Highly colloidally stable trimodal 125I-radiolabeled PEG-neridronate-coated upconversion/magnetic bioimaging nanoprobes

. 2020 Nov 18 ; 10 (1) : 20016. [epub] 20201118

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33208804
Odkazy

PubMed 33208804
PubMed Central PMC7675969
DOI 10.1038/s41598-020-77112-z
PII: 10.1038/s41598-020-77112-z
Knihovny.cz E-zdroje

"All-in-one" multifunctional nanomaterials, which can be visualized simultaneously by several imaging techniques, are required for the efficient diagnosis and treatment of many serious diseases. This report addresses the design and synthesis of upconversion magnetic NaGdF4:Yb3+/Er3+(Tm3+) nanoparticles by an oleic acid-stabilized high-temperature coprecipitation of lanthanide precursors in octadec-1-ene. The nanoparticles, which emit visible or UV light under near-infrared (NIR) irradiation, were modified by in-house synthesized PEG-neridronate to facilitate their dispersibility and colloidal stability in water and bioanalytically relevant phosphate buffered saline (PBS). The cytotoxicity of the nanoparticles was determined using HeLa cells and human fibroblasts (HF). Subsequently, the particles were modified by Bolton-Hunter-neridronate and radiolabeled by 125I to monitor their biodistribution in mice using single-photon emission computed tomography (SPECT). The upconversion and the paramagnetic properties of the NaGdF4:Yb3+/Er3+(Tm3+)@PEG nanoparticles were evaluated by photoluminescence, magnetic resonance (MR) relaxometry, and magnetic resonance imaging (MRI) with 1 T and 4.7 T preclinical scanners. MRI data were obtained on phantoms with different particle concentrations and during pilot long-time in vivo observations of a mouse model. The biological and physicochemical properties of the NaGdF4:Yb3+/Er3+(Tm3+)@PEG nanoparticles make them promising as a trimodal optical/MRI/SPECT bioimaging and theranostic nanoprobe for experimental medicine.

Zobrazit více v PubMed

Huang H, Lovell JF. Advanced functional nanomaterials for theranostics. Adv. Funct. Mater. 2017;27:1603524. doi: 10.1002/adfm.201603524. PubMed DOI PMC

Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem. Rev. 2015;115:10907–10937. doi: 10.1021/cr500314d. PubMed DOI PMC

Sridhar S, Mishra S, Gulyás M, Padmanabhan P, Gulyás B. An overview of multimodal neuroimaging using nanoprobes. Int. J. Mol. Sci. 2017;18:311. doi: 10.3390/ijms18020311. PubMed DOI PMC

Cunha L, et al. Preclinical imaging: an essential ally in modern biosciences. Mol. Diagn. Ther. 2014;18:153–173. doi: 10.1007/s40291-013-0062-3. PubMed DOI

Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat. Rev. Drug Discov. 2008;7:591–607. doi: 10.1038/nrd2290. PubMed DOI

Arms L, et al. Advantages and limitations of current techniques for analyzing the biodistribution of nanoparticles. Front. Pharmacol. 2018;9:802. doi: 10.3389/fphar.2018.00802. PubMed DOI PMC

Kotecha M, Magin RL, Mao JJ. Magnetic Resonance Imaging in Tissue Engineering. Hoboken: Wiley; 2017.

Coll JL. Cancer optical imaging using fluorescent nanoparticles. Nanomedicine (London) 2011;6:7–10. doi: 10.2217/nnm.10.144. PubMed DOI PMC

Kim J, et al. Use of nanoparticle contrast agents for cell tracking with computed tomography. Bioconjug. Chem. 2017;28:1581–1597. doi: 10.1021/acs.bioconjchem.7b00194. PubMed DOI PMC

Yan H, et al. “All-in-one” nanoparticles for trimodality imaging-guided intracellular photo-magnetic hyperthermia therapy under intravenous administration. Adv. Funct. Mater. 2018;28:1705710. doi: 10.1002/adfm.201705710. DOI

Oliveira H, et al. Critical considerations on the clinical translation of upconversion nanoparticles (UCNPs): recommendations from the European upconversion network (COST Action CM1403) Adv. Healthc. Mater. 2019;8:1801233. PubMed

Resch-Genger U, Gorris HH. Perspectives and challenges of photon-upconversion nanoparticles—part I: routes to brighter particles and quantitative spectroscopic studies. Anal. Bioanal. Chem. 2017;409:5855–5874. doi: 10.1007/s00216-017-0499-z. PubMed DOI

Haase M, Schäfer H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 2011;50:5808–5829. doi: 10.1002/anie.201005159. PubMed DOI

Tessitore G, Mandl GA, Brik MG, Parke W, Capobianco JA. Recent insights into upconverting nanoparticles: spectroscopy, modeling, and routes to improved luminescence. Nanoscale. 2019;11:12015–12029. doi: 10.1039/C9NR02291K. PubMed DOI

Xu J, et al. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: mechanism, design and application for bioimaging. Coordin. Chem. Rev. 2019;381:104–134. doi: 10.1016/j.ccr.2018.11.014. DOI

Wolfbeis OS. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015;44:4743–4768. doi: 10.1039/C4CS00392F. PubMed DOI

Zhang Z, et al. Upconversion nanoprobes: recent advances in sensing applications. Anal. Chem. 2018;91:548–568. doi: 10.1021/acs.analchem.8b04049. PubMed DOI

Zhou B, Shi B, Jin D, Liu X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015;10:924–936. doi: 10.1038/nnano.2015.251. PubMed DOI

Qin X, Xu J, Wu Y, Liu X. Energy-transfer editing in lanthanide-activated upconversion nanocrystals: a toolbox for emerging applications. ACS Cent. Sci. 2019;5:29–42. doi: 10.1021/acscentsci.8b00827. PubMed DOI PMC

Gu B, Zhang Q. Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems. Adv. Sci. 2018;5:1700609. doi: 10.1002/advs.201700609. PubMed DOI PMC

del Rosal B, Jaque D. Upconversion nanoparticles for in vivo applications: limitations and future perspectives. Methods Appl. Fluoresc. 2019;7:022001. doi: 10.1088/2050-6120/ab029f. PubMed DOI

Gorris HH, Resch-Genger U. Perspectives and challenges of photon-upconversion nanoparticles—part II: bioanalytical applications. Anal. Bioanal. Chem. 2017;409:5875–5890. doi: 10.1007/s00216-017-0482-8. PubMed DOI

Kim D, Kim J, Park YI, Lee N, Hyeon T. Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent. Sci. 2018;4:324–336. doi: 10.1021/acscentsci.7b00574. PubMed DOI PMC

Tian G, et al. Engineered design of theranostic upconversion nanoparticles for tri-modal upconversion luminescence/magnetic resonance/X-ray computed tomography imaging and targeted delivery of combined anticancer drugs. J. Mater. Chem. B. 2014;2:1379–1389. doi: 10.1039/c3tb21394c. PubMed DOI

Johnson NJJ, Oakden W, Stanisz GJ, Prosser RS, van Veggel FCJM. Size-tunable, ultrasmall NaGdF4 nanoparticles: insights into their T1 MRI contrast enhancement. Chem. Mater. 2011;23:3714–3722. doi: 10.1021/cm201297x. DOI

Fischer S, et al. Small alkaline-earth-based core/shell nanoparticles for efficient upconversion. Nano Lett. 2019;19:3878–3885. doi: 10.1021/acs.nanolett.9b01057. PubMed DOI PMC

Podhorodecki A, et al. Percolation limited emission intensity from upconverting NaYF4:Yb3+, Er3+ nanocrystals—a single nanocrystal optical study. Nanoscale. 2018;45:21186–21196. doi: 10.1039/C8NR05961F. PubMed DOI

Gai S, Li C, Yang P, Lin J. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 2014;114:2343–2389. doi: 10.1021/cr4001594. PubMed DOI

Naccache R, Yu Q, Capobianco JA. The fluoride host: nucleation, growth, and upconversion of lanthanide-doped nanoparticles. Adv. Opt. Mater. 2015;3:482–509. doi: 10.1002/adom.201400628. DOI

Mandl GA, Cooper DR, Hirsch T, Seuntjens J, Capobianco JA. Perspective: lanthanide-doped upconverting nanoparticles. Methods Appl. Fluoresc. 2019;7:012004. doi: 10.1088/2050-6120/aafa3d. PubMed DOI

Wilhelm S, et al. Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability. Nanoscale. 2015;7:1403–1410. doi: 10.1039/C4NR05954A. PubMed DOI

Duan C, Liang L, Li L, Zhang R, Xu ZP. Recent progress in upconversion luminescence nanomaterials for biomedical applications. J. Mater. Chem. B. 2018;6:192–209. doi: 10.1039/C7TB02527K. PubMed DOI

Duong HTT, et al. Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles. RSC Adv. 2018;8:4842–1849. doi: 10.1039/C7RA13765F. PubMed DOI PMC

Zhao G, Tong L, Cao P, Nitz M, Winnik MA. Functional PEG-PAMAM-tetraphosphonate capped NaLnF4 nanoparticles and their colloidal stability in phosphate buffer. Langmuir. 2014;30:6980–6989. doi: 10.1021/la501142v. PubMed DOI PMC

Kostiv U, et al. A simple neridronate-based surface coating strategy for upconversion nanoparticles: highly colloidally stable 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale. 2017;9:16680–16688. doi: 10.1039/C7NR05456D. PubMed DOI

Evans CH. Biochemistry of the Lanthanides. Berlin: Springer; 1990.

Kieczykowski GR, et al. Preparation of (4-amino-1-hydroxybutylidene)bisphosphonic acid sodium salt, MK-217 (alendronate sodium). An improved procedure for the preparation of 1-hydroxy-1,1-bisphosphonic acids. J. Org. Chem. 1995;60:8310–8312. doi: 10.1021/jo00130a036. DOI

Li C, Greenwood TR, Bhujwalla ZM, Glunde K. Synthesis and characterization of glucosamine-bound near-infrared probes for optical imaging. Org. Lett. 2006;8:3623–3626. doi: 10.1021/ol060783e. PubMed DOI

Kostiv U, et al. Biodistribution of upconversion/magnetic silica-coated NaGdF4:Yb3+/Er3+ nanoparticles in mouse models. RSC Adv. 2017;7:45997–46006. doi: 10.1039/C7RA08712H. DOI

Černoch P, et al. Thermoresponsive polymer system based on poly(N-vinylcaprolactam) intended for local radiotherapy applications. Appl. Radiat. Isot. 2015;98:7–12. doi: 10.1016/j.apradiso.2015.01.005. PubMed DOI

Lábár JL. Consistent indexing of a (set of) SAED pattern(s) with the process diffraction program. Ultramicroscopy. 2005;103:237–249. doi: 10.1016/j.ultramic.2004.12.004. PubMed DOI

Kraus W, Nolze G. POWDER CELL - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Cryst. 1996;29:301–303. doi: 10.1107/S0021889895014920. DOI

Glasser L. Crystallographic information resources. J. Chem. Educ. 2016;93:542–549. doi: 10.1021/acs.jchemed.5b00253. DOI

Macková H, et al. Magnetic hollow poly(N-isopropylacrylamide-co-N, N′-methylenebisacrylamide-co-glycidyl acrylate) particles prepared by inverse emulsion polymerization. Colloid Polym. Sci. 2013;291:205–213. doi: 10.1007/s00396-012-2609-y. DOI

Kostiv U, et al. Silica-coated upconversion lanthanide nanoparticles: the effect of crystal design on morphology, structure and optical properties. Beilstein J. Nanotechnol. 2015;6:2290–2299. doi: 10.3762/bjnano.6.235. PubMed DOI PMC

Strnad H, et al. Head and neck squamous cancer stromal fibroblasts produce growth factors influencing phenotype of normal human keratinocytes. Histochem. Cell Biol. 2010;133:201–211. doi: 10.1007/s00418-009-0661-6. PubMed DOI

Kolář M, et al. Upregulation of IL-6, IL-8 and CXCL-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: immunohistochemical and transcriptomic analyses. Biol. Cell. 2012;104:738–751. doi: 10.1111/boc.201200018. PubMed DOI

Jarkovska K, et al. Revelation of fibroblast protein commonalities and differences and their possible roles in wound healing and tumourigenesis using co-culture models of cells. Biol. Cell. 2014;106:203–218. doi: 10.1111/boc.201400014. PubMed DOI

Lee DH, Condrate RA. FTIR spectral characterization of thin film coatings of oleic acid on glasses: I. Coatings on glasses from ethyl alcohol. J. Mater. Sci. 1999;34:139–146. doi: 10.1023/A:1004494331895. DOI

Klokkenburg M, Hilhorst J, Erné BH. Surface analysis of magnetite nanoparticles in cyclohexane solutions of oleic acid and oleylamine. Vib. Spectrosc. 2007;43:243–248. doi: 10.1016/j.vibspec.2006.09.008. DOI

Marcos JI, Orlandi E, Zerbi G. Poly(ethylene oxide)-poly(methyl methacrylate) interactions in polymer blends: an infra-red study. Polymer (Guildf.) 1990;31:1899–1903. doi: 10.1016/0032-3861(90)90014-P. DOI

Matsuura H, Miyazawa T. Vibrational analysis of molten poly(ethylene glycol) J. Polym. Sci. A-2. 1969;7:1735–1744. doi: 10.1002/pol.1969.160071009. DOI

Podhorodecki A, et al. On the nature of carrier relaxation and ion–ion interactions in ultrasmall β-NaYF4:Eu3+ nanocrystals—effect of the surface. Nanoscale. 2013;5:429–436. doi: 10.1039/C2NR32212A. PubMed DOI

Noculak A, Podhorodecki A, Pawlik G, Banski M, Misiewicz J. Ion–ion interactions in β-NaGdF4:Yb3+, Er3+ nanocrystals—the effect of ion concentration and their clustering. Nanoscale. 2015;7:13784–13792. doi: 10.1039/C5NR03385C. PubMed DOI

Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Investig. Radiol. 2005;40:715–724. doi: 10.1097/01.rli.0000184756.66360.d3. PubMed DOI

Yu S, Wang Z, Cao R, Meng L. Microwave-assisted synthesis of water-disperse and biocompatible NaGdF4:Yb, Ln@NaGdF4 nanocrystals for UCL/CT/MR multimodal imaging. J. Fluorine Chem. 2017;200:77–83. doi: 10.1016/j.jfluchem.2017.06.002. DOI

Lu W, et al. Polydopamine-coated NaGdF4: Dy for T1/T2-weighted MRI/CT multimodal imaging-guided photothermal therapy. New J. Chem. 2019;43:7371–7378. doi: 10.1039/C9NJ00561G. DOI

Fang H, et al. Ultra-sensitive nanoprobe modified with tumor cell membrane for UCL/MRI/PET multimodality precise imaging of triple-negative breast cancer. Nano-Micro Lett. 2020;12:62. doi: 10.1007/s40820-020-0396-4. PubMed DOI PMC

Alonso-de Castro S, et al. Functionalizing NaGdF4:Yb, Er upconverting nanoparticles with bone-targeting phosphonate ligands: imaging and in vivo biodistribution. Inorganics. 2019;7:60. doi: 10.3390/inorganics7050060. DOI

Izzetoglu M, et al. Functional brain imaging using near-infrared technology. IEEE Eng. Med. Biol. Mag. 2007;26:38–46. doi: 10.1109/MEMB.2007.384094. PubMed DOI

Höcherl A, et al. One-pot synthesis of reactive oxygen species (ROS)-self-immolative polyoxalate prodrug nanoparticles for hormone dependent cancer therapy with minimized side effects. Polym. Chem. 2017;8:1999–2004. doi: 10.1039/C7PY00270J. DOI

Jäger E, et al. Fluorescent boronate-based polymer nanoparticles with reactive oxygen species (ROS)-triggered cargo release for drug-delivery applications. Nanoscale. 2016;8:6958–6963. doi: 10.1039/C6NR00791K. PubMed DOI

Ma D, et al. NaGdF4:Yb3+/Er3+@NaGdF4:Nd3+@sodium-gluconate: multifunctional and biocompatible ultrasmall core–shell nanohybrids for UCL/MR/CT multimodal imaging. ACS Appl. Mater. Interfaces. 2015;7:16257–16265. doi: 10.1021/acsami.5b05194. PubMed DOI

Generalova AN, Chichkov BN, Khaydukov EV. Multicomponent nanocrystals with anti-Stokes luminescence as contrast agents for modern imaging techniques. Adv. Colloid Interface Sci. 2017;245:1–19. doi: 10.1016/j.cis.2017.05.006. PubMed DOI

Sun Y, Zhu X, Peng J, Li F. Core–shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging. ACS Nano. 2013;7:11290–11300. doi: 10.1021/nn405082y. PubMed DOI

Wang T, et al. NIR-to-NIR UCL/T1-weighted MR/CT multimodal imaging by NaYbF4:Tm@NaGdF4:Yb-PVP upconversion nanoparticles. Sci. Bull. 2017;62:903–912. doi: 10.1016/j.scib.2017.05.028. PubMed DOI

Generalova AN, et al. PEG-modified upconversion nanoparticles for in vivo optical imaging of tumors. RSC Adv. 2016;6:30089–30097. doi: 10.1039/C5RA25304G. DOI

Liu Q, et al. 18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano. 2011;5:3146–3157. doi: 10.1021/nn200298y. PubMed DOI

Shukla AK, Kumardoi U. Positron emission tomography: an overview. J. Med. Phys. 2006;31:13–21. doi: 10.4103/0971-6203.25665. PubMed DOI PMC

van der Have F, et al. An ultra-high-resolution device for molecular small-animal imaging. J. Nucl. Med. 2009;50:599–605. doi: 10.2967/jnumed.108.056606. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace