Spatial structure of yeast biofilms and the role of cell adhesion across different media
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40726826
PubMed Central
PMC12302860
DOI
10.1016/j.bioflm.2025.100306
PII: S2590-2075(25)00054-1
Knihovny.cz E-zdroje
- Klíčová slova
- Adhesion, Biofilm, Microscopy, Spatial structure, Yeast,
- Publikační typ
- časopisecké články MeSH
The ability of yeast cells to adhere to solid surfaces or even penetrate semi-solid surfaces and form multicellular biofilms are critical factors in infection. This study examines the relationship between cell adhesion capability and the ability to create spatially organized biofilms in selected Saccharomyces cerevisiae strains, including clinical isolates, and five Candida species (C. albicans, C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis). We assessed cell adhesion to polystyrene surface in four media varying in source of carbon and other nutrients. Using microscopy of vertical cell arrangement profiles within yeast populations grown at the solid-liquid interface, we evaluated their internal organization to determine whether the populations exhibit typical biofilm characteristics, such as the spatial organization of distinct cell types. Results indicate that well adherent S. cerevisiae strains form spatial biofilms with typical internal organization, highlighting strain-specific responses to media composition and supporting the use of natural S. cerevisiae strains for biofilm research. Among Candida species, biofilm formation did not consistently align with adhesion efficiency to plastic; while C. albicans and C. krusei formed spatially structured biofilms on media where they adhered well, C. tropicalis and C. glabrata exhibited efficient adhesion without biofilm structuring. Interestingly, C. parapsilosis formed a structured biofilm despite minimal adhesion. These findings emphasize the role of media composition, particularly components of yeast extract and defined medium for mammalian cell growth RPMI, which differentially impacted adhesion and biofilm formation in S. cerevisiae and C. albicans.
Faculty of Science Charles University BIOCEV Prague Czech Republic
Institute of Microbiology of the Czech Academy of Sciences BIOCEV Prague Czech Republic
Zobrazit více v PubMed
Gulati M., Nobile C.J. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microb Infect. 2016;18(5):310–321. doi: 10.1016/j.micinf.2016.01.002. PubMed DOI PMC
Stoodley P., Sauer K., Davies D.G., Costerton J.W. Biofilms as complex differentiated communities. Annu Rev Microbiol. 2002;56:187–209. doi: 10.1146/annurev.micro.56.012302.160705. PubMed DOI
Lohse M.B., Gulati M., Johnson A.D., Nobile C.J. Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol. 2018;16(1):19–31. doi: 10.1038/nrmicro.2017.107. PubMed DOI PMC
Wijaya M., Halleyantoro R., Kalumpiu J.F. Biofilm: the invisible culprit in catheter-induced candidemia. AIMS Microbiol. 2023;9(3):467–485. doi: 10.3934/microbiol.2023025. PubMed DOI PMC
Soll D.R., Daniels K.J. Plasticity of Candida albicans biofilms. Microbiol Mol Biol Rev. 2016;80(3):565–595. doi: 10.1128/MMBR.00068-15. PubMed DOI PMC
Sriphannam C., Nuanmuang N., Saengsawang K., Amornthipayawong D., Kummasook A. Anti-fungal susceptibility and virulence factors of Candida spp. isolated from blood cultures. J Mycol Med. 2019;29(4):325–330. doi: 10.1016/j.mycmed.2019.08.001. PubMed DOI
Tsui C., Kong E.F., Jabra-Rizk M.A. Pathogenesis of Candida albicans biofilm. Pathog Dis. 2016;74(4) doi: 10.1093/femspd/ftw018. PubMed DOI PMC
Nett J.E., Andes DR. Contributions of the biofilm matrix to Candida pathogenesis. J Fungi (Basel) 2020;6(1):21. doi: 10.3390/jof6010021. PubMed DOI PMC
Gomez-Gaviria M., Mora-Montes H.M. Current aspects in the biology, pathogeny, and treatment of Candida krusei, a neglected fungal pathogen. Infect Drug Resist. 2020;13:1673–1689. doi: 10.2147/IDR.S247944. PubMed DOI PMC
Mancera E., Nocedal I., Hammel S., Gulati M., Mitchell K.F., Andes D.R., Nobile C.J., Butler G., Johnson A.D. Evolution of the complex transcription network controlling biofilm formation in Candida species. eLife. 2021;10 doi: 10.7554/eLife.64682. PubMed DOI PMC
Hope E.A., Dunham M.J. Ploidy-regulated variation in biofilm-related phenotypes in natural isolates of Saccharomyces cerevisiae. G3 (Bethesda) 2014;4(9):1773–1786. doi: 10.1534/g3.114.013250. PubMed DOI PMC
Jiang Y., Liang C., Zhao W., Chen T., Yu B., Hou A., Zhu J., Zhang T., Liu Q., Ying H., Liu D., Sun W., Chen Y. Cell cycle progression influences biofilm formation in Saccharomyces cerevisiae 1308. Microbiol Spectr. 2022;10(3) doi: 10.1128/spectrum.02765-21. PubMed DOI PMC
Reynolds T.B., Fink G.R. Bakers' yeast, a model for fungal biofilm formation. Science. 2001;291(5505):878–881. doi: 10.1126/science.291.5505.878. PubMed DOI
Speranza B., Corbo M.R., Campaniello D., Altieri C., Sinigaglia M., Bevilacqua A. Biofilm formation by potentially probiotic Saccharomyces cerevisiae strains. Food Microbiol. 2020;87 doi: 10.1016/j.fm.2019.103393. PubMed DOI
Van Nguyen P., Plocek V., Vachova L., Palkova Z. Glucose, Cyc8p and Tup1p regulate biofilm formation and dispersal in wild Saccharomyces cerevisiae. NPJ Biofilms Microbiomes. 2020;6(1):7. doi: 10.1038/s41522-020-0118-1. PubMed DOI PMC
Stovicek V., Vachova L., Kuthan M., Palkova Z. General factors important for the formation of structured biofilm-like yeast colonies. Fungal Genet Biol. 2010;47(12):1012–1022. doi: 10.1016/j.fgb.2010.08.005. PubMed DOI
Tan Y., Leonhard M., Ma S., Schneider-Stickler B. Influence of culture conditions for clinically isolated non-albicans Candida biofilm formation. J Microbiol Methods. 2016;130:123–128. doi: 10.1016/j.mimet.2016.09.011. PubMed DOI
Pierce C.G., Uppuluri P., Tristan A.R., Wormley F.L., Jr., Mowat E., Ramage G., Lopez-Ribot J.L. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc. 2008;3(9):1494–1500. doi: 10.1038/nport.2008.141. PubMed DOI PMC
Pellon A., Begum N., Sadeghi Nasab S.D., Harzandi A., Shoaie S., Moyes D.L. Role of cellular metabolism during Candida-host interactions. Pathogens. 2022;11(2):184. doi: 10.3390/pathogens11020184. PubMed DOI PMC
Van Ende M., Wijnants S., Van Dijck P. Sugar sensing and signaling in Candida albicans and Candida glabrata. Front Microbiol. 2019;10:99. doi: 10.3389/fmicb.2019.00099. PubMed DOI PMC
Gancedo J.M. Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2001;25(1):107–123. doi: 10.1111/j.1574-6976.2001.tb00573.x. PubMed DOI
Granek J.A., Magwene P.M. Environmental and genetic determinants of colony morphology in yeast. PLoS Genet. 2010;6(1) doi: 10.1371/journal.pgen.1000823. PubMed DOI PMC
Mutlu N., Kumar A. Messengers for morphogenesis: Inositol polyphosphate signaling and yeast pseudohyphal growth. Curr Genet. 2019;65(1):119–125. doi: 10.1007/s00294-018-0874-0. PubMed DOI
Sandai D., Yin Z., Selway L., Stead D., Walker J., Leach M.D., Bohovych I., Ene I.V., Kastora S., Budge S., Munro C.A., Odds F.C., Gow N.A., Brown A.J. The evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon assimilation in the pathogenic yeast Candida albicans. mBio. 2012;3(6) doi: 10.1128/mBio.00495-12. PubMed DOI PMC
Kuthan M., Devaux F., Janderova B., Slaninova I., Jacq C., Palkova Z. Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol. 2003;47(3):745–754. doi: 10.1046/j.1365-2958.2003.03332.x. PubMed DOI
Arevalo-Jaimes B.V., Admella J., Blanco-Cabra N., Torrents E. Culture media influences Candida parapsilosis growth, susceptibility, and virulence. Front Cell Infect Microbiol. 2023;13 doi: 10.3389/fcimb.2023.1323619. PubMed DOI PMC
Gulati M., Lohse M.B., Ennis C.L., Gonzalez R.E., Perry A.M., Bapat P., Arevalo A.V., Rodriguez D.L., Nobile C.J. In vitro culturing and screening of Candida albicans biofilms. Curr Protoc Microbiol. 2018;50(1):e60. doi: 10.1002/cpmc.60. PubMed DOI PMC
Kucharikova S., Tournu H., Lagrou K., Van Dijck P., Bujdakova H. Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. J Med Microbiol. 2011;60(Pt 9):1261–1269. doi: 10.1099/jmm.0.032037-0. PubMed DOI
Busti S., Coccetti P., Alberghina L., Vanoni M. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. Sensors (Basel) 2010;10(6):6195–6240. doi: 10.3390/s100606195. PubMed DOI PMC
Galdieri L., Mehrotra S., Yu S., Vancura A. Transcriptional regulation in yeast during diauxic shift and stationary phase. OMICS. 2010;14(6):629–638. doi: 10.1089/omi.2010.0069. PubMed DOI PMC
Gray J.V., Petsko G.A., Johnston G.C., Ringe D., Singer R.A., Werner-Washburne M. "Sleeping beauty": quiescence in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2004;68(2):187–206. doi: 10.1128/MMBR.68.2.187-206.2004. PubMed DOI PMC
Uppuluri P., Chaffin W.L. Defining Candida albicans stationary phase by cellular and DNA replication, gene expression and regulation. Mol Microbiol. 2007;64(6):1572–1586. doi: 10.1111/j.1365-2958.2007.05760.x. PubMed DOI
Palkova Z., Vachova L. Spatially structured yeast communities: understanding structure formation and regulation with omics tools. Comput Struct Biotechnol J. 2021;19:5613–5621. doi: 10.1016/j.csbj.2021.10.012. PubMed DOI PMC
Palkova Z., Vachova L. Cell differentiation, aging, and death in spatially organized yeast communities: mechanisms and consequences. Cell Death Differ. 2025 doi: 10.1038/s41418-025-01485-9. PubMed DOI
Vachova L., Palkova Z. How structured yeast multicellular communities live, age and die? FEMS Yeast Res. 2018;18(4) doi: 10.1093/femsyr/foy033. PubMed DOI
Cavalheiro M., Teixeira M.C. Candida biofilms: threats, challenges, and promising strategies. Front Med. 2018;5:28. doi: 10.3389/fmed.2018.00028. PubMed DOI PMC
Ponde N.O., Lortal L., Ramage G., Naglik J.R., Richardson J.P. Candida albicans biofilms and polymicrobial interactions. Crit Rev Microbiol. 2021;47(1):91–111. doi: 10.1080/1040841X.2020.1843400. PubMed DOI PMC
Kraushaar T., Bruckner S., Veelders M., Rhinow D., Schreiner F., Birke R., Pagenstecher A., Mosch H.U., Essen L.O. Interactions by the fungal Flo11 adhesin depend on a fibronectin type III-Like adhesin domain girdled by aromatic bands. Structure. 2015;23(6):1005–1017. doi: 10.1016/j.str.2015.03.021. PubMed DOI
Zara G., Budroni M., Mannazzu I., Fancello F., Zara S. Yeast biofilm in food realms: occurrence and control. World J Microbiol Biotechnol. 2020;36(9):134. doi: 10.1007/s11274-020-02911-5. PubMed DOI PMC
Cali B.M., Doyle T.C., Botstein D., Fink G.R. Multiple functions for actin during filamentous growth of Saccharomyces cerevisiae. Mol Biol Cell. 1998;9(7):1873–1889. doi: 10.1091/mbc.9.7.1873. PubMed DOI PMC
Honorato L., de Araujo J.F.D., Ellis C.C., Piffer A.C., Pereira Y., Frases S., de Sousa Araujo G.R., Pontes B., Mendes M.T., Pereira M.D., Guimaraes A.J., da Silva N.M., Vargas G., Joffe L., Del Poeta M., Nosanchuk J.D., Zamith-Miranda D., Dos Reis F.C.G., de Oliveira H.C., Rodrigues M.L., de Toledo Martins S., Alves L.R., Almeida I.C., Nimrichter L. Extracellular vesicles regulate biofilm formation and yeast-to-hypha differentiation in Candida albicans. mBio. 2022;13(3) doi: 10.1128/mbio.00301-22. PubMed DOI PMC
Stovicek V., Vachova L., Begany M., Wilkinson D., Palkova Z. Global changes in gene expression associated with phenotypic switching of wild yeast. BMC Genom. 2014;15:136. doi: 10.1186/1471-2164-15-136. PubMed DOI PMC
Sudbery P.E. Growth of Candida albicans hyphae. Nat Rev Microbiol. 2011;9(10):737–748. doi: 10.1038/nrmicro2636. PubMed DOI
Vachova L., Stovicek V., Hlavacek O., Chernyavskiy O., Stepanek L., Kubinova L., Palkova Z. Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies. J Cell Biol. 2011;194(5):679–687. doi: 10.1083/jcb.201103129. PubMed DOI PMC
Marsikova J., Wilkinson D., Hlavacek O., Gilfillan G.D., Mizeranschi A., Hughes T., Begany M., Resetarova S., Vachova L., Palkova Z. Metabolic differentiation of surface and invasive cells of yeast colony biofilms revealed by gene expression profiling. BMC Genom. 2017;18(1):814. doi: 10.1186/s12864-017-4214-4. PubMed DOI PMC
Nguyen P.V., Hlavacek O., Marsikova J., Vachova L., Palkova Z. Cyc8p and Tup1p transcription regulators antagonistically regulate Flo11p expression and complexity of yeast colony biofilms. PLoS Genet. 2018;14(7) doi: 10.1371/journal.pgen.1007495. PubMed DOI PMC
Pujol C., Daniels K.J., Soll D.R. Comparison of switching and biofilm formation between MTL-homozygous strains of Candida albicans and Candida dubliniensis. Eukaryot Cell. 2015;14(12):1186–1202. doi: 10.1128/EC.00146-15. PubMed DOI PMC
Bruckner S., Schubert R., Kraushaar T., Hartmann R., Hoffmann D., Jelli E., Drescher K., Muller D.J., Oliver Essen L., Mosch H.U. Kin discrimination in social yeast is mediated by cell surface receptors of the Flo11 adhesin family. eLife. 2020;9 doi: 10.7554/eLife.55587. PubMed DOI PMC
Plocek V., Vachova L., Stovicek V., Palkova Z. Cell distribution within yeast colonies and colony biofilms: how structure develops. Int J Mol Sci. 2020;21(11):3873. doi: 10.3390/ijms21113873. PubMed DOI PMC
Ng T.S., Desa M.N.M., Sandai D., Chong P.P., Than L.T.L. Growth, biofilm formation, antifungal susceptibility and oxidative stress resistance of Candida glabrata are affected by different glucose concentrations. Infect Genet Evol. 2016;40:331–338. doi: 10.1016/j.meegid.2015.09.004. PubMed DOI
Weerasekera M.M., Wijesinghe G.K., Jayarathna T.A., Gunasekara C.P., Fernando N., Kottegoda N., Samaranayake L.P. Culture media profoundly affect Candida albicans and Candida tropicalis growth, adhesion and biofilm development. Mem Inst Oswaldo Cruz. 2016;111(11):697–702. doi: 10.1590/0074-02760160294. PubMed DOI PMC
Ding X., Liu Z., Su J., Yan D. Human serum inhibits adhesion and biofilm formation in Candida albicans. BMC Microbiol. 2014;14:80. doi: 10.1186/1471-2180-14-80. PubMed DOI PMC
Samaranayake Y.H., Cheung B.P., Yau J.Y., Yeung S.K., Samaranayake L.P. Human serum promotes Candida albicans biofilm growth and virulence gene expression on silicone biomaterial. PLoS One. 2013;8(5) doi: 10.1371/journal.pone.0062902. PubMed DOI PMC
Hernandez-Cuellar E., Guerrero-Barrera A.L., Avelar-Gonzalez F.J., Diaz J.M., Santiago A.S., Chavez-Reyes J., Poblano-Sanchez E. Characterization of Candida albicans and Staphylococcus aureus polymicrobial biofilm on different surfaces. Rev Iberoam Micol. 2022;39(2):36–43. doi: 10.1016/j.riam.2022.04.001. PubMed DOI
Vila T., Kong E.F., Montelongo-Jauregui D., Van Dijck P., Shetty A.C., McCracken C., Bruno V.M., Jabra-Rizk M.A., Therapeutic implications of C. albicans-S. aureus mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence. 2021;12(1):835–851. doi: 10.1080/21505594.2021.1894834. PubMed DOI PMC
Negrini T.C., Ren Z., Miao Y., Kim D., Simon-Soro A., Liu Y., Koo H., Arthur R.A. Dietary sugars modulate bacterial-fungal interactions in saliva and inter-kingdom biofilm formation on apatitic surface. Front Cell Infect Microbiol. 2022;12 doi: 10.3389/fcimb.2022.993640. PubMed DOI PMC
Brito A.C.M., Bezerra I.M., Borges M.H.S., Cavalcanti Y.W., Almeida L.F.D. Effect of different salivary glucose concentrations on dual-species biofilms of Candida albicans and Streptococcus mutans. Biofouling. 2021;37(6):615–625. doi: 10.1080/08927014.2021.1946519. PubMed DOI
Mandal S.M., Mahata D., Migliolo L., Parekh A., Addy P.S., Mandal M., Basak A. Glucose directly promotes antifungal resistance in the fungal pathogen, Candida spp. J Biol Chem. 2014;289(37):25468–25473. doi: 10.1074/jbc.C114.571778. PubMed DOI PMC
Rodrigues C.F., Rodrigues M.E., Henriques M. Candida sp. infections in patients with diabetes mellitus. J Clin Med. 2019;8(1):76. doi: 10.3390/jcm8010076. PubMed DOI PMC
Mowat E., Butcher J., Lang S., Williams C., Ramage G. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J Med Microbiol. 2007;56:1205–1212. doi: 10.1099/jmm.0.47247-0. PubMed DOI