMed DOI PMC

Barrales RR, Korber P, Jimenez J, Ibeas JI (2012) Chromatin modulation at the FLO11 promoter of Saccharomyces cerevisiae by HDAC and Swi/Snf complexes. Genetics 191: 791–803. 10.1534/genetics.112.140301 PubMed DOI PMC

Bumgarner SL, Dowell RD, Grisafi P, Gifford DK, Fink GR (2009) Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc Natl Acad Sci U S A 106: 18321–18326. 10.1073/pnas.0909641106 PubMed DOI PMC

Halme A, Bumgarner S, Styles C, Fink GR (2004) Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116: 405–415. PubMed

Holmes DL, Lancaster AK, Lindquist S, Halfmann R (2013) Heritable remodeling of yeast multicellularity by an environmentally responsive prion. Cell 153: 153–165. 10.1016/j.cell.2013.02.026 PubMed DOI PMC

Octavio LM, Gedeon K, Maheshri N (2009) Epigenetic and conventional regulation is distributed among activators of FLO11 allowing tuning of population-level heterogeneity in its expression. PLoS Genet 5: e1000673 10.1371/journal.pgen.1000673 PubMed DOI PMC

Smith RL, Johnson AD (2000) Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25: 325–330. PubMed

Varanasi US, Klis M, Mikesell PB, Trumbly RJ (1996) The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits. Mol Cell Biol 16: 6707–6714. PubMed PMC

Matsumura H, Kusaka N, Nakamura T, Tanaka N, Sagegami K, et al. (2012) Crystal structure of the N-terminal domain of the yeast general corepressor Tup1p and its functional implications. J Biol Chem 287: 26528–26538. 10.1074/jbc.M112.369652 PubMed DOI PMC

DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680–686. PubMed

Green SR, Johnson AD (2004) Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae. Molecular Biology of the Cell 15: 4191–4202. 10.1091/mbc.E04-05-0412 PubMed DOI PMC

Malave TM, Dent SY (2006) Transcriptional repression by Tup1-Ssn6. Biochem Cell Biol 84: 437–443. 10.1139/o06-073 PubMed DOI

Wilson WA, Hawley SA, Hardie DG (1996) Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol 6: 1426–1434. PubMed

Hickman MJ, Winston F (2007) Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor. Mol Cell Biol 27: 7414–7424. 10.1128/MCB.00887-07 PubMed DOI PMC

Zhang L, Guarente L (1994) Evidence that TUP1/SSN6 has a positive effect on the activity of the yeast activator HAP1. Genetics 136: 813–817. PubMed PMC

Fragiadakis GS, Tzamarias D, Alexandraki D (2004) Nhp6 facilitates Aft1 binding and Ssn6 recruitment, both essential for FRE2 transcriptional activation. EMBO J 23: 333–342. 10.1038/sj.emboj.7600043 PubMed DOI PMC

Kim SJ, Swanson MJ, Qiu H, Govind CK, Hinnebusch AG (2005) Activator Gcn4p and Cyc8p/Tup1p are interdependent for promoter occupancy at ARG1 in vivo. Mol Cell Biol 25: 11171–11183. 10.1128/MCB.25.24.11171-11183.2005 PubMed DOI PMC

Tanaka N, Mukai Y (2015) Yeast Cyc8p and Tup1p proteins function as coactivators for transcription of Stp1/2p-dependent amino acid transporter genes. Biochem Biophys Res Commun 468: 32–38. 10.1016/j.bbrc.2015.11.001 PubMed DOI

Proft M, Struhl K (2002) Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell 9: 1307–1317. PubMed

Chen K, Wilson MA, Hirsch C, Watson A, Liang S, et al. (2013) Stabilization of the promoter nucleosomes in nucleosome-free regions by the yeast Cyc8-Tup1 corepressor. Genome Res 23: 312–322. 10.1101/gr.141952.112 PubMed DOI PMC

Garcia-Sanchez S, Mavor AL, Russell CL, Argimon S, Dennison P, et al. (2005) Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. Mol Biol Cell 16: 2913–2925. 10.1091/mbc.E05-01-0071 PubMed DOI PMC

Hernday AD, Lohse MB, Nobile CJ, Noiman L, Laksana CN, et al. (2016) Ssn6 Defines a New Level of Regulation of White-Opaque Switching in Candida albicans and Is Required For the Stochasticity of the Switch. MBio 7: e01565–01515. 10.1128/mBio.01565-15 PubMed DOI PMC

Alkafeef SS, Yu C, Huang L, Liu H (2018) Wor1 establishes opaque cell fate through inhibition of the general co-repressor Tup1 in Candida albicans. PLoS Genet 14: e1007176 10.1371/journal.pgen.1007176 PubMed DOI PMC

Lee JE, Oh JH, Ku M, Kim J, Lee JS, et al. (2015) Ssn6 has dual roles in Candida albicans filament development through the interaction with Rpd31. FEBS Lett 589: 513–520. 10.1016/j.febslet.2015.01.011 PubMed DOI

Chen Y, Zhai S, Sun Y, Li M, Dong Y, et al. (2015) MoTup1 is required for growth, conidiogenesis and pathogenicity of Magnaporthe oryzae. Mol Plant Pathol 16: 799–810. 10.1111/mpp.12235 PubMed DOI PMC

Kuthan M, Devaux F, Janderova B, Slaninova I, Jacq C, et al. (2003) Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol 47: 745–754. PubMed

Dowell RD, Ryan O, Jansen A, Cheung D, Agarwala S, et al. (2010) Genotype to phenotype: a complex problem. Science 328: 469 10.1126/science.1189015 PubMed DOI PMC

Granek JA, Magwene PM (2010) Environmental and genetic determinants of colony morphology in yeast. PLoS Genet 6: e1000823 10.1371/journal.pgen.1000823 PubMed DOI PMC

Karunanithi S, Vadaie N, Chavel CA, Birkaya B, Joshi J, et al. (2010) Shedding of the mucin-like flocculin Flo11p reveals a new aspect of fungal adhesion regulation. Curr Biol 20: 1389–1395. 10.1016/j.cub.2010.06.033 PubMed DOI PMC

Bader O, Krauke Y, Hube B (2008) Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris. BMC Microbiol 8: 116 10.1186/1471-2180-8-116 PubMed DOI PMC

Kraushaar T, Bruckner S, Veelders M, Rhinow D, Schreiner F, et al. (2015) Interactions by the Fungal Flo11 Adhesin Depend on a Fibronectin Type III-like Adhesin Domain Girdled by Aromatic Bands. Structure 23: 1005–1017. 10.1016/j.str.2015.03.021 PubMed DOI

Piccirillo S, Honigberg SM (2010) Sporulation patterning and invasive growth in wild and domesticated yeast colonies. Res Microbiol 161: 390–398. 10.1016/j.resmic.2010.04.001 PubMed DOI PMC

Hwang CS, Oh JH, Huh WK, Yim HS, Kang SO (2003) Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Mol Microbiol 47: 1029–1043. PubMed

Fleming AB, Beggs S, Church M, Tsukihashi Y, Pennings S (2014) The yeast Cyc8-Tup1 complex cooperates with Hda1p and Rpd3p histone deacetylases to robustly repress transcription of the subtelomeric FLO1 gene. Biochim Biophys Acta 1839: 1242–1255. 10.1016/j.bbagrm.2014.07.022 PubMed DOI PMC

Chujo M, Yoshida S, Ota A, Murata K, Kawai S (2015) Acquisition of the ability to assimilate mannitol by Saccharomyces cerevisiae through dysfunction of the general corepressor Tup1-Cyc8. Appl Environ Microbiol 81: 9–16. 10.1128/AEM.02906-14 PubMed DOI PMC

Lipke PN, Hullpillsbury C (1984) Flocculation of Saccharomyces cerevisiae Tupl Mutants. J Bacteriol 159: 797–799. PubMed PMC

Patel BK, Gavin-Smyth J, Liebman SW (2009) The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion. Nat Cell Biol 11: 344–349. 10.1038/ncb1843 PubMed DOI PMC

Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74: 6041–6052. 10.1128/AEM.00394-08 PubMed DOI PMC

Conlan RS, Tzamarias D (2001) Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J Mol Biol 309: 1007–1015. 10.1006/jmbi.2001.4742 PubMed DOI

Park SH, Koh SS, Chun JH, Hwang HJ, Kang HS (1999) Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae. Mol Cell Biol 19: 2044–2050. PubMed PMC

Schuller HJ (2003) Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43: 139–160. 10.1007/s00294-003-0381-8 PubMed DOI

Barrales RR, Jimenez J, Ibeas JI (2008) Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae. Genetics 178: 145–156. 10.1534/genetics.107.081315 PubMed DOI PMC

Fichtner L, Schulze F, Braus GH (2007) Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c. Mol Microbiol 66: 1276–1289. 10.1111/j.1365-2958.2007.06014.x PubMed DOI PMC

Gromoller A, Lehming N (2000) Srb7p is a physical and physiological target of Tup1p. EMBO J 19: 6845–6852. 10.1093/emboj/19.24.6845 PubMed DOI PMC

Naglik J, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6: 915–926. 10.1111/j.1462-5822.2004.00439.x PubMed DOI

Schachtschabel D, Arentshorst M, Nitsche BM, Morris S, Nielsen KF, et al. (2013) The transcriptional repressor TupA in Aspergillus niger is involved in controlling gene expression related to cell wall biosynthesis, development, and nitrogen source availability. PLoS One 8: e78102 10.1371/journal.pone.0078102 PubMed DOI PMC

Mao X, Li Y, Wang H, Cao F, Chen J (2008) Antagonistic interplay of Swi1 and Tup1 on filamentous growth of Candida albicans. FEMS Microbiol Lett 285: 233–241. 10.1111/j.1574-6968.2008.01236.x PubMed DOI

Goldstein AL, McCusker JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541–1553. 10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K PubMed DOI

Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30: e23 PubMed PMC

Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, et al. (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21: 947–962. 10.1002/yea.1142 PubMed DOI

Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/ polyethylene glycol method. Methods Enzymol 350: 87–96. PubMed

Vachova L, Chernyavskiy O, Strachotova D, Bianchini P, Burdikova Z, et al. (2009) Architecture of developing multicellular yeast colony: spatio-temporal expression of Ato1p ammonium exporter. Environ Microbiol 11: 1866–1877. 10.1111/j.1462-2920.2009.01911.x PubMed DOI

Vachova L, Kucerova H, Devaux F, Ulehlova M, Palkova Z (2009) Metabolic diversification of cells during the development of yeast colonies. Environ Microbiol 11: 494–504. 10.1111/j.1462-2920.2008.01789.x PubMed DOI

Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138: 141–143. PubMed

Masuda T, Tomita M, Ishihama Y (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res 7: 731–740. 10.1021/pr700658q PubMed DOI

Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, et al. (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13: 2513–2526. 10.1074/mcp.M113.031591 PubMed DOI PMC

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, et al. (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13: 731–740. 10.1038/nmeth.3901 PubMed DOI

Bester MC, Pretorius IS, Bauer FF (2006) The regulation of Saccharomyces cerevisiae FLO gene expression and Ca2+ -dependent flocculation by Flo8p and Mss11p. Curr Genet 49: 375–383. 10.1007/s00294-006-0068-z PubMed DOI

Roberts RL, Fink GR (1994) Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8: 2974–2985. PubMed

Obornik M, Vancova M, Lai DH, Janouskovec J, Keeling PJ, et al. (2011) Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of apicomplexa, Chromera velia. Protist 162: 115–130. 10.1016/j.protis.2010.02.004 PubMed DOI

Palkova Z, Devaux F, Ricicova M, Minarikova L, Le Crom S, et al. (2002) Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 13: 3901–3914. 10.1091/mbc.E01-12-0149 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace