Cytotoxicity Evaluation of Photosensitizer-Conjugated Hexagonal Upconverting Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-04420S
Czech Science Foundation
PubMed
37177080
PubMed Central
PMC10180129
DOI
10.3390/nano13091535
PII: nano13091535
Knihovny.cz E-zdroje
- Klíčová slova
- cytotoxicity, nanoparticles, photosensitizer, rose bengal, upcoverting,
- Publikační typ
- časopisecké články MeSH
In this report, we synthesized hexagonal NaYF4:Yb,Er upconverting nanoparticles (UCNPs) of 171 nm in size with a narrow particle size distribution. To address their colloidal stabi-lity in aqueous media and to incorporate a photosensitizer that can produce reactive singlet oxygen (1O2) to kill tumor cells, UCNPs were conjugated with 6-bromohexanoic acid-functionalized Rose Bengal (RB) and coated with PEG-alendronate (PEG-Ale). The particles were thoroughly characterized by transmission electron microscopy, dynamic light scattering, ATR FTIR, X-ray photoelectron spectroscopy, thermogravimetric analysis, and spectrofluorometry, and 1O2 formation was detected using a 9,10-diphenylanthracene spectrophotometric probe. Cytotoxicity determination on rat mesenchymal stem cells by using the MTT assay showed that neutralization of the large positive surface charge of neat UCNPs with PEG-Ale and the bound RB sensitizer significantly reduced the concentration-dependent cytotoxicity. The presented strategy shows great potential for the use of these particles as a novel agent for the photodynamic therapy of tumors.
Zobrazit více v PubMed
Li Y., Chen C., Liu F., Liu J. Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application. Microchim. Acta. 2022;189:109. doi: 10.1007/s00604-022-05180-1. PubMed DOI
Xin N., Wei D., Zhu Y., Yang M., Ramakrishna S., Lee O., Luo H., Fan H. Upconversion nanomaterials: A platform for biosensing, theranostic and photoregulation. Mater. Today Chem. 2020;17:100329. doi: 10.1016/j.mtchem.2020.100329. DOI
Hamblin M.R. Upconversion in photodynamic therapy: Plumbing the depths. Dalton Trans. 2018;47:8571–8580. doi: 10.1039/C8DT00087E. PubMed DOI PMC
Li J., Cui Z., Zheng Y., Liu X., Li Z., Jiang H., Zhu S., Zhang Y., Chu P.K., Wu S. Atomic-layer Fe2O3-modified 2D porphyrinic metal-organic framework for enhanced photocatalytic disinfection through electron-withdrawing effect. Appl. Catal. B. 2022;317:121701. doi: 10.1016/j.apcatb.2022.121701. DOI
Li P., Li B., Wang C., Zhao X., Zheng Y., Wu S., Shen J., Zhang Y., Liu X. In situ fabrication of co-coordinated TCPP-Cur donor-acceptor-type covalent organic framework-like photocatalytic hydrogel for rapid therapy of bacteria-infected wounds. Compos. Part B Eng. 2023;252:110506. doi: 10.1016/j.compositesb.2023.110506. DOI
Zhou J., Liu Q., Feng W., Sun Y., Li F. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015;115:395–465. doi: 10.1021/cr400478f. PubMed DOI
Liang G., Wang H., Shi H., Wang H., Zhu M., Jing A., Li J., Li G. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J. Nanobiotechnology. 2020;18:154. doi: 10.1186/s12951-020-00713-3. PubMed DOI PMC
Chen G., Qiu H., Prasad P.N., Chen X. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014;114:5161–5214. doi: 10.1021/cr400425h. PubMed DOI PMC
Quintanilla M., Hemmer E., Marques-Hueso J., Rohani S., Lucchini G., Wang M., Zamani R.R., Roddatis V., Speghini A., Richards B.S., et al. Cubic versus hexagonal—Phase, size and morphology effects on the photoluminescence quantum yield of NaGdF4:Er3+/Yb3+ upconverting nanoparticles. Nanoscale. 2022;14:1492–1504. doi: 10.1039/D1NR06319G. PubMed DOI
Zhang H., Wang X., Jin R., Su Q. Preparation and applications of polymer-modified lanthanide-doped upconversion nanoparticles. Giant. 2022;12:100130. doi: 10.1016/j.giant.2022.100130. DOI
Guller A.E., Nadort A., Generalova A.N., Khaydukov E.V., Nechaev A.V., Kornienko I.A., Petersen E.V., Liang L., Shekhter A.B., Qian Y., et al. The rational surface design of upconversion nanoparticles with polyethylenimine (PEI) for biomedical applications: Better safe than brighter? ACS Biomater. Sci. Eng. 2018;4:3143–3153. doi: 10.1021/acsbiomaterials.8b00633. PubMed DOI
Nahorniak M., Patsula V., Mareková D., Matouš P., Shapoval O., Oleksa V., Vosmanská M., Machová Urdzíková L., Jendelová P., Herynek V., et al. Chemical and colloidal stability of polymer-coated NaYF4:Yb,Er nanoparticles in aqueous media and viability of cells: The effect of a protective coating. Int. J. Mol. Sci. 2023;24:2724. doi: 10.3390/ijms24032724. PubMed DOI PMC
Srivastava A., Singh P.K., Ali A., Singh P.P., Srivastava V. Recent applications of Rose Bengal catalysis in N-heterocycles: A short review. RSC Adv. 2020;10:39495–39508. doi: 10.1039/D0RA07400D. PubMed DOI PMC
Kostiv U., Lobaz V., Kučka J., Švec P., Sedláček O., Hrubý M., Janoušková O., Francová P., Kolářová V., Šefc L., et al. A simple neridronate-based surface coating strategy for upconversion nanoparticles: Highly colloidally stable 125 I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale. 2017;9:16680–16688. doi: 10.1039/C7NR05456D. PubMed DOI
Ke J., Dou H., Zhang X., Uhagaze D.S., Ding X., Dong Y. Determination of pKa values of alendronate sodium in aqueous solution by piecewise linear regression based on acid-base potentiometric titration. J. Pharm. Anal. 2016;6:404–409. doi: 10.1016/j.jpha.2016.07.001. PubMed DOI PMC
Yang Q., Zhao C., Zhao J., Ye Y. Synthesis and singlet oxygen activities of near infrared photosensitizers by conjugation with upconversion nanoparticles. Opt. Mater. Express. 2017;7:913–923. doi: 10.1364/OME.7.000913. DOI
Kabalnov A. Ostwald ripening and related phenomena. J. Dispers. Sci. Technol. 2001;22:1–12. doi: 10.1081/DIS-100102675. DOI
Kostiv U., Farka Z., Mickert M.J., Gorris H.H., Velychkivska N., Pop-Georgievski O., Pastucha M., Odstrčilíková E., Skládal P., Horák D. Versatile bioconjugation strategies of PEG-modified upconversion nanoparticles for bioanalytical applications. Biomacromolecules. 2020;21:4502–4513. doi: 10.1021/acs.biomac.0c00459. PubMed DOI
Vitha T., Kubíček V., Hermann P., Elst L.V., Muller R.N., Kolar Z.I., Wolterbeek H.T., Breeman W.A.P., Lukeš I., Peters J.A. Lanthanide (III) complexes of bis(phosphonate) monoamide analogues of DOTA: Bone-seeking agents for imaging and therapy. J. Med. Chem. 2008;51:677–683. doi: 10.1021/jm7012776. PubMed DOI
Pereira A.D.L.S., Cernescu A., Svoboda J., Sivkova R., Romanenko I., Bashta B., Keilmann F., Pop-Georgievski O. Conformation in ultrathin polymer brush coatings resolved by infrared nanoscopy. Anal. Chem. 2020;92:4716–4720. doi: 10.1021/acs.analchem.9b05661. PubMed DOI
Nahorniak M., Pop-Georgievski O., Velychkivska N., Filipová M., Rydvalová E., Gunár K., Matouš P., Kostiv U., Horák D. Rose Bengal-modified upconverting nanoparticles: Synthesis, characterization, and biological evaluation. Life. 2022;12:1383. doi: 10.3390/life12091383. PubMed DOI PMC
Buchner M., García Calavia P., Muhr V., Kröninger A., Baeumner A.J., Hirsch T., Russell D.A., Marín M.J. Photosensitiser functionalised luminescent upconverting nanoparticles for efficient photodynamic therapy of breast cancer cells. Photochem. Photobiol. Sci. 2019;18:98–109. doi: 10.1039/c8pp00354h. PubMed DOI
Jethva P., Momin M., Khan T., Omri A. Lanthanide-doped upconversion luminescent nanoparticles—Evolving role in bioimaging, biosensing, and drug delivery. Materials. 2022;15:2374. doi: 10.3390/ma15072374. PubMed DOI PMC
Sun Y., Feng W., Yang P., Huang C., Li F. The biosafety of lanthanide upconversion nanomaterials. Chem. Soc. Rev. 2015;44:1509–1525. doi: 10.1039/C4CS00175C. PubMed DOI
Zhang J., Liu F., Li T., He X., Wang Z. Surface charge effect on the cellular interaction and cytotoxicity of NaYF4:Yb3+, Er3+@SiO2 nanoparticles. RSC Adv. 2015;5:7773–7780. doi: 10.1039/C4RA11374H. DOI
Lee N.-H., Cho A., Park S.-R., Lee J.W., Taek P.S., Park C.H., Choi Y.-H., Lim S., Baek M.-K., Kim D.Y., et al. SERPINB2 is a novel indicator of stem cell toxicity. Cell Death Dis. 2018;9:724. doi: 10.1038/s41419-018-0748-x. PubMed DOI PMC
Nicolay N.H., Rühle A., Perez R.L., Trinh T., Sisombath S., Weber K.J., Ho A.D., Debus J., Saffrich R., Huber P.E. Mesenchymal stem cells are sensitive to bleomycin treatment. Sci. Rep. 2016;6:26645. doi: 10.1038/srep26645. PubMed DOI PMC
Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization; Geneva, Switzerland: 2009. [(accessed on 30 June 2009)]. Available online: https://www.iso.org/standard/36406.html.
Shang L., Nienhaus K., Nienhaus G.U. Engineered nanoparticles interacting with cells: Size matters. J. Nanobiotechnology. 2014;12:5. doi: 10.1186/1477-3155-12-5. PubMed DOI PMC
Di Bucchianico S., Fabbrizi M.R., Cirillo S., Uboldi C., Gilliland D., Valsami-Jones E., Migliore L. Aneuploidogenic effects and DNA oxidation induced in vitro by differently sized gold nanoparticles. Int. J. Nanomed. 2014;9:2191–2204. doi: 10.2147/IJN.S58397. PubMed DOI PMC
Moghadam B.Y., Hou W.-C., Corredor C., Westerhoff P., Posner J.D. Role of nanoparticle surface functionality in the disruption of model cell membranes. Langmuir. 2012;28:16318–16326. doi: 10.1021/la302654s. PubMed DOI PMC
Osaka T., Nakanishi T., Shanmugam S., Takahama S., Zhang H. Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells. Colloids Surf. B. 2009;71:325–330. doi: 10.1016/j.colsurfb.2009.03.004. PubMed DOI
Cho E.C., Xie J., Wurm P.A., Xia Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 2009;9:1080–1084. doi: 10.1021/nl803487r. PubMed DOI
Qu Q., Ma X., Zhao Y. Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers. Nanoscale. 2015;7:16677–16686. doi: 10.1039/C5NR05139H. PubMed DOI
Schöttler S., Becker G., Winzen S., Steinbach T., Mohr K., Landfester K., Mailänder V., Wurmet F.R. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nature Nanotechnol. 2016;11:372–377. doi: 10.1038/nnano.2015.330. PubMed DOI
Falahati M., Attar F., Sharifi M., Haertlé T., Berret J.F., Khan R.H., Saboury A.A. A health concern regarding the protein corona, aggregation and disaggregation. Biochim. Biophys. Acta Gen. Subj. 2019;1863:971–991. doi: 10.1016/j.bbagen.2019.02.012. PubMed DOI PMC