Chemical and Colloidal Stability of Polymer-Coated NaYF4:Yb,Er Nanoparticles in Aqueous Media and Viability of Cells: The Effect of a Protective Coating

. 2023 Feb 01 ; 24 (3) : . [epub] 20230201

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36769046

Grantová podpora
21-04420S Czech Science Foundation

Upconverting nanoparticles (UCNPs) are of particular interest in nanomedicine for in vivo deep-tissue optical cancer bioimaging due to their efficient cellular uptake dependent on polymer coating. In this study, particles, ca. 25 nm in diameter, were prepared by a high-temperature coprecipitation of lanthanide chlorides. To ensure optimal dispersion of UCNPs in aqueous milieu, they were coated with three different polymers containing reactive groups, i.e., poly(ethylene glycol)-alendronate (PEG-Ale), poly(N,N-dimethylacrylamide-co-2-aminoethylacrylamide)-alendronate (PDMA-Ale), and poly(methyl vinyl ether-co-maleic acid) (PMVEMA). All the particles were characterized by TEM, DLS, FTIR, and spectrofluorometer to determine the morphology, hydrodynamic size and ξ-potential, composition, and upconversion luminescence. The degradability/dissolution of UCNPs in water, PBS, DMEM, or artificial lysosomal fluid (ALF) was evaluated using an ion-selective electrochemical method and UV-Vis spectroscopy. The dissolution that was more pronounced in PBS at elevated temperatures was decelerated by polymer coatings. The dissolution in DMEM was relatively small, but much more pronounced in ALF. PMVEMA with multiple anchoring groups provided better protection against particle dissolution in PBS than PEG-Ale and PDMA-Ale polymers containing only one reactive group. However, the cytotoxicity of the particles depended not only on their ability to rapidly degrade, but also on the type of coating. According to MTT, neat UCNPs and UCNP@PMVEMA were toxic for both rat cells (C6) and rat mesenchymal stem cells (rMSCs), which was in contrast to the UCNP@Ale-PDMA particles that were biocompatible. On the other hand, both the cytotoxicity and uptake of the UCNP@Ale-PEG particles by C6 and rMSCs were low, according to MTT assay and ICP-MS, respectively. This was confirmed by a confocal microscopy, where the neat UCNPs were preferentially internalized by both cell types, followed by the UCNP@PMVEMA, UCNP@Ale-PDMA, and UCNP@Ale-PEG particles. This study provides guidance for the selection of a suitable nanoparticle coating with respect to future biomedical applications where specific behaviors (extracellular deposition vs. cell internalization) are expected.

Zobrazit více v PubMed

Chen G., Qiu H., Prasad P.N., Chen X. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014;114:5161–5214. doi: 10.1021/cr400425h. PubMed DOI PMC

Wen S., Zhou J., Zheng K., Bednarkiewicz A., Liu X., Jin D. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018;9:2415. doi: 10.1038/s41467-018-04813-5. PubMed DOI PMC

Qin X., Xu J., Wu Y., Liu X. Energy-transfer editing in lanthanide-activated upconversion nanocrystals: A toolbox for emerging applications. ACS Cent. Sci. 2019;23:29–42. doi: 10.1021/acscentsci.8b00827. PubMed DOI PMC

Zhang Z., Shikha S., Liu J., Zhang J., Mei Q., Zhang Y. Upconversion nanoprobes: Recent advances in sensing applications. Anal. Chem. 2019;91:548–568. doi: 10.1021/acs.analchem.8b04049. PubMed DOI

Chen B., Wang F. Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorg. Chem. Front. 2020;7:1067–1081. doi: 10.1039/C9QI01358J. DOI

Sawamura T., Tanaka T., Ishige H., Iizuka M., Murayama Y., Otsuji E., Ohkubo A., Ogura S.-I., Yuasa H. The effect of coatings on the affinity of lanthanide nanoparticles to MKN45 and HeLa cancer cells and improvement in photodynamic therapy efficiency. Int. J. Mol. Sci. 2015;16:22415–22424. doi: 10.3390/ijms160922415. PubMed DOI PMC

Duan C., Liang L., Li L., Zhang R., Xu Z.P. Recent progress in upconversion luminescence nanomaterials for biomedical applications. J. Mater. Chem. B. 2018;6:192–209. doi: 10.1039/C7TB02527K. PubMed DOI

Du H., Zhang W., Sun J. Structure and upconversion luminescence properties of BaYF5:Yb3+, Er3+ nanoparticles prepared by different methods. J. Alloys Compd. 2011;509:3413–3418. doi: 10.1016/j.jallcom.2010.12.101. DOI

Shan S.N., Wang X.Y., Jia N.Q. Synthesis of NaYF4:Yb3+, Er3+ upconversion nanoparticles in normal microemulsions. Nanoscale Res. Lett. 2011;6:539. doi: 10.1186/1556-276X-6-539. PubMed DOI PMC

DaCosta M.V., Doughan S., Han Y., Krull U.J. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Anal. Chim. Acta. 2014;832:1–33. doi: 10.1016/j.aca.2014.04.030. PubMed DOI

Zhu X., Zhang J., Liu J., Zhang Y. Recent progress of rare-earth doped upconversion nanoparticles: Synthesis, optimization and applications. Adv. Sci. 2019;6:1901358. doi: 10.1002/advs.201901358. PubMed DOI PMC

Gnach A., Lipinski T., Bednarkiewicz A., Rybka J., Capobianco J.A. Upconverting nanoparticles: Assessing the toxicity. Chem. Soc. Rev. 2015;44:1561–1584. doi: 10.1039/C4CS00177J. PubMed DOI

Plohl O., Kraft M., Kovač J., Belec B., Ponikvar-Svet M., Würth C., Lisjak D., Resch-Genger U. Optically detected degradation of NaYF4:Yb,Tm-based upconversion nanoparticles in phosphate buffered saline solution. Langmuir. 2017;33:553–560. doi: 10.1021/acs.langmuir.6b03907. PubMed DOI

Saleh M.I., Rühle B., Wang S., Radnik J., You Y., Resch-Genger U. Assessing the protective effects of different surface coatings on NaYF4:Yb3+, Er3+ upconverting nanoparticles in buffer and DMEM. Sci. Rep. 2020;10:19318. doi: 10.1038/s41598-020-76116-z. PubMed DOI PMC

Dukhno O., Przybilla F., Muhr V., Buchner M., Hirsch T., Mély Y. Time-dependent luminescence loss for individual upconversion nanoparticles upon dilution in aqueous solution. Nanoscale. 2018;10:15904–15910. doi: 10.1039/C8NR03892A. PubMed DOI

Lahtinen S., Lyytikäinen A., Päkkilä H., Hömppi E., Perälä N., Lastusaari M., Soukka T. Disintegration of hexagonal NaYF4:Yb3+,Er3+ upconverting nanoparticles in aqueous media: The role of fluoride in solubility equilibrium. J. Phys. Chem. C. 2017;121:656–665. doi: 10.1021/acs.jpcc.6b09301. DOI

Babier O., Arreola-Mendoza L., Del Razo L.M. Molecular mechanisms of fluoride toxicity. Chem. Biol. Interact. 2010;188:319–333. doi: 10.1016/j.cbi.2010.07.011. PubMed DOI

Ding Y., Tian Y., Zeng Z., Wu L., Shuai P., Lan H., Zhu X., Zhong Y., Fan X. YCl3 promotes neuronal cell death by inducing apoptotic pathways in rats. BioMed Res. Int. 2017;2017:2183658. doi: 10.1155/2017/2183658. PubMed DOI PMC

Hanana H., Turcotte P., Dubé M., Gagnon C., Gagné F. Response of the freshwater mussel, Dreissena polymorpha to sub-lethal concentrations of samarium and yttrium after chronic exposure. Ecotoxicol. Environ. Saf. 2018;165:662–670. doi: 10.1016/j.ecoenv.2018.09.047. PubMed DOI

Oliveira H., Bednarkiewicz A., Falk A., Fröhlich E., Lisjak D., Prina-Mello A., Resch S., Schimpel C., Vinkovic Vrček I., Wysokinska E., et al. Critical considerations on the clinical translation of upconversion nanoparticles (UCNPs): Recommendations from the European Upconversion Network (COST Action CM1403) Adv. Healthc. Mater. 2019;8:1801233. doi: 10.1002/adhm.201801233. PubMed DOI

Arppe R., Hyppänen I., Perälä N., Peltomaa R., Kaiser M., Würth C., Christ S., Resch-Genger U., Schäferlingac M., Soukkaa T. Quenching of the upconversion luminescence of NaYF4:Yb3+,Er3+ and NaYF4:Yb3+,Tm3+ nanophosphors by water: The role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale. 2015;7:11746–11757. doi: 10.1039/C5NR02100F. PubMed DOI

Borm P., Klaessig F.C., Landry T.D., Moudgil B., Pauluhn J., Thomas K., Trottier R., Wood S. Research strategies for safety evaluation of nanomaterials, Part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci. 2006;90:23–32. doi: 10.1093/toxsci/kfj084. PubMed DOI

Lu C., Joulin E., Tang H., Pouri H., Zhang J. Upconversion nanostructures applied in theranostic systems. Int. J. Mol. Sci. 2022;23:9003. doi: 10.3390/ijms23169003. PubMed DOI PMC

Wang X., Yang Y., Liu C., Guo H., Chen Z., Xia J., Liao Y., Tang C.-Y., Law W.-C. Photo- and pH-responsive drug delivery nanocomposite based on o-nitrobenzyl functionalized upconversion nanoparticles. Polymer. 2021;229:123961. doi: 10.1016/j.polymer.2021.123961. DOI

Que Y., Feng C., Lu G., Huang X. Polymer-coated ultrastable and biofunctionalizable lanthanide nanoparticles. ACS Appl. Mater. Interfaces. 2017;9:14647–14655. doi: 10.1021/acsami.7b01452. PubMed DOI

Johnson N.J.J., Oakden W., Stanisz G.J., Scott Prosser R., van Veggel F.C.J.M. Size-tunable, ultrasmall NaGdF4 nanoparticles: Insights into their T1 MRI contrast enhancement. Chem. Mater. 2011;23:3714–3722. doi: 10.1021/cm201297x. DOI

Guller A.E., Nadort A., Generalova A.N., Khaydukov E.V., Nechaev A.V., Kornienko I.A., Petersen E.V., Liang L., Shekhter A.B., Qian Y., et al. Rational surface design of upconversion nanoparticles with polyethylenimine coating for biomedical applications: Better safe than brighter? ACS Biomater. Sci. Eng. 2018;4:3143–3153. doi: 10.1021/acsbiomaterials.8b00633. PubMed DOI

Jin J., Gu Y.-J., Man C.W.-Y., Cheng J., Xu Z., Zhang Y., Wang H., Lee V.H.-Y., Cheng S.H., Wong W.-T. Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge dependent cellular imaging. ACS Nano. 2011;5:7838–7847. doi: 10.1021/nn201896m. PubMed DOI

Guryev E.L., Shilyagina N.Y., Kostyuk A.B., Sencha L.M., Balalaeva I.V., Vodeneev V.A., Kutova O.M., Lyubeshkin A.V., Yakubovskaya R.I., Pankratov A.A., et al. Preclinical study of biofunctional polymer-coated upconversion nanoparticles. Toxicol. Sci. 2019;170:123–132. doi: 10.1093/toxsci/kfz086. PubMed DOI

Zhao J.W., Yang H., Li J.L., Wang Y.J., Wang X. Fabrication of pH-responsive PLGA(UCNPs/DOX) nanocapsules with upconversion luminescence for drug delivery. Sci. Rep. 2017;7:18014. doi: 10.1038/s41598-017-16948-4. PubMed DOI PMC

Cui S., Zhu H., Chen H., Tian J., Chen W.R., Gu Y. Surface modification of upconversion nanoparticles with amphiphilic chitosan for cancer cell imaging; Proceedings of the SPIE BiOs Biophotonics and Immune Responses VII; San Francisco, CA, USA. 14 February 2012; pp. 169–177. DOI

Duong H.T.T., Chen Y., Tawfik S.A., Wen S., Parviz M., Shimoni O., Jin D. Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles. RSC Adv. 2018;8:4842–4849. doi: 10.1039/C7RA13765F. PubMed DOI PMC

Challenor M., Gong P., Lorenser D., House M.J., Woodward R.C., Pierre T.S., Fitzgerald M., Dunlop S.A., Sampsonce D.D., Iyer K.S. The influence of NaYF4:Yb,Er size/phase on the multimodality of co-encapsulated magnetic photon-upconverting polymeric nanoparticles. Dalton Trans. 2014;43:16780–16787. doi: 10.1039/C4DT01597E. PubMed DOI

Kostiv U., Janoušková O., Šlouf M., Kotov N., Engstová H., Smolková K., Ježek P., Horák D. Silica-modified monodisperse hexagonal lanthanide nanocrystals: Synthesis and biological properties. Nanoscale. 2015;7:18096–18104. doi: 10.1039/C5NR05572E. PubMed DOI

Shukla N., Liu C., Jones P.M., Weller D. FTIR study of surfactant bonding to FePt nanoparticles. J. Magn. Magn. Mater. 2003;266:178–184. doi: 10.1016/S0304-8853(03)00469-4. DOI

Pooley S.A., Rivas B.L., Pizarro G.D.C. Hydrogels based on (dimethylamino)ethylacrylate (DMAEA) and N,N′-dimethylacrylamide (NNDMAAM): Synthesis, characterization, and swelling behavior. J. Chil. Chem. Soc. 2013;58:1597–1602. doi: 10.4067/S0717-97072013000100021. DOI

Babič M., Horák D., Jendelová P., Glogarová K., Herynek V., Trchová M., Likavčanová K., Lesný P., Pollert E., Hájek M., et al. Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling. Bioconjugate Chem. 2009;20:283–294. doi: 10.1021/bc800373x. PubMed DOI

Kostiv U., Kučka J., Lobaz V., Kotov N., Janoušková O., Šlouf M., Krajnik B., Podhorodecki A., Francová P., Šefc L., et al. Highly colloidally stable trimodal 125I-radiolabeled PEG-neridronate-coated upconversion/magnetic bioimaging nanoprobes. Sci. Rep. 2020;10:20016. doi: 10.1038/s41598-020-77112-z. PubMed DOI PMC

Rohatgi C.V., Dutta N.K., Choudhury N.R. Separator membrane from crosslinked poly(vinyl alcohol) and poly(methyl vinyl ether-alt-maleic anhydride) Nanomaterials. 2015;5:398–414. doi: 10.3390/nano5020398. PubMed DOI PMC

Boyer J.C., Naseaou M.P., Morray J.I., van Veggel F.C.J.M. Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir. 2010;26:1157–1164. doi: 10.1021/la902260j. PubMed DOI

Lisjak D., Plohl O., Vidmar J., Majaron B., Ponikvar-Svet M. Dissolution mechanism of upconverting AYF4:Yb,Tm (A = Na or K) nanoparticles in aqueous media. Langmuir. 2016;32:8222–8229. doi: 10.1021/acs.langmuir.6b02675. PubMed DOI

Andresen E., Würth C., Prinz C., Michaelis M., Resch-Genge R.U. Time-resolved luminescence spectroscopy for monitoring the stability and dissolution behavior of upconverting nanocrystals with different surface coatings. Nanoscale. 2020;12:12589–12601. doi: 10.1039/D0NR02931A. PubMed DOI

Plohl O., Kralj S., Majaron B., Fröhlich E., Ponikvar-Svet M., Makovec D., Lisjak D. Amphiphilic coatings for the protection of upconverting nanoparticles against dissolution in aqueous media. Dalton Trans. 2017;46:6975–6984. doi: 10.1039/C7DT00529F. PubMed DOI

ISO 10993-5:2009 Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization; Geneva, Switzerland: 2009. [(accessed on 30 June 2009)]. Available online: www.iso.org/standard/36406.html.

Kembuan C., Oliveira H., Graf C. Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells. Beilstein J. Nanotechnol. 2021;12:35–48. doi: 10.3762/bjnano.12.3. PubMed DOI PMC

Zhao L., Kutikov A., Shen J., Duan C., Song J., Han G. Stem cell labeling using polyethylenimine conjugated (α-NaYbF4:Tm3+)/CaF2 upconversion nanoparticles. Theranostics. 2013;3:249–257. doi: 10.7150/thno.5432. PubMed DOI PMC

Guller A.E., Generalova A.N., Petersen E.V., Nechaev A.V., Trusova I.A., Landyshev N.N., Nadort A.N., Grebenik E.A., Deyev S.M., Shekhter A.B., et al. Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells. Nano Res. 2015;8:1546–1562. doi: 10.1007/s12274-014-0641-6. DOI

Arbab A.S., Bashaw L.A., Miller B.R., Jordan E.K., Bulte J.W., Frank J.A. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: Methods and techniques. Transplantation. 2003;76:1123–1130. doi: 10.1097/01.TP.0000089237.39220.83. PubMed DOI

Sun R., Dittrich J., Le-Huu M., Mueller M.M., Bedke J., Kartenbeck J., Lehmann W.D., Krueger R., Bock M., Huss R., et al. Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells: A comparison. Investig. Radiol. 2005;40:504–513. doi: 10.1097/01.rli.0000162925.26703.3a. PubMed DOI

Hao G., Xu Z.P., Li L. Manipulating extracellular tumour pH: An effective target for cancer therapy. RSC Adv. 2018;8:22182–22192. doi: 10.1039/C8RA02095G. PubMed DOI PMC

Gómez-Vallejo V., Puigivila M., Plaza-García S., Szczupak B., Piñol R., Murillo J.L., Sorribas V., Lou G., Veintemillas S., Ramos-Cabrer P., et al. Angel PEG-copolymer-coated iron oxide nanoparticles that avoid the reticuloendothelial system and act as kidney MRI contrast agents. Nanoscale. 2018;10:14153–14164. doi: 10.1039/C8NR03084G. PubMed DOI

Wang C., Cheng L., Xu H., Liu Z. Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials. 2012;33:4872–4881. doi: 10.1016/j.biomaterials.2012.03.047. PubMed DOI

Reschel T., Koňák Č., Oupický D., Seymou L.W., Ulbrich K. Physical properties and in vitro transfection efficiency of gene delivery vectors based on complexes of DNA with synthetic polycations. J. Control. Release. 2002;81:201–217. doi: 10.1016/S0168-3659(02)00045-7. PubMed DOI

Oleksa V., Macková H., Patsula V., Dydowitzová A., Janoušková O., Horák D. Doxorubicin-conjugated iron oxide nanoparticles: Surface engineering and biomedical investigation. ChemPlusChem. 2020;85:1156–1163. doi: 10.1002/cplu.202000360. PubMed DOI

Kostiv U., Lobaz V., Kučka J., Švec P., Sedláček O., Hrubý M., Janoušková O., Francová P., Kolářová V., Šefc L., et al. A simple neridronate-based surface coating strategy for upconversion nanoparticles: Highly colloidally stable 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale. 2017;9:16680–16688. doi: 10.1039/C7NR05456D. PubMed DOI

Colombo C., Monhemius A.J., Plant J.A. Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotoxicol. Environ. Saf. 2008;71:722–730. doi: 10.1016/j.ecoenv.2007.11.011. PubMed DOI

Kostiv U., Kotelnikov I., Proks V., Šlouf M., Kučka J., Engstová H., Ježek P., Horák D. RGDS- and TAT-conjugated upconversion NaYF4:Yb3+/Er3+@SiO2 nanoparticles: In vitro human epithelioid cervix carcinoma cellular uptake, imaging and targeting. ACS Appl. Mater. Interfaces. 2016;8:20422–20431. doi: 10.1021/acsami.6b07291. PubMed DOI

Shapoval O., Brandmeier J.C., Nahorniak M., Oleksa V., Makhneva E., Gorris H.H., Farka Z., Horák D. PMVEMA-coated upconverting nanoparticles for upconversion-linked immunoassay of cardiac troponin. Talanta. 2022;244:123400. doi: 10.1016/j.talanta.2022.123400. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Intraperitoneal versus intravenous administration of Flamma®-conjugated PEG-alendronate-coated upconversion nanoparticles in a mouse pancreatic cancer model

. 2024 Dec 17 ; 7 (1) : 144-154. [epub] 20241025

Temoporfin-Conjugated PEGylated Poly(N,N-dimethylacrylamide)-Coated Upconversion Colloid for NIR-Induced Photodynamic Therapy of Pancreatic Cancer

. 2024 Sep 09 ; 25 (9) : 5771-5785. [epub] 20240618

Toxicity of Large and Small Surface-Engineered Upconverting Nanoparticles for In Vitro and In Vivo Bioapplications

. 2024 May 13 ; 25 (10) : . [epub] 20240513

Poly(glycerol monomethacrylate)-encapsulated upconverting nanoparticles prepared by miniemulsion polymerization: morphology, chemical stability, antifouling properties and toxicity evaluation

. 2023 Dec 05 ; 5 (24) : 6979-6989. [epub] 20231113

Temoporfin-Conjugated Upconversion Nanoparticles for NIR-Induced Photodynamic Therapy: Studies with Pancreatic Adenocarcinoma Cells In Vitro and In Vivo

. 2023 Nov 28 ; 15 (12) : . [epub] 20231128

Polymer-coated hexagonal upconverting nanoparticles: chemical stability and cytotoxicity

. 2023 ; 11 () : 1207984. [epub] 20230623

Cytotoxicity Evaluation of Photosensitizer-Conjugated Hexagonal Upconverting Nanoparticles

. 2023 May 03 ; 13 (9) : . [epub] 20230503

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace