Rose Bengal-Modified Upconverting Nanoparticles: Synthesis, Characterization, and Biological Evaluation

. 2022 Sep 05 ; 12 (9) : . [epub] 20220905

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36143419

Grantová podpora
21-04420S Czech Science Foundation

High-quality upconverting NaYF4:Yb3+,Er3+ nanoparticles (UCNPs; 26 nm in diameter) based on lanthanides were synthesized by a high-temperature coprecipitation method. The particles were modified by bisphosphonate-terminated poly(ethylene glycol) (PEG) and Rose Bengal (RB) photosensitizer. The particles were thoroughly characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, FTIR, and X-ray photoelectron and upconversion luminescence spectroscopy in terms of morphology, hydrodynamic size, composition, and energy transfer to the photosensitizer. Moreover, the singlet oxygen generation from RB-containing UCNPs was investigated using 9,10-diphenylanthracene probe under 980 nm excitation. The cytotoxicity of UCNPs before and after conjugation with RB was evaluated on highly sensitive rat mesenchymal stem cells (rMSCs) and significant differences were found. Correspondingly, consi-derable variations in viability were revealed between the irradiated and non-irradiated rat glioma cell line (C6) exposed to RB-conjugated UCNPs. While the viability of rMSCs was not affected by the presence of UCNPs themselves, the cancer C6 cells were killed after the irradiation at 980 nm due to the reactive oxygen species (ROS) production, thus suggesting the potential of RB-conjugated PEG-modified UCNPs for applications in photodynamic therapy of cancer.

Zobrazit více v PubMed

Freitag M., Möller N., Rühling A., Strassert C.A., Ravoo B.J., Glorius F. Photocatalysis in the dark: Near-infrared light driven photoredox catalysis by an upconversion nanoparticle/photocatalyst system. ChemPhotoChem. 2019;3:24–27. doi: 10.1002/cptc.201800212. DOI

Bünzli J.G., Eliseeva S.V. Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J. Rare Earths. 2010;28:824–842. doi: 10.1016/S1002-0721(09)60208-8. DOI

You M., Zhong J., Hong Y., Duan Z., Lin M., Xu F. Inkjet printing of upconversion nanoparticles for anti-counterfeit applications. Nanoscale. 2015;7:4423–4431. doi: 10.1039/C4NR06944G. PubMed DOI

Ansari A.A., Parchur A.K., Thorat N.D., Chend G. New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine, Coord. Chem. Rev. 2021;440:213971. doi: 10.1016/j.ccr.2021.213971. DOI

Wang C., Cheng L., Liu Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials. 2011;32:1110–1120. doi: 10.1016/j.biomaterials.2010.09.069. PubMed DOI

Liang G., Wang H., Shi H., Wang H., Zhu M., Jing A., Li J., Li G. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J. Nanobiotechnol. 2020;18:154. doi: 10.1186/s12951-020-00713-3. PubMed DOI PMC

Cheng Z., Lin J. Synthesis and application of nanohybrids based on upconverting nanoparticles and polymers. Macromol. Rapid Commun. 2015;36:790–827. doi: 10.1002/marc.201400588. PubMed DOI

Luo H., Kong L., Zhang F., Huang C., Chen J., Zhang H., Yu H., Zheng S., Xu H., Zhang Y., et al. Light-controlled nanosystem with size-flexibility improves targeted retention for tumor suppression. Adv. Funct. Mater. 2021;31:2101262. doi: 10.1002/adfm.202101262. DOI

Hamblin M. Upconversion in photodynamic therapy: Plumbing the depths. Dalton Trans. 2018;47:8571–8580. doi: 10.1039/C8DT00087E. PubMed DOI PMC

Idris N., Gnanasammandhan M., Zhang J., Ho P., Mahendran R., Zhang Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012;18:1580–1585. doi: 10.1038/nm.2933. PubMed DOI

Wang X., Li Y. Monodisperse nanocrystals: General synthesis, assembly, and their applications. Chem. Commun. 2007;28:2901–2910. doi: 10.1039/b700183e. PubMed DOI

Hudson D.E., Hudson D.O., Wininger J., Richardson B.D. Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed. Laser Surg. 2013;31:163–168. doi: 10.1089/pho.2012.3284. PubMed DOI PMC

Gorris H., Wolfbeis O. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew. Chem. Int. Ed. 2013;52:3584–3600. doi: 10.1002/anie.201208196. PubMed DOI

Chen G., Qiu H., Prasad P., Chen X. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014;114:5161–5214. doi: 10.1021/cr400425h. PubMed DOI PMC

Xu J., Shi R., Chen G., Dong S., Yang P., Zhang Z., Niu N., Gai S., He F., Fu Y., et al. All-in-one theranostic nanomedicine with ultrabright second near-infrared emission for tumor-modulated bioimaging and chemodynamic/photodynamic therapy. ACS Nano. 2020;14:9613–9625. doi: 10.1021/acsnano.0c00082. PubMed DOI

Mroz P., Yaroslavsky A., Kharkwal G., Hamblin M. Cell death pathways in photodynamic therapy of cancer. Cancers. 2011;3:2516–2539. doi: 10.3390/cancers3022516. PubMed DOI PMC

Klotz L., Kröncke K., Sies H. Singlet oxygen-induced signaling effects in mammalian cells. Photochem. Photobiol. Sci. 2003;2:88–94. doi: 10.1039/B210750C. PubMed DOI

Buytaert E., Dewaele M., Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim. Biophys. Acta. 2007;1776:86–107. doi: 10.1016/j.bbcan.2007.07.001. PubMed DOI

Yi G., Lu H., Zhao S., Ge Y., Yang W., Chen D., Guo L.-H. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett. 2004;4:2191–2196. doi: 10.1021/nl048680h. DOI

Zhang Y., Sun X., Si R., You L., Yan C. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc. 2005;127:3260–3261. doi: 10.1021/ja042801y. PubMed DOI

Zhuang J., Liang L., Sung H., Yang X., Wu M., Williams I.D., Feng S., Su Q. Controlled hydrothermal growth and up-conversion emission of NaLnF4 (Ln = Y, Dy-Yb) Inorg. Chem. 2007;46:5404–5410. doi: 10.1021/ic070220e. PubMed DOI

Li C., Zhang C., Hou Z., Wang L., Quan Z., Lian H., Lin J. β-NaYF4 and β-NaYF4:Eu3+ microstructures: Morphology control and tunable luminescence properties. J. Phys. Chem. C. 2009;113:2332–2339. doi: 10.1021/jp8101628. DOI

Heer S., Kömpe K., Güdel H., Haase M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 2004;16:2102–2105. doi: 10.1002/adma.200400772. DOI

Panov N., Marin R., Hemmer E. Microwave-assisted solvothermal synthesis of upconverting and downshifting rare-earth-doped LiYF4 microparticles. Inorg. Chem. 2018;57:14920–14929. doi: 10.1021/acs.inorgchem.8b02697. PubMed DOI

Wang M., Abbineni G., Clevenger A., Mao C., Xu S. Upconversion nanoparticles: Synthesis, surface modification and biological applications. Nanomed. NBM. 2011;7:710–729. doi: 10.1016/j.nano.2011.02.013. PubMed DOI PMC

Himmelstoß S., Hirsch T. Long-term colloidal and chemical stability in aqueous media of NaYF4-type upconversion nanoparticles modified by ligand-exchange. Part. Part. Syst. Charact. 2019;36:1900235. doi: 10.1002/ppsc.201900235. DOI

Muhr V., Wilhelm S., Hirsch T., Wolfbeis O. Upconversion nanoparticles: From hydrophobic to hydrophilic surfaces. Acc. Chem. Res. 2014;47:3481–3493. doi: 10.1021/ar500253g. PubMed DOI

Freij-Larsson C., Nylander T., Jannasch P., Wesslén B. Adsorption behaviour of amphiphilic polymers at hydrophobic surfaces: Effects on protein adsorption. Biomaterials. 1996;17:2199–2207. doi: 10.1016/0142-9612(96)00050-6. PubMed DOI

Kamiya H., Iijima M. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media. Sci. Technol. Adv. Mater. 2010;11:44304. doi: 10.1088/1468-6996/11/4/044304. PubMed DOI PMC

Ziental D., Czarczynska-Goslinska B., Mlynarczyk D., Glowacka-Sobotta A., Stanisz B., Goslinski T., Sobotta L. Titanium dioxide nanoparticles: Prospects and applications in medicine. Nanomaterials. 2020;10:387. doi: 10.3390/nano10020387. PubMed DOI PMC

Wainwright M., Crossley K. Methylene blue—A therapeutic dye for all seasons? J. Chemother. 2002;14:431–443. doi: 10.1179/joc.2002.14.5.431. PubMed DOI

Allison R., Downie G., Cuenca R., Hu X., Childs C., Sibata C. Photosensitizers in clinical PDT. Photodiagnosis Photodyn. Ther. 2004;1:27–42. doi: 10.1016/S1572-1000(04)00007-9. PubMed DOI

Maisch T., Bosl C., Szeimies R., Lehn N., Abels C. Photodynamic effects of novel XF porphyrin derivatives on prokaryotic and eukaryotic cells. Antimicrob. Agents Chemother. 2005;49:1542–1552. doi: 10.1128/AAC.49.4.1542-1552.2005. PubMed DOI PMC

Zheng B., Zhong D., Xie T., Zhou J., Li W., Ilyas A., Lu Y., Zhou M., Deng R. Near-infrared photosensitization via direct triplet energy transfer from lanthanide nanoparticles. Chem. 2021;7:1615–1625. doi: 10.1016/j.chempr.2021.03.008. DOI

Wagner A., Denzer U., Neureiter D., Kiesslich T., Puespoeck A., Rauws E.A.J., Emmanuel K., Degenhardt N., Frick U., Beuers U., et al. Temoporfin improves efficacy of photodynamic therapy in advanced biliary tract carcinoma: A multicenter prospective phase II study. Hepatology. 2015;62:1456–1465. doi: 10.1002/hep.27905. PubMed DOI

Wang C., Tao H., Cheng L., Liu Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials. 2011;32:6145–6154. doi: 10.1016/j.biomaterials.2011.05.007. PubMed DOI

Saavedra R., Rocha L., Dąbrowski J., Arnaut L. Modulation of biodistribution, pharmacokinetics, and photosensitivity with the delivery vehicle of a bacteriochlorin photosensitizer for photodynamic therapy. ChemMedChem. 2013;9:390–398. doi: 10.1002/cmdc.201300449. PubMed DOI

Abrahamse H., Hamblin M. New photosensitizers for photodynamic therapy. Biochem. J. 2016;473:347–364. doi: 10.1042/BJ20150942. PubMed DOI PMC

Sperandio F., Huang Y., Hamblin M. Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Recent Pat. Anti-Infect. Drug Discov. 2013;8:108–120. doi: 10.2174/1574891X113089990012. PubMed DOI PMC

Qin J., Kunda N., Qiao G., Calata J.F., Pardiwala K., Prabhakar B.S., Maker A.V. Colon cancer cell treatment with Rose Bengal generates a protective immune response via immunogenic cell death. Cell Death Dis. 2017;8:e2584. doi: 10.1038/cddis.2016.473. PubMed DOI PMC

Nakonechny F., Barel M., David A., Koretz S., Litvak B., Ragozin E., Etinger A., Livne O., Pinhasi Y., Gellerman G., et al. Dark antibacterial activity of Rose Bengal. Int. J. Mol. Sci. 2019;20:3196. doi: 10.3390/ijms20133196. PubMed DOI PMC

Linden S., Neckers D. Fundamental properties of Rose Bengal. 25. Bleaching studies of Rose Bengal onium salts. J. Am. Chem. Soc. 1988;110:1257–1260. doi: 10.1021/ja00212a038. DOI

Pérez-Laguna V., García-Luque I., Ballesta S., Pérez-Artiaga L., Lampaya-Pérez V., Samper S., Soria-Lozano P., Rezusta A., Gilaberte Y. Antimicrobial photodynamic activity of Rose Bengal, alone or in combination with Gentamicin, against planktonic and biofilm Staphylococcus aureus. Photodiagnosis Photodyn. Ther. 2018;21:211–216. doi: 10.1016/j.pdpdt.2017.11.012. PubMed DOI

Costa A., Rasteiro V., Pereira C., Rossoni R., Junqueira J., Jorge A. The effects of Rose Bengal- and erythrosine-mediated photodynamic therapy on Candida albicans. Mycoses. 2011;55:56–63. doi: 10.1111/j.1439-0507.2011.02042.x. PubMed DOI

Panzarini E., Inguscio V., Dini L. Overview of cell death mechanisms induced by Rose Bengal acetate-photodynamic therapy. Int. J. Photoenergy. 2011;2011:713726. doi: 10.1155/2011/713726. DOI

Xu N., Yao M., Farinelli W., Hajjarian Z., Wang Y., Redmond R.W., Kochevar I.E. Light-activated sealing of skin wounds. Lasers Surg. Med. 2014;47:17–29. doi: 10.1002/lsm.22308. PubMed DOI

Panzarini E., Inguscio V., Fimia G., Dini L. Rose Bengal acetate photodynamic therapy (RBAc-PDT) induces exposure and release of damage-associated molecular patterns (DAMPs) in human HeLa cells. PLoS ONE. 2014;9:e105778. doi: 10.1371/journal.pone.0105778. PubMed DOI PMC

Wang Y., Liu K., Liu X., Dohnalová K., Gregorkiewicz T., Kong X., Aalders M.C.G., Buma W.J., Zhang H. Critical shell thickness of core/shell upconversion luminescence nanoplatform for FRET application. J. Phys. Chem. Lett. 2011;2:2083–2088. doi: 10.1021/jz200922f. DOI

Kostiv U., Lobaz V., Kučka J., Švec P., Sedláček O., Hrubý M., Janoušková O., Francová P., Kolářová V., Šefc L., et al. A simple neridronate-based surface coating strategy for upconversion nanoparticles: Highly colloidally stable 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale. 2017;9:16680–16688. doi: 10.1039/C7NR05456D. PubMed DOI

Yang Q., Zhao C., Zhao J., Ye Y. Synthesis and singlet oxygen activities of near infrared photosensitizers by conjugation with upconversion nanoparticles. Opt. Mater. Express. 2017;7:913–923. doi: 10.1364/OME.7.000913. DOI

Kabalnov A. Ostwald ripening and related phenomena. J. Dispers. Sci. Technol. 2001;22:1–12. doi: 10.1081/DIS-100102675. DOI

Kostiv U., Farka Z., Mickert M., Gorris H.H., Velychkivska N., Pop-Georgievski O., Pastucha M., Odstrčilíková E., Skládal P., Horák D. Versatile bioconjugation strategies of PEG-modified upconversion nanoparticles for bioanalytical applications. Biomacromolecules. 2020;21:4502–4513. doi: 10.1021/acs.biomac.0c00459. PubMed DOI

Ren J., Ding Y., Zhu H., Li Z., Dai R., Zhao H., Hong X., Zhang H. Emitter-active shell in NaYF4:Yb,Er/NaYF4:Er upconversion nanoparticles for enhanced energy transfer in photodynamic therapy. ACS Appl. Nano Mater. 2022;5:559–568. doi: 10.1021/acsanm.1c03377. DOI

Argüeso P., Tisdale A., Spurr-Michaud S., Sumiyoshi M., Gipson I. Mucin characteristics of human corneal-limbal epithelial cells that exclude the Rose Bengal anionic dye. Investig. Opthalmol. Vis. Sci. 2006;47:113–119. doi: 10.1167/iovs.05-0735. PubMed DOI PMC

Samsudin A., Lai H., Isa M. Biopolymer materials based carboxymethyl cellulose as a proton conducting biopolymer electrolyte for application in rechargeable proton battery. Electrochim. Acta. 2014;129:1–13. doi: 10.1016/j.electacta.2014.02.074. DOI

Koochakzaei A., Ahmadi H., Achachluei M. An experimental comparative study on silicone oil and polyethylene glycol as dry leather treatments. J. Am. Leather Chem. Assoc. 2016;111:377–383.

Liu G. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chem. Soc. Rev. 2015;44:1635–1652. doi: 10.1039/C4CS00187G. PubMed DOI

DeRosa M. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002;233–234:351–371. doi: 10.1016/S0010-8545(02)00034-6. DOI

Lee N., Cho A., Park S., Lee J.W., Sung Taek P., Park C.H., Choi Y.H., Lim S., Baek M.K., Kim D.Y., et al. SERPINB2 is a novel indicator of stem cell toxicity. Cell Death Dis. 2018;9:724. doi: 10.1038/s41419-018-0748-x. PubMed DOI PMC

Nicolay N., Rühle A., Perez R., Trinh T., Sisombath S., Weber K.J., Ho A.D., Debus J., Saffrich R., Huber P.E. Mesenchymal stem cells are sensitive to bleomycin treatment. Sci. Rep. 2016;6:26645. doi: 10.1038/srep26645. PubMed DOI PMC

Guller A., Generalova A., Petersen E., Nechaev A., Trusova I.A., Landyshev N., Nadort A., Grebenik E., Deyev S.M., Shekhter A.B., et al. Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells. Nano Res. 2015;8:1546–1562. doi: 10.1007/s12274-014-0641-6. DOI

Bastos V., Oskoei P., Andresen E., Saleh M.I., Rühle B., Resch-Genger U., Oliveira H. Stability, dissolution, and cytotoxicity of NaYF4-upconversion nanoparticles with different coatings. Sci. Rep. 2022;12:3770. doi: 10.1038/s41598-022-07630-5. PubMed DOI PMC

Tezuka K., Umezawa M., Liu T.I., Nomura K., Okubo K., Chiu H.-C., Kamimura M., Soga K. Upconversion luminescent nanostructure with ultrasmall ceramic nanoparticles coupled with Rose Bengal for NIR-induced photodynamic therapy. ACS Appl. Bio Mater. 2021;4:4462–4469. doi: 10.1021/acsabm.1c00213. PubMed DOI

Li R., Ji Z., Dong J., Chang C.H., Wang X., Sun B., Wang M., Liao Y.-P., Zink J.I., Nel A.E., et al. Enhancing the imaging and biosafety of upconversion nanoparticles through phosphonate coating. ACS Nano. 2015;9:3293–3306. doi: 10.1021/acsnano.5b00439. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...