Cell Distribution within Yeast Colonies and Colony Biofilms: How Structure Develops

. 2020 May 29 ; 21 (11) : . [epub] 20200529

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32485964

Grantová podpora
19-11384S Czech Science Foundation
LQ1604 NPU II MEYS
RVO 61388971 Czech Academy of Sciences
BIOCEV CZ.1.05/1.1.00/02.0109 ERDF and MEYS

Multicellular structures formed by yeasts and other microbes are valuable models for investigating the processes of cell-cell interaction and pattern formation, as well as cell signaling and differentiation. These processes are essential for the organization and development of diverse microbial communities that are important in everyday life. Two major types of multicellular structures are formed by yeast Saccharomyces cerevisiae on semisolid agar. These are colonies formed by laboratory or domesticated strains and structured colony biofilms formed by wild strains. These structures differ in spatiotemporal organization and cellular differentiation. Using state-of-the-art microscopy and mutant analysis, we investigated the distribution of cells within colonies and colony biofilms and the involvement of specific processes therein. We show that prominent differences between colony and biofilm structure are determined during early stages of development and are associated with the different distribution of growing cells. Two distinct cell distribution patterns were identified-the zebra-type and the leopard-type, which are genetically determined. The role of Flo11p in cell adhesion and extracellular matrix production is essential for leopard-type distribution, because FLO11 deletion triggers the switch to zebra-type cell distribution. However, both types of cell organization are independent of cell budding polarity and cell separation as determined using respective mutants.

Zobrazit více v PubMed

Blankenship J.R., Mitchell A.P. How to build a biofilm: A fungal perspective. Curr. Opin. Microbiol. 2006;9:588–594. doi: 10.1016/j.mib.2006.10.003. PubMed DOI

Lohse M.B., Gulati M., Johnson A.D., Nobile C.J. Development and regulation of single- and multi-species Candida albicans biofilms. Nat. Rev. Microbiol. 2018;16:19–31. doi: 10.1038/nrmicro.2017.107. PubMed DOI PMC

Palkova Z., Vachova L. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts. Semin. Cell Dev. Biol. 2016;57:110–119. PubMed

Pujol C., Daniels K.J., Soll D.R. A Comparison of switching and biofilm formation between MTL13 homozygous strains of Candida albicans and Candida dubliniensis. Eukaryot. Cell. 2015;14:1186–1202. doi: 10.1128/EC.00146-15. PubMed DOI PMC

Reynolds T.B. Going with the Flo: The role of Flo11-dependent and independent interactions in yeast Mat formation. J. Fungi. 2018;4:E132. PubMed PMC

Reynolds T.B., Fink G.R. Bakers’ yeast, a model for fungal biofilm formation. Science. 2001;291:878–881. doi: 10.1126/science.291.5505.878. PubMed DOI

Smukalla S., Caldara M., Pochet N., Beauvais A., Guadagnini S., Yan C., Vinces M.D., Jansen A., Prevost M.C., Latge J.P., et al. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell. 2008;135:726–737. doi: 10.1016/j.cell.2008.09.037. PubMed DOI PMC

Vachova L., Palkova Z. How structured yeast multicellular communities live, age and die? FEMS Yeast Res. 2018;18:foy033. PubMed

Van Nguyen P., Plocek V., Vachova L., Palkova Z. Glucose, Cyc8p and Tup1p regulate biofilm formation and dispersal in wild Saccharomyces cerevisiae. NPJ Biofilms Microbiomes. 2020;6:7. doi: 10.1038/s41522-020-0118-1. PubMed DOI PMC

Zara S., Bakalinsky A.T., Zara G., Pirino G., Demontis M.A., Budroni M. FLO11-based model for air-liquid interfacial biofilm formation by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2005;71:2934–2939. PubMed PMC

Cap M., Stepanek L., Harant K., Vachova L., Palkova Z. Cell differentiation within a yeast colony: Metabolic and regulatory parallels with a tumor-affected organism. Mol. Cell. 2012;46:436–448. doi: 10.1016/j.molcel.2012.04.001. PubMed DOI

Vachova L., Hatakova L., Cap M., Pokorna M., Palkova Z. Rapidly developing yeast microcolonies differentiate in a similar way to aging giant colonies. Oxid Med. Cell Longev. 2013;2013:102485. doi: 10.1155/2013/102485. PubMed DOI PMC

Palkova Z., Forstova J. Yeast colonies synchronise their growth and development. J. Cell Sci. 2000;113:1923–1928. PubMed

Palkova Z., Janderova B., Gabriel J., Zikanova B., Pospisek M., Forstova J. Ammonia mediates communication between yeast colonies. Nature. 1997;390:532–536. doi: 10.1038/37398. PubMed DOI

Kuthan M., Devaux F., Janderova B., Slaninova I., Jacq C., Palkova Z. Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol. Microbiol. 2003;47:745–754. PubMed

Vachova L., Stovicek V., Hlavacek O., Chernyavskiy O., Stepanek L., Kubinova L., Palkova Z. Flo11p, drug efflux pumps, and the extracellular matrix cooperate to form biofilm yeast colonies. J. Cell Biol. 2011;194:679–687. PubMed PMC

Granek J.A., Magwene P.M. Environmental and genetic determinants of colony morphology in yeast. PLoS Genet. 2010;6:e1000823. doi: 10.1371/journal.pgen.1000823. PubMed DOI PMC

Stovicek V., Vachova L., Kuthan M., Palkova Z. General factors important for the formation of structured biofilm-like yeast colonies. Fungal. Genet. Biol. 2010;47:1012–1022. doi: 10.1016/j.fgb.2010.08.005. PubMed DOI

Nguyen P., Hlavacek O., Marsikova J., Vachova L., Palkova Z. Cyc8p and Tup1p transcription regulators antagonistically regulate Flo11p expression and complexity of yeast colony biofilms. PLoS Genet. 2018;14:e1007495. doi: 10.1371/journal.pgen.1007495. PubMed DOI PMC

Voordeckers K., De Maeyer D., van der Zande E., Vinces M.D., Meert W., Cloots L., Ryan O., Marchal K., Verstrepen K.J. Identification of a complex genetic network underlying Saccharomyces cerevisiae colony morphology. Mol. Microbiol. 2012;86:225–239. doi: 10.1111/j.1365-2958.2012.08192.x. PubMed DOI PMC

Cabib E., Roberts R., Bowers B. Synthesis of the yeast cell wall and its regulation. Ann. Rev. Biochem. 1982;51:763–793. doi: 10.1146/annurev.bi.51.070182.003555. PubMed DOI

Vachova L., Palkova Z. Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. J. Cell Biol. 2005;169:711–717. doi: 10.1083/jcb.200410064. PubMed DOI PMC

Chant J., Herskowitz I. Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway. Cell. 1991;65:1203–1212. PubMed

Chant J., Pringle J.R. Patterns of bud-site selection in the yeast Saccharomyces cerevisiae. J. Cell Biol. 1995;129:751–765. doi: 10.1083/jcb.129.3.751. PubMed DOI PMC

Bidlingmaier S., Weiss E.L., Seidel C., Drubin D.G., Snyder M. The Cbk1p pathway is important for polarized cell growth and cell separation in Saccharomyces cerevisiae. Mol. Cell Biol. 2001;21:2449–2462. doi: 10.1128/MCB.21.7.2449-2462.2001. PubMed DOI PMC

Vopalenska I., Stovicek V., Janderova B., Vachova L., Palkova Z. Role of distinct dimorphic transitions in territory colonizing and formation of yeast colony architecture. Environ. Microbiol. 2010;12:264–277. doi: 10.1111/j.1462-2920.2009.02067.x. PubMed DOI

Stovicek V., Vachova L., Begany M., Wilkinson D., Palkova Z. Global changes in gene expression associated with phenotypic switching of wild yeast. BMC Genom. 2014;15:136. doi: 10.1186/1471-2164-15-136. PubMed DOI PMC

Vopalenska I., Hulkova M., Janderova B., Palkova Z. The morphology of Saccharomyces cerevisiae colonies is affected by cell adhesion and the budding pattern. Res. Microbiol. 2005;156:921–931. PubMed

Ratcliff W.C., Fankhauser J.D., Rogers D.W., Greig D., Travisano M. Origins of multicellular evolvability in snowflake yeast. Nat. Commun. 2015;6:6102. doi: 10.1038/ncomms7102. PubMed DOI PMC

Janke C., Magiera M.M., Rathfelder N., Taxis C., Reber S., Maekawa H., Moreno-Borchart A., Doenges G., Schwob E., Schiebel E., et al. A versatile toolbox for PCR-based tagging of yeast genes: New fluorescent proteins, more markers and promoter substitution cassettes. Yeast. 2004;21:947–962. PubMed

Podholová K., Plocek V., Rešetárová S., Kučerová H., Hlaváček O., Váchová L., Palková Z. Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies. Oncotarget. 2016;7:15299–15314. PubMed PMC

Guldener U., Heck S., Fielder T., Beinhauer J., Hegemann J.H. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996;24:2519–2524. doi: 10.1093/nar/24.13.2519. PubMed DOI PMC

Gietz R.D., Woods R.A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Method Enzymol. 2002;350:87–96. PubMed

Vachova L., Chernyavskiy O., Strachotova D., Bianchini P., Burdikova Z., Fercikova I., Kubinova L., Palkova Z. Architecture of developing multicellular yeast colony: Spatio-temporal expression of Ato1p ammonium exporter. Environ. Microbiol. 2009;11:1866–1877. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...