Metabolic differentiation of surface and invasive cells of yeast colony biofilms revealed by gene expression profiling

. 2017 Oct 23 ; 18 (1) : 814. [epub] 20171023

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29061122
Odkazy

PubMed 29061122
PubMed Central PMC5654107
DOI 10.1186/s12864-017-4214-4
PII: 10.1186/s12864-017-4214-4
Knihovny.cz E-zdroje

BACKGROUND: Yeast infections are often connected with formation of biofilms that are extremely difficult to eradicate. An excellent model system for deciphering multifactorial determinants of yeast biofilm development is the colony biofilm, composed of surface ("aerial") and invasive ("root") cells. While surface cells have been partially analyzed before, we know little about invasive root cells. In particular, information on the metabolic, chemical and morphogenetic properties of invasive versus surface cells is lacking. In this study, we used a new strategy to isolate invasive cells from agar and extracellular matrix, and employed it to perform genome wide expression profiling and biochemical analyses of surface and invasive cells. RESULTS: RNA sequencing revealed expression differences in 1245 genes with high statistical significance, indicating large genetically regulated metabolic differences between surface and invasive cells. Functional annotation analyses implicated genes involved in stress defense, peroxisomal fatty acid β-oxidation, autophagy, protein degradation, storage compound metabolism and meiosis as being important in surface cells. In contrast, numerous genes with functions in nutrient transport and diverse synthetic metabolic reactions, including genes involved in ribosome biogenesis, biosynthesis and translation, were found to be important in invasive cells. Variation in gene expression correlated significantly with cell-type specific processes such as autophagy and storage compound accumulation as identified by microscopic and biochemical analyses. Expression profiling also provided indications of cell-specific regulations. Subsequent knockout strain analyses identified Gip2p, a regulatory subunit of type 1 protein phosphatase Glc7p, to be essential for glycogen accumulation in surface cells. CONCLUSIONS: This is the first study reporting genome wide differences between surface and invasive cells of yeast colony biofilms. New findings show that surface and invasive cells display very different physiology, adapting to different conditions in different colony areas and contributing to development and survival of the colony biofilm as a whole. Notably, surface and invasive cells of colony biofilms differ significantly from upper and lower cells of smooth colonies adapted to plentiful laboratory conditions.

Zobrazit více v PubMed

Palkova Z, Vachova L. Life within a community: benefit to yeast long-term survival. FEMS Microbiol Rev. 2006;30(5):806–824. doi: 10.1111/j.1574-6976.2006.00034.x. PubMed DOI

Palkova Z, Wilkinson D, Vachova L. Aging and differentiation in yeast populations: elders with different properties and functions. FEMS Yeast Res. 2014;14(1):96–108. doi: 10.1111/1567-1364.12103. PubMed DOI

Vachova L, Stovicek V, Hlavacek O, Chernyavskiy O, Stepanek L, Kubinova L, Palkova Z. Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies. J Cell Biol. 2011;194(5):679–687. doi: 10.1083/jcb.201103129. PubMed DOI PMC

Kuthan M, Devaux F, Janderova B, Slaninova I, Jacq C, Palkova Z. Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol Microbiol. 2003;47(3):745–754. doi: 10.1046/j.1365-2958.2003.03332.x. PubMed DOI

Stovicek V, Vachova L, Begany M, Wilkinson D, Palkova Z. Global changes in gene expression associated with phenotypic switching of wild yeast. BMC Genomics. 2014;15:136. doi: 10.1186/1471-2164-15-136. PubMed DOI PMC

Tan ZH, Hays M, Cromie GA, Jeffery EW, Scott AC, Ahyong V, Sirr A, Skupin A, Dudley AM. Aneuploidy underlies a multicellular phenotypic switch. Proc Natl Acad Sci U S A. 2013;110(30):12367–12372. doi: 10.1073/pnas.1301047110. PubMed DOI PMC

Voordeckers K, De Maeyer D, van der Zande E, Vinces MD, Meert W, Cloots L, Ryan O, Marchal K, Verstrepen KJ. Identification of a complex genetic network underlying Saccharomyces Cerevisiae colony morphology. Mol Microbiol. 2012;86(1):225–239. doi: 10.1111/j.1365-2958.2012.08192.x. PubMed DOI PMC

Vopálenská I, Šťovíček V, Janderová B, Váchová L, Palková Z. Role of distinct dimorphic transitions in territory colonizing and formation of yeast colony architecture. Environ Microbiol. 2010;12(1):264–277. doi: 10.1111/j.1462-2920.2009.02067.x. PubMed DOI

Cap M, Stepanek L, Harant K, Vachova L, Palkova Z. Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism. Mol Cell. 2012;46:436–448. doi: 10.1016/j.molcel.2012.04.001. PubMed DOI

Vachova L, Hatakova L, Cap M, Pokorna M, Palkova Z. Rapidly developing yeast microcolonies differentiate in a similar way to aging giant colonies. Oxidative Med Cell Longev. 2013;2013:102485. doi: 10.1155/2013/102485. PubMed DOI PMC

Cromie GA, Tan ZH, Hays M, Jeffery EW, Dudley AM. Dissecting gene expression changes accompanying a Ploidy-based phenotypic switch. G3 (Bethesda) 2017;7(1):233–246. doi: 10.1534/g3.116.036160. PubMed DOI PMC

Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178–192. doi: 10.1093/bib/bbs017. PubMed DOI PMC

Noble WS. How does multiple testing correction work? Nat Biotechnol. 2009;27(12):1135–1137. doi: 10.1038/nbt1209-1135. PubMed DOI PMC

Rodriguez A, De La Cera T, Herrero P, Moreno F. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces Cerevisiae. Biochem J. 2001;355(Pt 3):625–631. doi: 10.1042/bj3550625. PubMed DOI PMC

Erkut C, Gade VR, Laxman S, Kurzchalia TV. The glyoxylate shunt is essential for desiccation tolerance in C. Elegans and budding yeast. eLife. 2016;5:e13614. PubMed PMC

Francois J, Walther T, Parrou JL. Genetics and regulation of glycogen and trehalose metabolism in Saccharomyces Cerevisiae. Microbial Stress Tolerance Biofuels. 2011;22:29–55. doi: 10.1007/978-3-642-21467-7_2. DOI

Sha W, Martins AM, Laubenbacher R, Mendes P, Shulaev V. The genome-wide early temporal response of Saccharomyces Cerevisiae to oxidative stress induced by cumene hydroperoxide. PLoS One. 2013;8(9):e74939. doi: 10.1371/journal.pone.0074939. PubMed DOI PMC

Kondo H, Nakamura Y, Dong YX, Nikawa J, Sueda S. Pyridoxine biosynthesis in yeast: participation of ribose 5-phosphate ketol-isomerase. Biochem J. 2004;379(Pt 1):65–70. doi: 10.1042/bj20031268. PubMed DOI PMC

Sorgo AG, Heilmann CJ, Dekker HL, Brul S, de Koster CG, Klis FM. Mass spectrometric analysis of the secretome of Candida Albicans. Yeast. 2010;27(8):661–672. doi: 10.1002/yea.1775. PubMed DOI

Lardenois A, Liu Y, Walther T, Chalmel F, Evrard B, Granovskaia M, Chu A, Davis RW, Steinmetz LM, Primig M. Execution of the meiotic noncoding RNA expression program and the onset of gametogenesis in yeast require the conserved exosome subunit Rrp6. Proc Natl Acad Sci U S A. 2011;108(3):1058–1063. doi: 10.1073/pnas.1016459108. PubMed DOI PMC

Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S, Camblong J, Guffanti E, Stutz F, Huber W, Steinmetz LM. Bidirectional promoters generate pervasive transcription in yeast. Nature. 2009;457(7232):1033–1037. doi: 10.1038/nature07728. PubMed DOI PMC

Yassour M, Pfiffner J, Levin JZ, Adiconis X, Gnirke A, Nusbaum C, Thompson DA, Friedman N, Regev A. Strand-specific RNA sequencing reveals extensive regulated long antisense transcripts that are conserved across yeast species. Genome Biol. 2010;11(8):R87. doi: 10.1186/gb-2010-11-8-r87. PubMed DOI PMC

van Dijk EL, Chen CL, d'Aubenton-Carafa Y, Gourvennec S, Kwapisz M, Roche V, Bertrand C, Silvain M, Legoix-Ne P, Loeillet S, et al. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature. 2011;475(7354):114–117. doi: 10.1038/nature10118. PubMed DOI

Neil H, Malabat C, d'Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A. Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature. 2009;457(7232):1038–1042. doi: 10.1038/nature07747. PubMed DOI

Podholova K, Plocek V, Resetarova S, Kucerova H, Hlavacek O, Vachova L, Palkova Z. Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies. Oncotarget. 2016;7(13):15299–15314. doi: 10.18632/oncotarget.8084. PubMed DOI PMC

Traven A, Janicke A, Harrison P, Swaminathan A, Seemann T, Beilharz TH. Transcriptional profiling of a yeast colony provides new insight into the heterogeneity of multicellular fungal communities. PLoS One. 2012;7(9):e46243. doi: 10.1371/journal.pone.0046243. PubMed DOI PMC

Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63. doi: 10.1038/nrg2484. PubMed DOI PMC

Stovicek V, Vachova L, Kuthan M, Palkova Z. General factors important for the formation of structured biofilm-like yeast colonies. Fungal Genet Biol. 2010;47(12):1012–1022. doi: 10.1016/j.fgb.2010.08.005. PubMed DOI

Wilson WA, Roach PJ, Montero M, Baroja-Fernandez E, Munoz FJ, Eydallin G, Viale AM, Pozueta-Romero J. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev. 2010;34(6):952–985. doi: 10.1111/j.1574-6976.2010.00220.x. PubMed DOI PMC

Tu J, Song W, Carlson M. Protein phosphatase type 1 interacts with proteins required for meiosis and other cellular processes in Saccharomyces Cerevisiae. Mol Cell Biol. 1996;16(8):4199–4206. doi: 10.1128/MCB.16.8.4199. PubMed DOI PMC

Williams-Hart T, Wu X, Tatchell K. Protein phosphatase type 1 regulates ion homeostasis in Saccharomyces Cerevisiae. Genetics. 2002;160(4):1423–1437. PubMed PMC

Wilson WA, Wang Z, Roach PJ. Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces Cerevisiae: implication of the vacuole as a determinant of glycogen level. Molec Cell Proteomics. 2002;1(3):232–242. doi: 10.1074/mcp.M100024-MCP200. PubMed DOI

Piccirillo S, Honigberg SM. Sporulation patterning and invasive growth in wild and domesticated yeast colonies. Res Microbiol. 2010;161(5):390–398. doi: 10.1016/j.resmic.2010.04.001. PubMed DOI PMC

Piccirillo S, White MG, Murphy JC, Law DJ, Honigberg SM. The Rim101p/PacC pathway and alkaline pH regulate pattern formation in yeast colonies. Genetics. 2010;184(3):707–U132. doi: 10.1534/genetics.109.113480. PubMed DOI PMC

White AP, Weljie AM, Apel D, Zhang P, Shaykhutdinov R, Vogel HJ, Surette MG. A global metabolic shift is linked to salmonella multicellular development. PLoS One. 2010;5(7):e11814 PubMed PMC

Bourassa L, Camilli A. Glycogen contributes to the environmental persistence and transmission of Vibrio cholerae. Mol Microbiol. 2009;72(1):124–138. doi: 10.1111/j.1365-2958.2009.06629.x. PubMed DOI PMC

McMeechan A, Lovell MA, Cogan TA, Marston KL, Humphrey TJ, Barrow PA. Glycogen production by different salmonella enterica serotypes: contribution of functional glgC to virulence, intestinal colonization and environmental survival. Microbiology. 2005;151:3969–3977. doi: 10.1099/mic.0.28292-0. PubMed DOI

Sheff MA, Thorn KS. Optimized cassettes for fluorescent protein tagging in Saccharomyces Cerevisiae. Yeast. 2004;21(8):661–670. doi: 10.1002/yea.1130. PubMed DOI

Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast. 2004;21(11):947–962. doi: 10.1002/yea.1142. PubMed DOI

Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 2002;30(6):e23. PubMed PMC

Goldstein AL, McCusker JH. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces Cerevisiae. Yeast. 1999;15(14):1541–1553. doi: 10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K. PubMed DOI

Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002;350:87–96. doi: 10.1016/S0076-6879(02)50957-5. PubMed DOI

Cap M, Vachova L, Palkova Z. Yeast colony survival depends on metabolic adaptation and cell differentiation rather than on stress defense. J Biol Chem. 2009;284(47):32572–32581. doi: 10.1074/jbc.M109.022871. PubMed DOI PMC

Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins C, Clapham P, Fitzgerald S, Gil L, et al. Ensembl 2016. Nucleic Acids Res. 2016;44(D1):D710–D716. doi: 10.1093/nar/gkv1157. PubMed DOI PMC

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc. 2012;7(3):562–578. doi: 10.1038/nprot.2012.016. PubMed DOI PMC

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC, Dwight SS, Engel SR, et al. Saccharomyces genome database: the genomics resource of budding yeast. Nucleic Acids Res. 2012;40(Database issue):D700–D705. doi: 10.1093/nar/gkr1029. PubMed DOI PMC

Skrzypek MS, Binkley J, Sherlock G. How to use the Candida genome database. Methods Mol Biol. 2016;1356:3–15. doi: 10.1007/978-1-4939-3052-4_1. PubMed DOI PMC

Vachova L, Chernyavskiy O, Strachotova D, Bianchini P, Burdikova Z, Fercikova I, Kubinova L, Palkova Z. Architecture of developing multicellular yeast colony: spatio-temporal expression of Ato1p ammonium exporter. Environ Microbiol. 2009;11(7):1866–1877. doi: 10.1111/j.1462-2920.2009.01911.x. PubMed DOI

Chester VE. Heritable glycogen-storage deficiency in yeast and its induction by ultra-violet light. J Gen Microbiol. 1968;51:47. doi: 10.1099/00221287-51-1-49. PubMed DOI

Vachova L, Kucerova H, Devaux F, Ulehlova M, Palkova Z. Metabolic diversification of cells during the development of yeast colonies. Environ Microbiol. 2009;11(2):494–504. doi: 10.1111/j.1462-2920.2008.01789.x. PubMed DOI

Parrou JL, Francois J. A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal Biochem. 1997;248(1):186–188. doi: 10.1006/abio.1997.2138. PubMed DOI

Lindroth P, Mopper K. High-performance liquid-chromatographic determination of Subpicomole amounts of amino-acids by Precolumn fluorescence Derivatization with Ortho-Phthaldialdehyde. Anal Chem. 1979;51(11):1667–1674. doi: 10.1021/ac50047a019. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...