PEG-Neridronate-Modified NaYF4:Gd3+,Yb3+,Tm3+/NaGdF4 Core-Shell Upconverting Nanoparticles for Bimodal Magnetic Resonance/Optical Luminescence Imaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34124464
PubMed Central
PMC8190901
DOI
10.1021/acsomega.1c01313
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Upconverting nanoparticles are attracting extensive interest as a multimodal imaging tool. In this work, we report on the synthesis and characterization of gadolinium-enriched upconverting nanoparticles for bimodal magnetic resonance and optical luminescence imaging. NaYF4:Gd3+,Yb3+,Tm3+ core upconverting nanoparticles were obtained by a thermal coprecipitation of lanthanide oleate precursors in the presence of oleic acid as a stabilizer. With the aim of improving the upconversion emission and increasing the amount of Gd3+ ions on the nanoparticle surface, a 2.5 nm NaGdF4 shell was grown by the epitaxial layer-by-layer strategy, resulting in the 26 nm core-shell nanoparticles. Both core and core-shell nanoparticles were coated with poly(ethylene glycol) (PEG)-neridronate (PEG-Ner) to have stable and well-dispersed upconverting nanoparticles in a biological medium. FTIR spectroscopy and thermogravimetric analysis indicated the presence of ∼20 wt % of PEG-Ner on the nanoparticle surface. The addition of inert NaGdF4 shell resulted in a total 26-fold enhancement of the emission under 980 nm excitation and also affected the T 1 and T 2 relaxation times. Both r 1 and r 2 relaxivities of PEG-Ner-modified nanoparticles were much higher compared to those of non-PEGylated particles, thus manifesting their potential as a diagnostic tool for magnetic resonance imaging. Together with the enhanced luminescence efficiency, upconverting nanoparticles might represent an efficient probe for bimodal in vitro and in vivo imaging of cells in regenerative medicine, drug delivery, and/or photodynamic therapy.
Zobrazit více v PubMed
Smith A. M.; Mancini M. C.; Nie S. Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711. 10.1038/nnano.2009.326. PubMed DOI PMC
Li H.; Wang X.; Huang D.; Chen G. Recent advances of lanthanide-doped upconversion nanoparticles for biological applications. Nanotechnology 2020, 31, 07200110.1088/1361-6528/ab4f36. PubMed DOI
Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174. 10.1021/cr020357g. PubMed DOI
Mandl G. A.; Cooper D. R.; Hirsch T.; Seuntjens J.; Capobianco J. A. Perspective: Lanthanide-doped upconverting nanoparticles. Methods Appl. Fluoresc. 2019, 7, 01200410.1088/2050-6120/aafa3d. PubMed DOI
Zhou J.; Liu Q.; Feng W.; Sun Y.; Li F. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–465. 10.1021/cr400478f. PubMed DOI
Kostiv U.; Engstová H.; Krajnik B.; Slouf M.; Proks V.; Podhorodecki A.; Ježek P.; Horák D. Monodisperse core-shell NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-GGGRGDSGGGY-NH2 nanoparticles excitable at 808 nm: Design, surface engineering and application in life sciences. Front. Chem. 2020, 8, 497.10.3389/fchem.2020.00497. PubMed DOI PMC
Xu J.; Gulzar A.; Yang P.; Bi H.; Yang D.; Gai S.; He F.; Lin J.; Xing B.; Jin D. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging. Coord. Chem. Rev. 2019, 381, 104–134. 10.1016/j.ccr.2018.11.014. DOI
Farka Z.; Mickert M. J.; Pastucha M.; Mikušová Z.; Skládal P.; Gorris H. H. Advances in optical single-molecule detection: En the route to supersensitive bioaffinity assays. Angew. Chem. Int. Ed. 2020, 59, 10746–10773. 10.1002/anie.201913924. PubMed DOI PMC
Kostiv U.; Farka Z.; Mickert M. J.; Gorris H. H.; Velychkivska N.; Pop-Georgievski O.; Pastucha M.; Odstrčilíková E.; Skládal P.; Horák D. Versatile bioconjugation strategies of PEG-modified upconversion nanoparticles for bioanalytical applications. Biomacromolecules 2020, 21, 4502–4513. 10.1021/acs.biomac.0c00459. PubMed DOI
Tian Q.; Yao W.; Wu W.; Jianga C. NIR light-activated upconversion semiconductor photocatalysts. Nanoscale Horiz. 2019, 4, 10–25. 10.1039/C8NH00154E. PubMed DOI
Liu Y.; Teitelboim A.; Fernandez-Bravo A.; Yao K.; Altoe M. V. P.; Aloni S.; Zhang C.; Cohen B. E.; Schuck P. J.; Chan E. M. Controlled assembly of upconverting nanoparticles for low-threshold microlasers and their imaging in scattering media. ACS Nano 2020, 14, 1508–1519. 10.1021/acsnano.9b06102. PubMed DOI
Liu Q.; Liu H.; Li D.; Qiao W.; Chen G.; Ågren H. Microlens array enhanced upconversion luminescence at low excitation irradiance. Nanoscale 2019, 11, 14070–14078. 10.1039/C9NR03105G. PubMed DOI
Qin X.; Xu J.; Wu Y.; Liu X. Energy-transfer editing in lanthanide-activated upconversion nanocrystals: A toolbox for emerging applications. ACS Cent. Sci. 2019, 5, 29–42. 10.1021/acscentsci.8b00827. PubMed DOI PMC
Liu Y.; Meng X.; Bu W. Upconversion-based photodynamic cancer therapy. Coord. Chem. Rev. 2019, 379, 82–98. 10.1016/j.ccr.2017.09.006. DOI
Kostiv U.; Patsula V.; Noculak A.; Podhorodecki A.; Větvička D.; Poučková P.; Sedláková Z.; Horák D. Phthalocyanine-conjugated upconversion NaYF4:Yb3+/Er3+@SiO2 nanospheres for NIR-triggered photodynamic therapy in a tumor mice model. ChemMedChem 2017, 12, 2066–2073. 10.1002/cmdc.201700508. PubMed DOI
He L. C.; Ni Q. Q.; Mu J.; Fan W. P.; Liu L.; Wang Z. T.; Li L.; Tang W.; Liu Y. J.; Cheng Y. Y.; Tang L. G.; Yang Z.; Liu Y.; Zou J. H.; Yang W. J.; Jacobson O.; Zhang F.; Huang P. T.; Chen X. Y. Solvent-assisted self-assembly of a metal-organic framework based biocatalyst for cascade reaction driven photodynamic therapy. J. Am. Chem. Soc. 2020, 142, 6822–6832. 10.1021/jacs.0c02497. PubMed DOI
Meijer M. S.; Saez Talens V.; Hilbers M. F.; Kieltyka R. E.; Brouwer A. M.; Natile M. M.; Bonnet S. NIR-light-driven generation of reactive oxygen species using Ru(II)-decorated lipid-encapsulated upconverting nanoparticles. Langmuir 2019, 35, 12079–12090. 10.1021/acs.langmuir.9b01318. PubMed DOI PMC
Perfahl S.; Natile M. M.; Mohamad H. S.; Helm C. A.; Schulzke C.; Natile G.; Bednarski P. J. Photoactivation of diiodido-Pt(IV) complexes coupled to upconverting nanoparticles. Mol. Pharm. 2016, 13, 2346–2362. 10.1021/acs.molpharmaceut.6b00108. PubMed DOI
Meijer M. S.; Natile M. M.; Bonnet S. 796 nm activation of a photocleavable ruthenium(II) complex conjugated to an upconverting nanoparticle through two phosphonate groups. Inorg. Chem. 2020, 59, 14807–14818. 10.1021/acs.inorgchem.0c00043. PubMed DOI PMC
Wen H.-Q.; Peng H.-Y.; Liu K.; Bian M.-H.; Xu Y.-J.; Dong L.; Yan X.; Xu W.-P.; Tao W.; Shen J.-L.; Lu Y.; Qian H.-S. Sequential growth of NaYF4:Yb/Er@NaGdF4 nanodumbbells for dual-modality fluorescence and magnetic resonance imaging. ACS Appl. Mater. Interfaces 2017, 9, 9226–9232. 10.1021/acsami.6b16842. PubMed DOI
Li X.; Zhao D.; Zhang F. Multifunctional upconversion-magnetic hybrid nanostructured materials: Synthesis and bioapplications. Theranostics 2013, 3, 292–305. 10.7150/thno.5289. PubMed DOI PMC
Chen G.; Qiu H.; Prasad P. N.; Chen X. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161–5214. 10.1021/cr400425h. PubMed DOI PMC
Singh R.; Dumlupinar G.; Andersson-Engels S.; Melgar S. Emerging applications of upconverting nanoparticles in intestinal infection and colorectal cancer. Int. J. Nanomed. 2019, 14, 1027–1038. 10.2147/IJN.S188887. PubMed DOI PMC
Zhou J.; Sun Y.; Du X.; Xiong L.; Hu H.; Li F. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials 2010, 31, 3287–3295. 10.1016/j.biomaterials.2010.01.040. PubMed DOI
Caravan P.; Ellison J. J.; McMurry T. J.; Lauffer R. B. Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev. 1999, 99, 2293–2352. 10.1021/cr980440x. PubMed DOI
Penet M. F.; Mikhaylova M.; Li C.; Krishnamachary B.; Glunde K.; Pathak A. P.; Bhujwalla Z. M. Applications of molecular MRI and optical imaging in cancer. Future Med. Chem. 2010, 2, 975–988. 10.4155/fmc.10.25. PubMed DOI PMC
Gálisová A.; Herynek V.; Swider E.; Sticová E.; Pátiková A.; Kosinová L.; Kříž J.; Hájek M.; Srinivas M.; Jirák D. A trimodal imaging platform for tracking viable transplanted pancreatic islets in vivo: F-19 MR, fluorescence, and bioluminescence imaging. Mol. Imaging Biol. 2019, 21, 454–464. 10.1007/s11307-018-1270-3. PubMed DOI PMC
Zhang X.; Guo Z.; Zhang X.; Gong L.; Dong X.; Fu Y.; Wang Q.; Gu Z. Mass production of poly(ethylene glycol) monooleate-modified core-shell structured upconversion nanoparticles for bio-imaging and photodynamic therapy. Sci. Rep. 2019, 9, 521210.1038/s41598-019-41482-w. PubMed DOI PMC
Jiang S.; Win K. Y.; Liu S.; Teng C. P.; Zheng Y.; Han M.-Y. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale 2013, 5, 3127–3148. 10.1039/c3nr34005h. PubMed DOI
Ang L. Y.; Lim M. E.; Ong L. C.; Zhang Y. Applications of upconversion nanoparticles in imaging, detection and therapy. Nanomedicine 2011, 6, 1273–1288. 10.2217/nnm.11.108. PubMed DOI
Sedlmeier A.; Gorris H. H. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem. Soc. Rev. 2015, 44, 1526–1560. 10.1039/C4CS00186A. PubMed DOI
Wang F.; Banerjee D.; Liu Y.; Chen X.; Liu X. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 2010, 135, 1839–1854. 10.1039/c0an00144a. PubMed DOI
Meiser F.; Cortez C.; Caruso F. Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate, colloidal nanoparticles. Angew. Chem. Int. Ed. 2004, 43, 5954–5957. 10.1002/anie.200460856. PubMed DOI
Duong H. T. T.; Chen Y.; Tawfik S. A.; Wen S.; Parviz M.; Shimoni O.; Jin D. Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles. RSC Adv. 2018, 8, 4842–4849. 10.1039/C7RA13765F. PubMed DOI PMC
Kostiv U.; Janoušková O.; Šlouf M.; Kotov N.; Engstová H.; Smolková K.; Ježek P.; Horák D. Silica-modified monodisperse hexagonal lanthanide nanocrystals: Synthesis and biological properties. Nanoscale 2015, 7, 18096–18104. 10.1039/C5NR05572E. PubMed DOI
Guller A. E.; Nadort A.; Generalova A. N.; Khaydukov E. V.; Nechaev A. V.; Kornienko I. A.; Petersen E. V.; Liang L.; Shekhter A. B.; Qian Y.; Goldys E. M.; Zvyagin A. V. Rational surface design of upconversion nanoparticles with polyethylenimine coating for biomedical applications: Better safe than brighter?. ACS Biomater. Sci. Eng. 2018, 4, 3143–3153. 10.1021/acsbiomaterials.8b00633. PubMed DOI
Chen Y.; Duong H. T. T.; Wen S.; Mi C.; Zhou Y.; Shimoni O.; Valenzuela S. M.; Jin D. Exonuclease III-assisted upconversion resonance energy transfer in a wash-free suspension DNA assay. Anal. Chem. 2018, 90, 663–668. 10.1021/acs.analchem.7b04240. PubMed DOI
Traina C. A.; Schwartz J. Surface modification of Y2O3 nanoparticles. Langmuir 2007, 23, 9158–9161. 10.1021/la701653v. PubMed DOI
Malhotra K.; Fuku R.; Chan T. S.; Kraljevic N.; Sedighi A.; Piunno P. A. E.; Krull U. J. Bisphosphonate polymeric ligands on inorganic nanoparticles. Chem. Mater. 2020, 32, 4002–4012. 10.1021/acs.chemmater.0c00547. DOI
Kostiv U.; Lobaz V.; Kučka J.; Švec P.; Sedláček O.; Hrubý M.; Janoušková O.; Francová P.; Kolářová V.; Šefc L.; Horák D. Simple neridronate-based surface coating strategy for upconversion nanoparticles: Highly colloidally stable 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale 2017, 9, 16680–16688. 10.1039/C7NR05456D. PubMed DOI
Jokerst J. V.; Lobovkina T.; Zare R. N.; Gambhir S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6, 715–728. 10.2217/nnm.11.19. PubMed DOI PMC
Pelaz B.; Del Pino P.; Maffre P.; Hartmann R.; Gallego M.; Rivera-Fernandez S.; De La Fuente J. M.; Nienhaus G. U.; Parak W. J. Surface functionalization of nanoparticles with polyethylene glycol: Effects on protein adsorption and cellular uptake. ACS Nano 2015, 9, 6996–7008. 10.1021/acsnano.5b01326. PubMed DOI
Li R.; Ji Z.; Dong J.; Chang C. H.; Wang X.; Sun B.; Wang M.; Liao Y.-P.; Zink J. I.; Nel A. E.; Xia T. Enhancing the imaging and biosafety of upconversion nanoparticles through phosphonate coating. ACS Nano 2015, 9, 3293–3306. 10.1021/acsnano.5b00439. PubMed DOI PMC
Wang R.; Li X.; Zhou L.; Zhang F. Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging. Angew. Chem. 2014, 126, 12282–12286. 10.1002/ange.201407420. PubMed DOI
Vetrone F.; Naccache R.; Mahalingam V.; Morgan C. G.; Capobianco J. A. The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater. 2009, 19, 2924–2929. 10.1002/adfm.200900234. DOI
Würth C.; Fischer S.; Grauel B.; Alivisatos A. P.; Resch-Genger U. Quantum yields, surface quenching and passivation efficiency for ultra-small core/shell upconverting nanoparticles. J. Am. Chem. Soc. 2018, 140, 4922–4928. 10.1021/jacs.8b01458. PubMed DOI
Chen G.; Ohulchanskyy T. Y.; Law W. C.; Agrenb H.; Prasad P. N. Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties. Nanoscale 2011, 3, 2003–2008. 10.1039/c0nr01018a. PubMed DOI
Lee D. H.; Condrate R. A. FTIR spectral characterization of thin film coatings of oleic acid on glasses: I. Coatings on glasses from ethyl alcohol. J. Mater. Sci. 1999, 34, 139–146. 10.1023/A:1004494331895. DOI
Klokkenburg M.; Hilhorst J.; Erné B. H. Surface analysis of magnetite nanoparticles in cyclohexane solutions of oleic acid and oleylamine. Vib. Spectrosc. 2007, 43, 243–248. 10.1016/j.vibspec.2006.09.008. DOI
Marcos J. I.; Orlandi E.; Zerbi G. Poly(ethylene oxide)-poly(methyl methacrylate) interactions in polymer blends: An infra-red study. Polymer 1990, 31, 1899–1903. 10.1016/0032-3861(90)90014-P. DOI
Matsuura H.; Miyazawa T. Vibrational analysis of molten poly(ethylene glycol). J. Polym. Sci. A-2 Polym. Phys. 1969, 7, 1735–1744. 10.1002/pol.1969.160071009. DOI
Kostiv U.; Kučka J.; Lobaz V.; Kotov N.; Janoušková O.; Šlouf M.; Krajnik B.; Podhorodecki A.; Francová P.; Šefc L.; Jirák D.; Horák D. Highly colloidally stable trimodal 125I-radiolabeled PEG-neridronate-coated upconversion/magnetic bioimaging nanoprobes. Sci. Rep. 2020, 10, 2001610.1038/s41598-020-77112-z. PubMed DOI PMC
Wang F.; Wang J.; Liu X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. Int. Ed. 2010, 49, 7456–7460. 10.1002/anie.201003959. PubMed DOI
Ajithkumar G.; Yoo B.; Goral D. E.; Hornsby P. J.; Lin A. L.; Ladiwala U.; Dravid V. P.; Sardar D. K. Multimodal bioimaging using rare earth doped Gd2O2S:Yb/Er phosphor with upconversion luminescence and magnetic resonance properties. J. Mater. Chem. A 2013, 1, 1561–1572. 10.1039/C3TB00551H. PubMed DOI PMC
Han Y.; An Y.; Jia G.; Wang X.; He C.; Ding Y.; Tang Q. Facile assembly of upconversion nanoparticle-based micelles for active targeted dual-mode imaging in pancreatic cancer. J. Nanobiotechnol. 2018, 16, 710.1186/s12951-018-0335-4. PubMed DOI PMC
Chen H.; Qi B.; Moore T.; Colvin D. C.; Crawford T.; Gore J. C.; Alexis F.; Mefford O. T.; Anker J. N. Synthesis of brightly PEGylated luminescent magnetic upconversion nanophosphors for deep tissue and dual MRI imaging. Small 2014, 10, 160–168. 10.1002/smll.201300828. PubMed DOI PMC
Du Z.; Gupta A.; Clarke C.; Cappadona M.; Clases D.; Liu D.; Yang Z.; Karan S.; Price W. S.; Xu X. Porous upconversion nanostructures as bimodal biomedical imaging contrast agents. J. Phys. Chem. C 2020, 124, 12168–12174. 10.1021/acs.jpcc.0c03945. DOI
Jirak D.; Kriz J.; Herynek V.; Andersson B.; Girman P.; Burian M.; Saudek F.; Hajek M. MRI of transplanted pancreatic islets. Magn. Reson. Med. 2004, 52, 1228–1233. 10.1002/mrm.20282. PubMed DOI
Jirak D.; Kriz J.; Strzelecki M.; Yang J.; Hasilo C.; White D. J.; Foster P. J. Monitoring the survival of islet transplants by MRI using a novel technique for their automated detection and quantification. Magn. Reson. Mater. Phys. 2009, 22, 257–265. 10.1007/s10334-009-0172-4. PubMed DOI
Aasen S. N.; Pospisilova A.; Eichler T. W.; Panek J.; Hruby M.; Stepanek P.; Spriet E.; Jirak D.; Skaftnesmo K. O.; Thorsen F. A novel nanoprobe for multimodal imaging is effectively incorporated into human melanoma metastatic cell lines. Int. J. Mol. Sci. 2015, 16, 21658–21680. 10.3390/ijms160921658. PubMed DOI PMC
Kieczykowski G. R.; Jobson R. B.; Melillo D. G.; Reinhold D. F.; Grenda V. J.; Shinkai I. Preparation of (4-amino-1-hydroxybutylidene)bisphosphonic acid sodium salt, mk-217 (alendronate sodium). An improved procedure for the preparation of 1-hydroxy-1,1-bisphosphonic acids. J. Org. Chem. 1995, 60, 8310–8312. 10.1021/jo00130a036. DOI
Kostiv U.; Rajsiglová L.; Luptáková D.; Pluháček T.; Vannucci L.; Havlíček V.; Engstová H.; Jirák D.; Šlouf M.; Makovický P.; Sedláček R.; Horák D. Biodistribution of upconversion/magnetic silica-coated NaGdF4:Yb3+/Er3+ nanoparticles in mouse models. RSC Adv. 2017, 7, 45997–46006. 10.1039/C7RA08712H. DOI
Kostiv U.; Šlouf M.; Macková H.; Zhigunov A.; Engstová H.; Smolková K.; Ježek P.; Horák D. Silica-coated upconversion lanthanide nanoparticles: The effect of crystal design on morphology, structure and optical properties. Beilstein J. Nanotechnol. 2015, 6, 2290–2299. 10.3762/bjnano.6.235. PubMed DOI PMC