Chemical and Colloidal Stability of Polymer-Coated NaYF4:Yb,Er Nanoparticles in Aqueous Media and Viability of Cells: The Effect of a Protective Coating
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-04420S
Czech Science Foundation
PubMed
36769046
PubMed Central
PMC9917078
DOI
10.3390/ijms24032724
PII: ijms24032724
Knihovny.cz E-zdroje
- Klíčová slova
- degradation, lanthanides, luminescence, nanoparticles, upconversion,
- MeSH
- alendronát MeSH
- krysa rodu Rattus MeSH
- nanočástice * chemie MeSH
- polyethylenglykoly chemie MeSH
- polymery * chemie MeSH
- voda MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alendronát MeSH
- polyethylenglykoly MeSH
- polymery * MeSH
- voda MeSH
Upconverting nanoparticles (UCNPs) are of particular interest in nanomedicine for in vivo deep-tissue optical cancer bioimaging due to their efficient cellular uptake dependent on polymer coating. In this study, particles, ca. 25 nm in diameter, were prepared by a high-temperature coprecipitation of lanthanide chlorides. To ensure optimal dispersion of UCNPs in aqueous milieu, they were coated with three different polymers containing reactive groups, i.e., poly(ethylene glycol)-alendronate (PEG-Ale), poly(N,N-dimethylacrylamide-co-2-aminoethylacrylamide)-alendronate (PDMA-Ale), and poly(methyl vinyl ether-co-maleic acid) (PMVEMA). All the particles were characterized by TEM, DLS, FTIR, and spectrofluorometer to determine the morphology, hydrodynamic size and ξ-potential, composition, and upconversion luminescence. The degradability/dissolution of UCNPs in water, PBS, DMEM, or artificial lysosomal fluid (ALF) was evaluated using an ion-selective electrochemical method and UV-Vis spectroscopy. The dissolution that was more pronounced in PBS at elevated temperatures was decelerated by polymer coatings. The dissolution in DMEM was relatively small, but much more pronounced in ALF. PMVEMA with multiple anchoring groups provided better protection against particle dissolution in PBS than PEG-Ale and PDMA-Ale polymers containing only one reactive group. However, the cytotoxicity of the particles depended not only on their ability to rapidly degrade, but also on the type of coating. According to MTT, neat UCNPs and UCNP@PMVEMA were toxic for both rat cells (C6) and rat mesenchymal stem cells (rMSCs), which was in contrast to the UCNP@Ale-PDMA particles that were biocompatible. On the other hand, both the cytotoxicity and uptake of the UCNP@Ale-PEG particles by C6 and rMSCs were low, according to MTT assay and ICP-MS, respectively. This was confirmed by a confocal microscopy, where the neat UCNPs were preferentially internalized by both cell types, followed by the UCNP@PMVEMA, UCNP@Ale-PDMA, and UCNP@Ale-PEG particles. This study provides guidance for the selection of a suitable nanoparticle coating with respect to future biomedical applications where specific behaviors (extracellular deposition vs. cell internalization) are expected.
Zobrazit více v PubMed
Chen G., Qiu H., Prasad P.N., Chen X. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014;114:5161–5214. doi: 10.1021/cr400425h. PubMed DOI PMC
Wen S., Zhou J., Zheng K., Bednarkiewicz A., Liu X., Jin D. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018;9:2415. doi: 10.1038/s41467-018-04813-5. PubMed DOI PMC
Qin X., Xu J., Wu Y., Liu X. Energy-transfer editing in lanthanide-activated upconversion nanocrystals: A toolbox for emerging applications. ACS Cent. Sci. 2019;23:29–42. doi: 10.1021/acscentsci.8b00827. PubMed DOI PMC
Zhang Z., Shikha S., Liu J., Zhang J., Mei Q., Zhang Y. Upconversion nanoprobes: Recent advances in sensing applications. Anal. Chem. 2019;91:548–568. doi: 10.1021/acs.analchem.8b04049. PubMed DOI
Chen B., Wang F. Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorg. Chem. Front. 2020;7:1067–1081. doi: 10.1039/C9QI01358J. DOI
Sawamura T., Tanaka T., Ishige H., Iizuka M., Murayama Y., Otsuji E., Ohkubo A., Ogura S.-I., Yuasa H. The effect of coatings on the affinity of lanthanide nanoparticles to MKN45 and HeLa cancer cells and improvement in photodynamic therapy efficiency. Int. J. Mol. Sci. 2015;16:22415–22424. doi: 10.3390/ijms160922415. PubMed DOI PMC
Duan C., Liang L., Li L., Zhang R., Xu Z.P. Recent progress in upconversion luminescence nanomaterials for biomedical applications. J. Mater. Chem. B. 2018;6:192–209. doi: 10.1039/C7TB02527K. PubMed DOI
Du H., Zhang W., Sun J. Structure and upconversion luminescence properties of BaYF5:Yb3+, Er3+ nanoparticles prepared by different methods. J. Alloys Compd. 2011;509:3413–3418. doi: 10.1016/j.jallcom.2010.12.101. DOI
Shan S.N., Wang X.Y., Jia N.Q. Synthesis of NaYF4:Yb3+, Er3+ upconversion nanoparticles in normal microemulsions. Nanoscale Res. Lett. 2011;6:539. doi: 10.1186/1556-276X-6-539. PubMed DOI PMC
DaCosta M.V., Doughan S., Han Y., Krull U.J. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review. Anal. Chim. Acta. 2014;832:1–33. doi: 10.1016/j.aca.2014.04.030. PubMed DOI
Zhu X., Zhang J., Liu J., Zhang Y. Recent progress of rare-earth doped upconversion nanoparticles: Synthesis, optimization and applications. Adv. Sci. 2019;6:1901358. doi: 10.1002/advs.201901358. PubMed DOI PMC
Gnach A., Lipinski T., Bednarkiewicz A., Rybka J., Capobianco J.A. Upconverting nanoparticles: Assessing the toxicity. Chem. Soc. Rev. 2015;44:1561–1584. doi: 10.1039/C4CS00177J. PubMed DOI
Plohl O., Kraft M., Kovač J., Belec B., Ponikvar-Svet M., Würth C., Lisjak D., Resch-Genger U. Optically detected degradation of NaYF4:Yb,Tm-based upconversion nanoparticles in phosphate buffered saline solution. Langmuir. 2017;33:553–560. doi: 10.1021/acs.langmuir.6b03907. PubMed DOI
Saleh M.I., Rühle B., Wang S., Radnik J., You Y., Resch-Genger U. Assessing the protective effects of different surface coatings on NaYF4:Yb3+, Er3+ upconverting nanoparticles in buffer and DMEM. Sci. Rep. 2020;10:19318. doi: 10.1038/s41598-020-76116-z. PubMed DOI PMC
Dukhno O., Przybilla F., Muhr V., Buchner M., Hirsch T., Mély Y. Time-dependent luminescence loss for individual upconversion nanoparticles upon dilution in aqueous solution. Nanoscale. 2018;10:15904–15910. doi: 10.1039/C8NR03892A. PubMed DOI
Lahtinen S., Lyytikäinen A., Päkkilä H., Hömppi E., Perälä N., Lastusaari M., Soukka T. Disintegration of hexagonal NaYF4:Yb3+,Er3+ upconverting nanoparticles in aqueous media: The role of fluoride in solubility equilibrium. J. Phys. Chem. C. 2017;121:656–665. doi: 10.1021/acs.jpcc.6b09301. DOI
Babier O., Arreola-Mendoza L., Del Razo L.M. Molecular mechanisms of fluoride toxicity. Chem. Biol. Interact. 2010;188:319–333. doi: 10.1016/j.cbi.2010.07.011. PubMed DOI
Ding Y., Tian Y., Zeng Z., Wu L., Shuai P., Lan H., Zhu X., Zhong Y., Fan X. YCl3 promotes neuronal cell death by inducing apoptotic pathways in rats. BioMed Res. Int. 2017;2017:2183658. doi: 10.1155/2017/2183658. PubMed DOI PMC
Hanana H., Turcotte P., Dubé M., Gagnon C., Gagné F. Response of the freshwater mussel, Dreissena polymorpha to sub-lethal concentrations of samarium and yttrium after chronic exposure. Ecotoxicol. Environ. Saf. 2018;165:662–670. doi: 10.1016/j.ecoenv.2018.09.047. PubMed DOI
Oliveira H., Bednarkiewicz A., Falk A., Fröhlich E., Lisjak D., Prina-Mello A., Resch S., Schimpel C., Vinkovic Vrček I., Wysokinska E., et al. Critical considerations on the clinical translation of upconversion nanoparticles (UCNPs): Recommendations from the European Upconversion Network (COST Action CM1403) Adv. Healthc. Mater. 2019;8:1801233. doi: 10.1002/adhm.201801233. PubMed DOI
Arppe R., Hyppänen I., Perälä N., Peltomaa R., Kaiser M., Würth C., Christ S., Resch-Genger U., Schäferlingac M., Soukkaa T. Quenching of the upconversion luminescence of NaYF4:Yb3+,Er3+ and NaYF4:Yb3+,Tm3+ nanophosphors by water: The role of the sensitizer Yb3+ in non-radiative relaxation. Nanoscale. 2015;7:11746–11757. doi: 10.1039/C5NR02100F. PubMed DOI
Borm P., Klaessig F.C., Landry T.D., Moudgil B., Pauluhn J., Thomas K., Trottier R., Wood S. Research strategies for safety evaluation of nanomaterials, Part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci. 2006;90:23–32. doi: 10.1093/toxsci/kfj084. PubMed DOI
Lu C., Joulin E., Tang H., Pouri H., Zhang J. Upconversion nanostructures applied in theranostic systems. Int. J. Mol. Sci. 2022;23:9003. doi: 10.3390/ijms23169003. PubMed DOI PMC
Wang X., Yang Y., Liu C., Guo H., Chen Z., Xia J., Liao Y., Tang C.-Y., Law W.-C. Photo- and pH-responsive drug delivery nanocomposite based on o-nitrobenzyl functionalized upconversion nanoparticles. Polymer. 2021;229:123961. doi: 10.1016/j.polymer.2021.123961. DOI
Que Y., Feng C., Lu G., Huang X. Polymer-coated ultrastable and biofunctionalizable lanthanide nanoparticles. ACS Appl. Mater. Interfaces. 2017;9:14647–14655. doi: 10.1021/acsami.7b01452. PubMed DOI
Johnson N.J.J., Oakden W., Stanisz G.J., Scott Prosser R., van Veggel F.C.J.M. Size-tunable, ultrasmall NaGdF4 nanoparticles: Insights into their T1 MRI contrast enhancement. Chem. Mater. 2011;23:3714–3722. doi: 10.1021/cm201297x. DOI
Guller A.E., Nadort A., Generalova A.N., Khaydukov E.V., Nechaev A.V., Kornienko I.A., Petersen E.V., Liang L., Shekhter A.B., Qian Y., et al. Rational surface design of upconversion nanoparticles with polyethylenimine coating for biomedical applications: Better safe than brighter? ACS Biomater. Sci. Eng. 2018;4:3143–3153. doi: 10.1021/acsbiomaterials.8b00633. PubMed DOI
Jin J., Gu Y.-J., Man C.W.-Y., Cheng J., Xu Z., Zhang Y., Wang H., Lee V.H.-Y., Cheng S.H., Wong W.-T. Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge dependent cellular imaging. ACS Nano. 2011;5:7838–7847. doi: 10.1021/nn201896m. PubMed DOI
Guryev E.L., Shilyagina N.Y., Kostyuk A.B., Sencha L.M., Balalaeva I.V., Vodeneev V.A., Kutova O.M., Lyubeshkin A.V., Yakubovskaya R.I., Pankratov A.A., et al. Preclinical study of biofunctional polymer-coated upconversion nanoparticles. Toxicol. Sci. 2019;170:123–132. doi: 10.1093/toxsci/kfz086. PubMed DOI
Zhao J.W., Yang H., Li J.L., Wang Y.J., Wang X. Fabrication of pH-responsive PLGA(UCNPs/DOX) nanocapsules with upconversion luminescence for drug delivery. Sci. Rep. 2017;7:18014. doi: 10.1038/s41598-017-16948-4. PubMed DOI PMC
Cui S., Zhu H., Chen H., Tian J., Chen W.R., Gu Y. Surface modification of upconversion nanoparticles with amphiphilic chitosan for cancer cell imaging; Proceedings of the SPIE BiOs Biophotonics and Immune Responses VII; San Francisco, CA, USA. 14 February 2012; pp. 169–177. DOI
Duong H.T.T., Chen Y., Tawfik S.A., Wen S., Parviz M., Shimoni O., Jin D. Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles. RSC Adv. 2018;8:4842–4849. doi: 10.1039/C7RA13765F. PubMed DOI PMC
Challenor M., Gong P., Lorenser D., House M.J., Woodward R.C., Pierre T.S., Fitzgerald M., Dunlop S.A., Sampsonce D.D., Iyer K.S. The influence of NaYF4:Yb,Er size/phase on the multimodality of co-encapsulated magnetic photon-upconverting polymeric nanoparticles. Dalton Trans. 2014;43:16780–16787. doi: 10.1039/C4DT01597E. PubMed DOI
Kostiv U., Janoušková O., Šlouf M., Kotov N., Engstová H., Smolková K., Ježek P., Horák D. Silica-modified monodisperse hexagonal lanthanide nanocrystals: Synthesis and biological properties. Nanoscale. 2015;7:18096–18104. doi: 10.1039/C5NR05572E. PubMed DOI
Shukla N., Liu C., Jones P.M., Weller D. FTIR study of surfactant bonding to FePt nanoparticles. J. Magn. Magn. Mater. 2003;266:178–184. doi: 10.1016/S0304-8853(03)00469-4. DOI
Pooley S.A., Rivas B.L., Pizarro G.D.C. Hydrogels based on (dimethylamino)ethylacrylate (DMAEA) and N,N′-dimethylacrylamide (NNDMAAM): Synthesis, characterization, and swelling behavior. J. Chil. Chem. Soc. 2013;58:1597–1602. doi: 10.4067/S0717-97072013000100021. DOI
Babič M., Horák D., Jendelová P., Glogarová K., Herynek V., Trchová M., Likavčanová K., Lesný P., Pollert E., Hájek M., et al. Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling. Bioconjugate Chem. 2009;20:283–294. doi: 10.1021/bc800373x. PubMed DOI
Kostiv U., Kučka J., Lobaz V., Kotov N., Janoušková O., Šlouf M., Krajnik B., Podhorodecki A., Francová P., Šefc L., et al. Highly colloidally stable trimodal 125I-radiolabeled PEG-neridronate-coated upconversion/magnetic bioimaging nanoprobes. Sci. Rep. 2020;10:20016. doi: 10.1038/s41598-020-77112-z. PubMed DOI PMC
Rohatgi C.V., Dutta N.K., Choudhury N.R. Separator membrane from crosslinked poly(vinyl alcohol) and poly(methyl vinyl ether-alt-maleic anhydride) Nanomaterials. 2015;5:398–414. doi: 10.3390/nano5020398. PubMed DOI PMC
Boyer J.C., Naseaou M.P., Morray J.I., van Veggel F.C.J.M. Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir. 2010;26:1157–1164. doi: 10.1021/la902260j. PubMed DOI
Lisjak D., Plohl O., Vidmar J., Majaron B., Ponikvar-Svet M. Dissolution mechanism of upconverting AYF4:Yb,Tm (A = Na or K) nanoparticles in aqueous media. Langmuir. 2016;32:8222–8229. doi: 10.1021/acs.langmuir.6b02675. PubMed DOI
Andresen E., Würth C., Prinz C., Michaelis M., Resch-Genge R.U. Time-resolved luminescence spectroscopy for monitoring the stability and dissolution behavior of upconverting nanocrystals with different surface coatings. Nanoscale. 2020;12:12589–12601. doi: 10.1039/D0NR02931A. PubMed DOI
Plohl O., Kralj S., Majaron B., Fröhlich E., Ponikvar-Svet M., Makovec D., Lisjak D. Amphiphilic coatings for the protection of upconverting nanoparticles against dissolution in aqueous media. Dalton Trans. 2017;46:6975–6984. doi: 10.1039/C7DT00529F. PubMed DOI
ISO 10993-5:2009 Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization; Geneva, Switzerland: 2009. [(accessed on 30 June 2009)]. Available online: www.iso.org/standard/36406.html.
Kembuan C., Oliveira H., Graf C. Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells. Beilstein J. Nanotechnol. 2021;12:35–48. doi: 10.3762/bjnano.12.3. PubMed DOI PMC
Zhao L., Kutikov A., Shen J., Duan C., Song J., Han G. Stem cell labeling using polyethylenimine conjugated (α-NaYbF4:Tm3+)/CaF2 upconversion nanoparticles. Theranostics. 2013;3:249–257. doi: 10.7150/thno.5432. PubMed DOI PMC
Guller A.E., Generalova A.N., Petersen E.V., Nechaev A.V., Trusova I.A., Landyshev N.N., Nadort A.N., Grebenik E.A., Deyev S.M., Shekhter A.B., et al. Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells. Nano Res. 2015;8:1546–1562. doi: 10.1007/s12274-014-0641-6. DOI
Arbab A.S., Bashaw L.A., Miller B.R., Jordan E.K., Bulte J.W., Frank J.A. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: Methods and techniques. Transplantation. 2003;76:1123–1130. doi: 10.1097/01.TP.0000089237.39220.83. PubMed DOI
Sun R., Dittrich J., Le-Huu M., Mueller M.M., Bedke J., Kartenbeck J., Lehmann W.D., Krueger R., Bock M., Huss R., et al. Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells: A comparison. Investig. Radiol. 2005;40:504–513. doi: 10.1097/01.rli.0000162925.26703.3a. PubMed DOI
Hao G., Xu Z.P., Li L. Manipulating extracellular tumour pH: An effective target for cancer therapy. RSC Adv. 2018;8:22182–22192. doi: 10.1039/C8RA02095G. PubMed DOI PMC
Gómez-Vallejo V., Puigivila M., Plaza-García S., Szczupak B., Piñol R., Murillo J.L., Sorribas V., Lou G., Veintemillas S., Ramos-Cabrer P., et al. Angel PEG-copolymer-coated iron oxide nanoparticles that avoid the reticuloendothelial system and act as kidney MRI contrast agents. Nanoscale. 2018;10:14153–14164. doi: 10.1039/C8NR03084G. PubMed DOI
Wang C., Cheng L., Xu H., Liu Z. Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials. 2012;33:4872–4881. doi: 10.1016/j.biomaterials.2012.03.047. PubMed DOI
Reschel T., Koňák Č., Oupický D., Seymou L.W., Ulbrich K. Physical properties and in vitro transfection efficiency of gene delivery vectors based on complexes of DNA with synthetic polycations. J. Control. Release. 2002;81:201–217. doi: 10.1016/S0168-3659(02)00045-7. PubMed DOI
Oleksa V., Macková H., Patsula V., Dydowitzová A., Janoušková O., Horák D. Doxorubicin-conjugated iron oxide nanoparticles: Surface engineering and biomedical investigation. ChemPlusChem. 2020;85:1156–1163. doi: 10.1002/cplu.202000360. PubMed DOI
Kostiv U., Lobaz V., Kučka J., Švec P., Sedláček O., Hrubý M., Janoušková O., Francová P., Kolářová V., Šefc L., et al. A simple neridronate-based surface coating strategy for upconversion nanoparticles: Highly colloidally stable 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale. 2017;9:16680–16688. doi: 10.1039/C7NR05456D. PubMed DOI
Colombo C., Monhemius A.J., Plant J.A. Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotoxicol. Environ. Saf. 2008;71:722–730. doi: 10.1016/j.ecoenv.2007.11.011. PubMed DOI
Kostiv U., Kotelnikov I., Proks V., Šlouf M., Kučka J., Engstová H., Ježek P., Horák D. RGDS- and TAT-conjugated upconversion NaYF4:Yb3+/Er3+@SiO2 nanoparticles: In vitro human epithelioid cervix carcinoma cellular uptake, imaging and targeting. ACS Appl. Mater. Interfaces. 2016;8:20422–20431. doi: 10.1021/acsami.6b07291. PubMed DOI
Shapoval O., Brandmeier J.C., Nahorniak M., Oleksa V., Makhneva E., Gorris H.H., Farka Z., Horák D. PMVEMA-coated upconverting nanoparticles for upconversion-linked immunoassay of cardiac troponin. Talanta. 2022;244:123400. doi: 10.1016/j.talanta.2022.123400. PubMed DOI
Polymer-coated hexagonal upconverting nanoparticles: chemical stability and cytotoxicity
Cytotoxicity Evaluation of Photosensitizer-Conjugated Hexagonal Upconverting Nanoparticles