Rose Bengal-Modified Upconverting Nanoparticles: Synthesis, Characterization, and Biological Evaluation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-04420S
Czech Science Foundation
PubMed
36143419
PubMed Central
PMC9502678
DOI
10.3390/life12091383
PII: life12091383
Knihovny.cz E-zdroje
- Klíčová slova
- Rose Bengal, cytotoxicity, nanoparticles, photodynamic therapy, reactive oxygen species, upconverting,
- Publikační typ
- časopisecké články MeSH
High-quality upconverting NaYF4:Yb3+,Er3+ nanoparticles (UCNPs; 26 nm in diameter) based on lanthanides were synthesized by a high-temperature coprecipitation method. The particles were modified by bisphosphonate-terminated poly(ethylene glycol) (PEG) and Rose Bengal (RB) photosensitizer. The particles were thoroughly characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, FTIR, and X-ray photoelectron and upconversion luminescence spectroscopy in terms of morphology, hydrodynamic size, composition, and energy transfer to the photosensitizer. Moreover, the singlet oxygen generation from RB-containing UCNPs was investigated using 9,10-diphenylanthracene probe under 980 nm excitation. The cytotoxicity of UCNPs before and after conjugation with RB was evaluated on highly sensitive rat mesenchymal stem cells (rMSCs) and significant differences were found. Correspondingly, consi-derable variations in viability were revealed between the irradiated and non-irradiated rat glioma cell line (C6) exposed to RB-conjugated UCNPs. While the viability of rMSCs was not affected by the presence of UCNPs themselves, the cancer C6 cells were killed after the irradiation at 980 nm due to the reactive oxygen species (ROS) production, thus suggesting the potential of RB-conjugated PEG-modified UCNPs for applications in photodynamic therapy of cancer.
Zobrazit více v PubMed
Freitag M., Möller N., Rühling A., Strassert C.A., Ravoo B.J., Glorius F. Photocatalysis in the dark: Near-infrared light driven photoredox catalysis by an upconversion nanoparticle/photocatalyst system. ChemPhotoChem. 2019;3:24–27. doi: 10.1002/cptc.201800212. DOI
Bünzli J.G., Eliseeva S.V. Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J. Rare Earths. 2010;28:824–842. doi: 10.1016/S1002-0721(09)60208-8. DOI
You M., Zhong J., Hong Y., Duan Z., Lin M., Xu F. Inkjet printing of upconversion nanoparticles for anti-counterfeit applications. Nanoscale. 2015;7:4423–4431. doi: 10.1039/C4NR06944G. PubMed DOI
Ansari A.A., Parchur A.K., Thorat N.D., Chend G. New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine, Coord. Chem. Rev. 2021;440:213971. doi: 10.1016/j.ccr.2021.213971. DOI
Wang C., Cheng L., Liu Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials. 2011;32:1110–1120. doi: 10.1016/j.biomaterials.2010.09.069. PubMed DOI
Liang G., Wang H., Shi H., Wang H., Zhu M., Jing A., Li J., Li G. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J. Nanobiotechnol. 2020;18:154. doi: 10.1186/s12951-020-00713-3. PubMed DOI PMC
Cheng Z., Lin J. Synthesis and application of nanohybrids based on upconverting nanoparticles and polymers. Macromol. Rapid Commun. 2015;36:790–827. doi: 10.1002/marc.201400588. PubMed DOI
Luo H., Kong L., Zhang F., Huang C., Chen J., Zhang H., Yu H., Zheng S., Xu H., Zhang Y., et al. Light-controlled nanosystem with size-flexibility improves targeted retention for tumor suppression. Adv. Funct. Mater. 2021;31:2101262. doi: 10.1002/adfm.202101262. DOI
Hamblin M. Upconversion in photodynamic therapy: Plumbing the depths. Dalton Trans. 2018;47:8571–8580. doi: 10.1039/C8DT00087E. PubMed DOI PMC
Idris N., Gnanasammandhan M., Zhang J., Ho P., Mahendran R., Zhang Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012;18:1580–1585. doi: 10.1038/nm.2933. PubMed DOI
Wang X., Li Y. Monodisperse nanocrystals: General synthesis, assembly, and their applications. Chem. Commun. 2007;28:2901–2910. doi: 10.1039/b700183e. PubMed DOI
Hudson D.E., Hudson D.O., Wininger J., Richardson B.D. Penetration of laser light at 808 and 980 nm in bovine tissue samples. Photomed. Laser Surg. 2013;31:163–168. doi: 10.1089/pho.2012.3284. PubMed DOI PMC
Gorris H., Wolfbeis O. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew. Chem. Int. Ed. 2013;52:3584–3600. doi: 10.1002/anie.201208196. PubMed DOI
Chen G., Qiu H., Prasad P., Chen X. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014;114:5161–5214. doi: 10.1021/cr400425h. PubMed DOI PMC
Xu J., Shi R., Chen G., Dong S., Yang P., Zhang Z., Niu N., Gai S., He F., Fu Y., et al. All-in-one theranostic nanomedicine with ultrabright second near-infrared emission for tumor-modulated bioimaging and chemodynamic/photodynamic therapy. ACS Nano. 2020;14:9613–9625. doi: 10.1021/acsnano.0c00082. PubMed DOI
Mroz P., Yaroslavsky A., Kharkwal G., Hamblin M. Cell death pathways in photodynamic therapy of cancer. Cancers. 2011;3:2516–2539. doi: 10.3390/cancers3022516. PubMed DOI PMC
Klotz L., Kröncke K., Sies H. Singlet oxygen-induced signaling effects in mammalian cells. Photochem. Photobiol. Sci. 2003;2:88–94. doi: 10.1039/B210750C. PubMed DOI
Buytaert E., Dewaele M., Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim. Biophys. Acta. 2007;1776:86–107. doi: 10.1016/j.bbcan.2007.07.001. PubMed DOI
Yi G., Lu H., Zhao S., Ge Y., Yang W., Chen D., Guo L.-H. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Lett. 2004;4:2191–2196. doi: 10.1021/nl048680h. DOI
Zhang Y., Sun X., Si R., You L., Yan C. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc. 2005;127:3260–3261. doi: 10.1021/ja042801y. PubMed DOI
Zhuang J., Liang L., Sung H., Yang X., Wu M., Williams I.D., Feng S., Su Q. Controlled hydrothermal growth and up-conversion emission of NaLnF4 (Ln = Y, Dy-Yb) Inorg. Chem. 2007;46:5404–5410. doi: 10.1021/ic070220e. PubMed DOI
Li C., Zhang C., Hou Z., Wang L., Quan Z., Lian H., Lin J. β-NaYF4 and β-NaYF4:Eu3+ microstructures: Morphology control and tunable luminescence properties. J. Phys. Chem. C. 2009;113:2332–2339. doi: 10.1021/jp8101628. DOI
Heer S., Kömpe K., Güdel H., Haase M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 2004;16:2102–2105. doi: 10.1002/adma.200400772. DOI
Panov N., Marin R., Hemmer E. Microwave-assisted solvothermal synthesis of upconverting and downshifting rare-earth-doped LiYF4 microparticles. Inorg. Chem. 2018;57:14920–14929. doi: 10.1021/acs.inorgchem.8b02697. PubMed DOI
Wang M., Abbineni G., Clevenger A., Mao C., Xu S. Upconversion nanoparticles: Synthesis, surface modification and biological applications. Nanomed. NBM. 2011;7:710–729. doi: 10.1016/j.nano.2011.02.013. PubMed DOI PMC
Himmelstoß S., Hirsch T. Long-term colloidal and chemical stability in aqueous media of NaYF4-type upconversion nanoparticles modified by ligand-exchange. Part. Part. Syst. Charact. 2019;36:1900235. doi: 10.1002/ppsc.201900235. DOI
Muhr V., Wilhelm S., Hirsch T., Wolfbeis O. Upconversion nanoparticles: From hydrophobic to hydrophilic surfaces. Acc. Chem. Res. 2014;47:3481–3493. doi: 10.1021/ar500253g. PubMed DOI
Freij-Larsson C., Nylander T., Jannasch P., Wesslén B. Adsorption behaviour of amphiphilic polymers at hydrophobic surfaces: Effects on protein adsorption. Biomaterials. 1996;17:2199–2207. doi: 10.1016/0142-9612(96)00050-6. PubMed DOI
Kamiya H., Iijima M. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media. Sci. Technol. Adv. Mater. 2010;11:44304. doi: 10.1088/1468-6996/11/4/044304. PubMed DOI PMC
Ziental D., Czarczynska-Goslinska B., Mlynarczyk D., Glowacka-Sobotta A., Stanisz B., Goslinski T., Sobotta L. Titanium dioxide nanoparticles: Prospects and applications in medicine. Nanomaterials. 2020;10:387. doi: 10.3390/nano10020387. PubMed DOI PMC
Wainwright M., Crossley K. Methylene blue—A therapeutic dye for all seasons? J. Chemother. 2002;14:431–443. doi: 10.1179/joc.2002.14.5.431. PubMed DOI
Allison R., Downie G., Cuenca R., Hu X., Childs C., Sibata C. Photosensitizers in clinical PDT. Photodiagnosis Photodyn. Ther. 2004;1:27–42. doi: 10.1016/S1572-1000(04)00007-9. PubMed DOI
Maisch T., Bosl C., Szeimies R., Lehn N., Abels C. Photodynamic effects of novel XF porphyrin derivatives on prokaryotic and eukaryotic cells. Antimicrob. Agents Chemother. 2005;49:1542–1552. doi: 10.1128/AAC.49.4.1542-1552.2005. PubMed DOI PMC
Zheng B., Zhong D., Xie T., Zhou J., Li W., Ilyas A., Lu Y., Zhou M., Deng R. Near-infrared photosensitization via direct triplet energy transfer from lanthanide nanoparticles. Chem. 2021;7:1615–1625. doi: 10.1016/j.chempr.2021.03.008. DOI
Wagner A., Denzer U., Neureiter D., Kiesslich T., Puespoeck A., Rauws E.A.J., Emmanuel K., Degenhardt N., Frick U., Beuers U., et al. Temoporfin improves efficacy of photodynamic therapy in advanced biliary tract carcinoma: A multicenter prospective phase II study. Hepatology. 2015;62:1456–1465. doi: 10.1002/hep.27905. PubMed DOI
Wang C., Tao H., Cheng L., Liu Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials. 2011;32:6145–6154. doi: 10.1016/j.biomaterials.2011.05.007. PubMed DOI
Saavedra R., Rocha L., Dąbrowski J., Arnaut L. Modulation of biodistribution, pharmacokinetics, and photosensitivity with the delivery vehicle of a bacteriochlorin photosensitizer for photodynamic therapy. ChemMedChem. 2013;9:390–398. doi: 10.1002/cmdc.201300449. PubMed DOI
Abrahamse H., Hamblin M. New photosensitizers for photodynamic therapy. Biochem. J. 2016;473:347–364. doi: 10.1042/BJ20150942. PubMed DOI PMC
Sperandio F., Huang Y., Hamblin M. Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Recent Pat. Anti-Infect. Drug Discov. 2013;8:108–120. doi: 10.2174/1574891X113089990012. PubMed DOI PMC
Qin J., Kunda N., Qiao G., Calata J.F., Pardiwala K., Prabhakar B.S., Maker A.V. Colon cancer cell treatment with Rose Bengal generates a protective immune response via immunogenic cell death. Cell Death Dis. 2017;8:e2584. doi: 10.1038/cddis.2016.473. PubMed DOI PMC
Nakonechny F., Barel M., David A., Koretz S., Litvak B., Ragozin E., Etinger A., Livne O., Pinhasi Y., Gellerman G., et al. Dark antibacterial activity of Rose Bengal. Int. J. Mol. Sci. 2019;20:3196. doi: 10.3390/ijms20133196. PubMed DOI PMC
Linden S., Neckers D. Fundamental properties of Rose Bengal. 25. Bleaching studies of Rose Bengal onium salts. J. Am. Chem. Soc. 1988;110:1257–1260. doi: 10.1021/ja00212a038. DOI
Pérez-Laguna V., García-Luque I., Ballesta S., Pérez-Artiaga L., Lampaya-Pérez V., Samper S., Soria-Lozano P., Rezusta A., Gilaberte Y. Antimicrobial photodynamic activity of Rose Bengal, alone or in combination with Gentamicin, against planktonic and biofilm Staphylococcus aureus. Photodiagnosis Photodyn. Ther. 2018;21:211–216. doi: 10.1016/j.pdpdt.2017.11.012. PubMed DOI
Costa A., Rasteiro V., Pereira C., Rossoni R., Junqueira J., Jorge A. The effects of Rose Bengal- and erythrosine-mediated photodynamic therapy on Candida albicans. Mycoses. 2011;55:56–63. doi: 10.1111/j.1439-0507.2011.02042.x. PubMed DOI
Panzarini E., Inguscio V., Dini L. Overview of cell death mechanisms induced by Rose Bengal acetate-photodynamic therapy. Int. J. Photoenergy. 2011;2011:713726. doi: 10.1155/2011/713726. DOI
Xu N., Yao M., Farinelli W., Hajjarian Z., Wang Y., Redmond R.W., Kochevar I.E. Light-activated sealing of skin wounds. Lasers Surg. Med. 2014;47:17–29. doi: 10.1002/lsm.22308. PubMed DOI
Panzarini E., Inguscio V., Fimia G., Dini L. Rose Bengal acetate photodynamic therapy (RBAc-PDT) induces exposure and release of damage-associated molecular patterns (DAMPs) in human HeLa cells. PLoS ONE. 2014;9:e105778. doi: 10.1371/journal.pone.0105778. PubMed DOI PMC
Wang Y., Liu K., Liu X., Dohnalová K., Gregorkiewicz T., Kong X., Aalders M.C.G., Buma W.J., Zhang H. Critical shell thickness of core/shell upconversion luminescence nanoplatform for FRET application. J. Phys. Chem. Lett. 2011;2:2083–2088. doi: 10.1021/jz200922f. DOI
Kostiv U., Lobaz V., Kučka J., Švec P., Sedláček O., Hrubý M., Janoušková O., Francová P., Kolářová V., Šefc L., et al. A simple neridronate-based surface coating strategy for upconversion nanoparticles: Highly colloidally stable 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale. 2017;9:16680–16688. doi: 10.1039/C7NR05456D. PubMed DOI
Yang Q., Zhao C., Zhao J., Ye Y. Synthesis and singlet oxygen activities of near infrared photosensitizers by conjugation with upconversion nanoparticles. Opt. Mater. Express. 2017;7:913–923. doi: 10.1364/OME.7.000913. DOI
Kabalnov A. Ostwald ripening and related phenomena. J. Dispers. Sci. Technol. 2001;22:1–12. doi: 10.1081/DIS-100102675. DOI
Kostiv U., Farka Z., Mickert M., Gorris H.H., Velychkivska N., Pop-Georgievski O., Pastucha M., Odstrčilíková E., Skládal P., Horák D. Versatile bioconjugation strategies of PEG-modified upconversion nanoparticles for bioanalytical applications. Biomacromolecules. 2020;21:4502–4513. doi: 10.1021/acs.biomac.0c00459. PubMed DOI
Ren J., Ding Y., Zhu H., Li Z., Dai R., Zhao H., Hong X., Zhang H. Emitter-active shell in NaYF4:Yb,Er/NaYF4:Er upconversion nanoparticles for enhanced energy transfer in photodynamic therapy. ACS Appl. Nano Mater. 2022;5:559–568. doi: 10.1021/acsanm.1c03377. DOI
Argüeso P., Tisdale A., Spurr-Michaud S., Sumiyoshi M., Gipson I. Mucin characteristics of human corneal-limbal epithelial cells that exclude the Rose Bengal anionic dye. Investig. Opthalmol. Vis. Sci. 2006;47:113–119. doi: 10.1167/iovs.05-0735. PubMed DOI PMC
Samsudin A., Lai H., Isa M. Biopolymer materials based carboxymethyl cellulose as a proton conducting biopolymer electrolyte for application in rechargeable proton battery. Electrochim. Acta. 2014;129:1–13. doi: 10.1016/j.electacta.2014.02.074. DOI
Koochakzaei A., Ahmadi H., Achachluei M. An experimental comparative study on silicone oil and polyethylene glycol as dry leather treatments. J. Am. Leather Chem. Assoc. 2016;111:377–383.
Liu G. Advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chem. Soc. Rev. 2015;44:1635–1652. doi: 10.1039/C4CS00187G. PubMed DOI
DeRosa M. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002;233–234:351–371. doi: 10.1016/S0010-8545(02)00034-6. DOI
Lee N., Cho A., Park S., Lee J.W., Sung Taek P., Park C.H., Choi Y.H., Lim S., Baek M.K., Kim D.Y., et al. SERPINB2 is a novel indicator of stem cell toxicity. Cell Death Dis. 2018;9:724. doi: 10.1038/s41419-018-0748-x. PubMed DOI PMC
Nicolay N., Rühle A., Perez R., Trinh T., Sisombath S., Weber K.J., Ho A.D., Debus J., Saffrich R., Huber P.E. Mesenchymal stem cells are sensitive to bleomycin treatment. Sci. Rep. 2016;6:26645. doi: 10.1038/srep26645. PubMed DOI PMC
Guller A., Generalova A., Petersen E., Nechaev A., Trusova I.A., Landyshev N., Nadort A., Grebenik E., Deyev S.M., Shekhter A.B., et al. Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells. Nano Res. 2015;8:1546–1562. doi: 10.1007/s12274-014-0641-6. DOI
Bastos V., Oskoei P., Andresen E., Saleh M.I., Rühle B., Resch-Genger U., Oliveira H. Stability, dissolution, and cytotoxicity of NaYF4-upconversion nanoparticles with different coatings. Sci. Rep. 2022;12:3770. doi: 10.1038/s41598-022-07630-5. PubMed DOI PMC
Tezuka K., Umezawa M., Liu T.I., Nomura K., Okubo K., Chiu H.-C., Kamimura M., Soga K. Upconversion luminescent nanostructure with ultrasmall ceramic nanoparticles coupled with Rose Bengal for NIR-induced photodynamic therapy. ACS Appl. Bio Mater. 2021;4:4462–4469. doi: 10.1021/acsabm.1c00213. PubMed DOI
Li R., Ji Z., Dong J., Chang C.H., Wang X., Sun B., Wang M., Liao Y.-P., Zink J.I., Nel A.E., et al. Enhancing the imaging and biosafety of upconversion nanoparticles through phosphonate coating. ACS Nano. 2015;9:3293–3306. doi: 10.1021/acsnano.5b00439. PubMed DOI PMC
Cytotoxicity Evaluation of Photosensitizer-Conjugated Hexagonal Upconverting Nanoparticles