Advances in Optical Single-Molecule Detection: En Route to Supersensitive Bioaffinity Assays
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31869502
PubMed Central
PMC7318240
DOI
10.1002/anie.201913924
Knihovny.cz E-zdroje
- Klíčová slova
- digital assays, immunoassays, optical detection, signal background, single-molecule detection,
- MeSH
- biologické markery analýza MeSH
- ELISA MeSH
- fluorescenční barviva chemie MeSH
- limita detekce MeSH
- nanostruktury chemie MeSH
- nukleové kyseliny analýza MeSH
- polymerázová řetězová reakce metody MeSH
- poměr signál - šum MeSH
- proteiny analýza MeSH
- vazebná místa MeSH
- viry izolace a purifikace MeSH
- zobrazení jednotlivé molekuly metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
- fluorescenční barviva MeSH
- nukleové kyseliny MeSH
- proteiny MeSH
The ability to detect low concentrations of analytes and in particular low-abundance biomarkers is of fundamental importance, e.g., for early-stage disease diagnosis. The prospect of reaching the ultimate limit of detection has driven the development of single-molecule bioaffinity assays. While many review articles have highlighted the potentials of single-molecule technologies for analytical and diagnostic applications, these technologies are not as widespread in real-world applications as one should expect. This Review provides a theoretical background on single-molecule-or better digital-assays to critically assess their potential compared to traditional analog assays. Selected examples from the literature include bioaffinity assays for the detection of biomolecules such as proteins, nucleic acids, and viruses. The structure of the Review highlights the versatility of optical single-molecule labeling techniques, including enzymatic amplification, molecular labels, and innovative nanomaterials.
CEITEC Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Department of Biochemistry Faculty of Science Masaryk University 625 00 Brno Czech Republic
Zobrazit více v PubMed
Weiss S., Science 1999, 283, 1676–1683; PubMed
Moerner W. E., Fromm D. P., Rev. Sci. Instrum. 2003, 74, 3597–3619;
Joo C., Balci H., Ishitsuka Y., Buranachai C., Ha T., Annu. Rev. Biochem. 2008, 77, 51–76. PubMed
Cohen L., Walt D. R., Chem. Rev. 2019, 119, 293–321; PubMed
Holzmeister P., Acuna G. P., Grohmann D., Tinnefeld P., Chem. Soc. Rev. 2014, 43, 1014–1028; PubMed
Chang L., Rissin D. M., Fournier D. R., Piech T., Patel P. P., Wilson D. H., Duffy D. C., J. Immunol. Methods 2012, 378, 102–115; PubMed PMC
Gooding J. J., Gaus K., Angew. Chem. Int. Ed. 2016, 55, 11354–11366; PubMed
Angew. Chem. 2016, 128, 11526–11539;
Wu Y. F., Tilley R. D., Gooding J. J., J. Am. Chem. Soc. 2019, 141, 1162–1170. PubMed
Yu R. J., Ying Y. L., Hu Y. X., Gao R., Long Y. T., Anal. Chem. 2017, 89, 8203–8206; PubMed
Arima A., Harlisa I. H., Yoshida T., Tsutsui M., Tanaka M., Yokota K., Tonomura W., Yasuda J., Taniguchi M., Washio T., Okochi M., Kawai T., J. Am. Chem. Soc. 2018, 140, 16834–16841. PubMed
Wienken U., Gaub H. E., Biophys. J. 2013, 105, 2687–2694; PubMed PMC
Mandal S., Koirala D., Selvam S., Ghimire C., Mao H. B., Angew. Chem. Int. Ed. 2015, 54, 7607–7611; PubMed
Angew. Chem. 2015, 127, 7717–7721.
Subramanian S., Wu H. Y., Constant T., Xavier J., Vollmer F., Adv. Mater. 2018, 30, 1801246. PubMed
Surugiu I., Danielsson B., Ye L., Mosbach K., Haupt K., Anal. Chem. 2001, 73, 487–491. PubMed
Foote J., Eisen H. N., Proc. Natl. Acad. Sci. USA 1995, 92, 1254–1256. PubMed PMC
Green N. M., Methods Enzymol. 1990, 184, 51–67. PubMed
Yalow R. S., Berson S. A., Nature 1959, 184, 1648–1649. PubMed
Peltomaa R., Benito-Pena E., Moreno-Bondi M. C., Anal. Bioanal. Chem. 2018, 410, 747–771. PubMed
Kunze A., Pei L., Elsasser D., Niessner R., Seidel M., J. Virol. Methods 2015, 222, 132–137. PubMed
Anderson N. L., Anderson N. G., Mol. Cell. Proteomics 2002, 1, 845–867. PubMed
Hanash S. M., Pitteri S. J., Faca V. M., Nature 2008, 452, 571–579; PubMed
Henry N. L., Hayes D. F., Mol. Oncol. 2012, 6, 140–146; PubMed PMC
Aernecke M. J., Guo J., Sonkusale S., Walt D. R., Anal. Chem. 2009, 81, 5281–5290; PubMed
Walt D. R., J. Clin. Invest. 2019, 129, 3472–3473. PubMed PMC
Rusling J. F., Kumar C. V., Gutkind J. S., Patel V., Analyst 2010, 135, 2496–2511. PubMed PMC
St John A., Price C. P., Clin. Biochem. Rev. 2014, 35, 155–167. PubMed PMC
Litman D. J., Hanlon T. M., Ullman E. F., Anal. Biochem. 1980, 106, 223–229. PubMed
Hood L., Annu. Rev. Anal. Chem. 2008, 1, 1–43. PubMed
Siitari H., Hemmila I., Soini E., Lovgren T., Koistinen V., Nature 1983, 301, 258–260. PubMed
Rui M., Hampe C. S., Wang C., Ling Z. D., Gorus F. K., Lernmark A., Pipeleers D. G., De Pauw P. E. M., J. Immunol. Methods 2007, 319, 133–143. PubMed
Farka Z., Juřík T., Kovář D., Trnková L., Skládal P., Chem. Rev. 2017, 117, 9973–10042; PubMed
Pastucha M., Farka Z., Lacina K., Mikušová Z., Skládal P., Microchim. Acta 2019, 186, 26. PubMed
Gorris H. H., Wolfbeis O. S., Angew. Chem. Int. Ed. 2013, 52, 3584–3600; PubMed
Angew. Chem. 2013, 125, 3668–3686.
Farka Z., Mickert M. J., Hlaváček A., Skládal P., Gorris H. H., Anal. Chem. 2017, 89, 11825–11830; PubMed
Mickert M. J., Farka Z., Kostiv U., Hlaváček A., Horák D., Skládal P., Gorris H. H., Anal. Chem. 2019, 91, 9435–9441. PubMed
Hofmann C., Duerkop A., Baeumner A. J., Angew. Chem. Int. Ed. 2019, 58, 12840–12860; PubMed
Angew. Chem. 2019, 131, 12970–12992.
Shalev A., Greenberg A. H., Mcalpine P. J., J. Immunol. Methods 1980, 38, 125–139; PubMed
Harris C. C., Yolken R. H., Krokan H., Hsu I. C., Proc. Natl. Acad. Sci. USA 1979, 76, 5336–5339. PubMed PMC
Böhmer M., Enderlein J., ChemPhysChem 2003, 4, 793–808. PubMed
Haas P., Then P., Wild A., Grange W., Zorman S., Hegner M., Calame M., Aebi U., Flammer J., Hecht B., Anal. Chem. 2010, 82, 6299–6302. PubMed
Woolley C. F., Hayes M. A., Mahanti P., Gilman S. D., Taylor T., Anal. Bioanal. Chem. 2015, 407, 8605–8615. PubMed PMC
Rotman B., Proc. Natl. Acad. Sci. USA 1961, 47, 1981–1991. PubMed PMC
Akama K., Shirai K., Suzuki S., Anal. Chem. 2016, 88, 7123–7129. PubMed
Gorris H. H., Walt D. R., Angew. Chem. Int. Ed. 2010, 49, 3880–3895; PubMed
Angew. Chem. 2010, 122, 3970–3986.
Liebherr R., Hutterer A., Mickert M., Vogl F., Beutner A., Lechner A., Hummel H., Gorris H., Anal. Bioanal. Chem. 2015, 407, 7443–7452; PubMed
Rissin D. M., Gorris H. H., Walt D. R., J. Am. Chem. Soc. 2008, 130, 5349–5353. PubMed
Craig D. B., Arriaga E. A., Wong J. C. Y., Lu H., Dovichi N. J., J. Am. Chem. Soc. 1996, 118, 5245–5253.
Comellas-Aragonès M., Engelkamp H., Claessen V. I., Sommerdijk N. A. J. M., Rowan A. E., Christianen P. C. M., Maan J. C., Verduin B. J. M., Cornelissen J. J. L. M., Nolte R. J. M., Nat. Nanotechnol. 2007, 2, 635–639. PubMed
Piwonski H. M., Goomanovsky M., Bensimon D., Horovitz A., Haran G., Proc. Natl. Acad. Sci. USA 2012, 109, E1437–E1443. PubMed PMC
Gorris H., Blicharz T., Walt D., FEBS J. 2007, 274, 5462–5470. PubMed
Xue Q., Yeung E. S., Nature 1995, 373, 681–683. PubMed
Rondelez Y., Tresset G., Tabata K. V., Arata H., Fujita H., Takeuchi S., Noji H., Nat. Biotechnol. 2005, 23, 361–365. PubMed
Rissin D. M., Kan C. W., Campbell T. G., Howes S. C., Fournier D. R., Song L., Piech T., Patel P. P., Chang L., Rivnak A. J., Ferrell E. P., Randall J. D., Provuncher G. K., Walt D. R., Duffy D. C., Nat. Biotechnol. 2010, 28, 595–599. PubMed PMC
Wilson D. H., Hanlon D. W., Provuncher G. K., Chang L., Song L. N., Patel P. P., Ferrell E. P., Lepor H., Partin A. W., Chan D. W., Sokoll L. J., Cheli C. D., Thiel R. P., Fournier D. R., Duffy D. C., Clin. Chem. 2011, 57, 1712–1721. PubMed PMC
Warren A. D., Gaylord S. T., Ngan K. C., Milutinovic M. D., Kwong G. A., Bhatia S. N., Walt D. R., J. Am. Chem. Soc. 2014, 136, 13709–13714. PubMed PMC
Chang L., Song L. N., Fournier D. R., Kan C. W., Patel P. P., Ferrell E. P., Pink B. A., Minnehan K. A., Hanlon D. W., Duffy D. C., Wilson D. H., J. Virol. Methods 2013, 188, 153–160. PubMed
Shahim P., Gren M., Liman V., Andreasson U., Norgren N., Tegner Y., Mattsson N., Andreasen N., Ost M., Zetterberg H., Nellgard B., Blennow K., Sci. Rep. 2016, 6, 36791. PubMed PMC
Olivera A., Lejbman N., Jeromin A., French L. M., Kim H. S., Cashion A., Mysliwiec V., Diaz-Arrastia R., Gill J., JAMA Neurol. 2015, 72, 1109–1116. PubMed
Gaylord S. T., Dinh T. L., Goldman E. R., Anderson G. P., Ngan K. C., Walt D. R., Anal. Chem. 2015, 87, 6570–6577. PubMed
Kim S. H., Iwai S., Araki S., Sakakihara S., Iino R., Noji H., Lab Chip 2012, 12, 4986–4991. PubMed
Obayashi Y., Iino R., Noji H., Analyst 2015, 140, 5065–5073. PubMed
Wang X., Cohen L., Wang J., Walt D. R., J. Am. Chem. Soc. 2018, 140, 18132–18139. PubMed
Guo M. T., Rotem A., Heyman J. A., Weitz D. A., Lab Chip 2012, 12, 2146–2155. PubMed
Song H., Ismagilov R. F., J. Am. Chem. Soc. 2003, 125, 14613–14619. PubMed PMC
Agresti J. J., Antipov E., Abate A. R., Ahn K., Rowat A. C., Baret J. C., Marquez M., Klibanov A. M., Griffiths A. D., Weitz D. A., Proc. Natl. Acad. Sci. USA 2010, 107, 4004–4009. PubMed PMC
Shim J. U., Ranasinghe R. T., Smith C. A., Ibrahim S. M., Hollfelder F., Huck W. T. S., Klenerman D., Abell C., ACS Nano 2013, 7, 5955–5964. PubMed
Liu C. C., Xu X. N., Li B., Situ B., Pan W. L., Hu Y., An T. X., Yao S. H., Zheng L., Nano Lett. 2018, 18, 4226–4232. PubMed
Tian S. B., Zhang Z., Chen J. Y., Du M. Y., Li Z., Yang H., Ji X. H., He Z. K., Talanta 2018, 186, 24–28. PubMed
Kim D., Garner O. B., Ozcan A., Di Carlo D., ACS Nano 2016, 10, 7467–7475. PubMed
Schenk D., Song G., Ke Y., Wang Z. H., PLOS One 2017, 12, e0181062. PubMed PMC
Beer N. R., Hindson B. J., Wheeler E. K., Hall S. B., Rose K. A., Kennedy I. M., Colston B. W., Anal. Chem. 2007, 79, 8471–8475. PubMed
Shen F., Sun B., Kreutz J. E., Davydova E. K., Du W. B., Reddy P. L., Joseph L. J., Ismagilov R. F., J. Am. Chem. Soc. 2011, 133, 17705–17712. PubMed PMC
Zhou W. H., Anal. Methods 2018, 10, 3690–3695.
Ke R. Q., Nong R. Y., Fredriksson S., Landegren U., Nilsson M., Plos One 2013, 8, 5. PubMed PMC
Oswald B., Gruber M., Bohmer M., Lehman F., Probst M., Wolfbeis O. S., Photochem. Photobiol. 2001, 74, 237–245. PubMed
Löscher F., Böhme S., Martin J., Seeger S., Anal. Chem. 1998, 70, 3202–3205. PubMed
Jain A., Liu R. J., Ramani B., Arauz E., Ishitsuka Y., Ragunathan K., Park J., Chen J., Xiang Y. K., Ha T., Nature 2011, 473, 484–488. PubMed PMC
Tinnefeld P., Nature 2011, 473, 461–462. PubMed
Burgin E., Salehi-Reyhani A., Barclay M., Brown A., Kaplinsky J., Novakova M., Neil M. A. A., Ces O., Willison K. R., Klug D. R., Analyst 2014, 139, 3235–3244. PubMed
Zhang H. D., Liu Y. J., Zhang K., Ji J., Liu J. W., Liu B. H., Anal. Chem. 2018, 90, 9315–9321. PubMed
Weng R., Lou S. T., Li L. D., Zhang Y., Qiu J., Su X., Qian Y. Z., Walter N. G., Anal. Chem. 2019, 91, 1424–1431. PubMed
Ma Y. F., Shortreed M. R., Li H. L., Huang W. H., Yeung E. S., Electrophoresis 2001, 22, 421–426. PubMed
Wu A. H. B., Fukushima N., Puskas R., Todd J., Goix P., Clin. Chem. 2006, 52, 2157–2159. PubMed
Todd J., Freese B., Lu A., Held D., Morey J., Livingston R., Goix P., Clin. Chem. 2007, 53, 1990–1995. PubMed
Esparza T. J., Zhao H. Z., Cirrito J. R., Cairns N. J., Bateman R. J., Holtzman D. M., Brody D. L., Ann. Neurol. 2013, 73, 104–119. PubMed PMC
Wild E. J., Boggio R., Langbehn D., Robertson N., Haider S., Miller J. R. C., Zetterberg H., Leavitt B. R., Kuhn R., Tabrizi S. J., Macdonald D., Weiss A., J. Clin. Invest. 2015, 125, 1979–1986. PubMed PMC
Nalefski E. A., D′Antoni C. M., Ferrell E. P., Lloyd J. A., Qiu H. Q., Harris J. L., Whitney D. H., Clin. Chem. 2006, 52, 2172–2175. PubMed
Yim S. W., Kim T., Laurence T. A., Partono S., Kim D. S., Kim Y., Weiss S. M., Reitmair A. M., Clin. Chem. 2012, 58, 707–716. PubMed PMC
Foldes-Papp Z., Demel U., Tilz G. P., Proc. Natl. Acad. Sci. USA 2001, 98, 11509–11514. PubMed PMC
Tetin S. Y., Swift K. M., Matayoshi E. D., Anal. Biochem. 2002, 307, 84–91. PubMed
Chatterjee M., Noding B., Willemse E. A. J., Koel-Simmelink M. J. A., van der Fliere W. M., Schild D., Teunissen C. E., Clin. Biochem. 2017, 50, 1061–1066. PubMed
Hess S. T., Huang S. H., Heikal A. A., Webb W. W., Biochemistry 2002, 41, 697–705. PubMed
Bian Y. N., Huang X. Y., Ren J. C., Anal. Methods 2016, 8, 1333–1338.
Li H. T., Zhou D. J., Browne H., Balasubramanian S., Klenerman D., Anal. Chem. 2004, 76, 4446–4451. PubMed
Miller A. E., Hollars C. W., Lane S. M., Laurence T. A., Anal. Chem. 2009, 81, 5614–5622. PubMed
Kapanidis A. N., Lee N. K., Laurence T. A., Doose S., Margeat E., Weiss S., Proc. Natl. Acad. Sci. USA 2004, 101, 8936–8941; PubMed PMC
Thews E., Gerken M., Eckert R., Zapfel J., Tietz C., Wrachtrup J., Biophys. J. 2005, 89, 2069–2076. PubMed PMC
Seydack M., Biosens. Bioelectron. 2005, 20, 2454–2469. PubMed
Petryayeva E., Algar W. R., Medintz I. L., Appl. Spectrosc. 2013, 67, 215–252. PubMed
Resch-Genger U., Grabolle M., Cavaliere-Jaricot S., Nitschke R., Nann T., Nat. Methods 2008, 5, 763–775. PubMed
Liu X. J., Huang C. H., Zong C. H., Liang A. Y., Wu Z. J., Zhang Y. S., Zhang Q. Q., Zhao W. F., Gai H. W., ACS Sens. 2018, 3, 2644–2650. PubMed
Liu X. J., Huang C. H., Dong X. L., Liang A. Y., Zhang Y. S., Zhang Q. Q., Wang Q., Gai H. W., Chem. Commun. 2018, 54, 13103–13106. PubMed
Agrawal A., Zhang C. Y., Byassee T., Tripp R. A., Nie S. M., Anal. Chem. 2006, 78, 1061–1070. PubMed
Zhang C. Y., Johnson L. W., Anal. Chem. 2009, 81, 3051–3055. PubMed PMC
Jung S. R., Han R., Sun W., Jiang Y. F., Fujimoto B. S., Yu J. B., Kuo C. T., Rong Y., Zhou X. H., Chiu D. T., Anal. Chem. 2018, 90, 6089–6095. PubMed PMC
Meseth U., Wohland T., Rigler R., Vogel H., Biophys. J. 1999, 76, 1619–1631. PubMed PMC
Yin J. J., Zhang A. D., Dong C. Q., Ren J. C., Talanta 2015, 144, 13–19. PubMed
Hwang L. C., Wohland T., ChemPhysChem 2004, 5, 549–551. PubMed
Fujii F., Kinjo M., ChemBioChem 2007, 8, 2199–2203. PubMed
Kogure T., Karasawa S., Araki T., Saito K., Kinjo M., Miyawaki A., Nat. Biotechnol. 2006, 24, 577–581. PubMed
Wang J. J., Liu H., Huang X. Y., Ren J. C., Microchim. Acta 2016, 183, 749–755.
Haase M., Schäfer H., Angew. Chem. Int. Ed. 2011, 50, 5808–5829; PubMed
Angew. Chem. 2011, 123, 5928–5950;
Resch-Genger U., Gorris H. H., Anal. Bioanal. Chem. 2017, 409, 5855–5874; PubMed
Gorris H. H., Resch-Genger U., Anal. Bioanal. Chem. 2017, 409, 5875–5890. PubMed
Fan Y., Wang S. F., Zhang F., Angew. Chem. Int. Ed. 2019, 58, 13208–13219; PubMed
Angew. Chem. 2019, 131, 13342–13353.
Kale V., Pakkila H., Vainio J., Ahomaa A., Sirkka N., Lyytikainen A., Talha S. M., Kutsaya A., Waris M., Julkunen I., Soukka T., Anal. Chem. 2016, 88, 4470–4477. PubMed
Zhou L., Fan Y., Wang R., Li X. M., Fan L. L., Zhang F., Angew. Chem. Int. Ed. 2018, 57, 12824–12829; PubMed
Angew. Chem. 2018, 130, 13006–13011.
Lu Y. Q., Zhao J. B., Zhang R., Liu Y. J., Liu D. M., Goldys E. M., Yang X. S., Xi P., Sunna A., Lu J., Shi Y., Leif R. C., Huo Y. J., Shen J., Piper J. A., Robinson J. P., Jin D. Y., Nat. Photonics 2014, 8, 33–37.
Li X., Wei L., Pan L. L., Yi Z. Y., Wang X., Ye Z. J., Xiao L. H., Li H. W., Wang J. F., Anal. Chem. 2018, 90, 4807–4814. PubMed
Lahtinen S., Krause S., Arppe R., Soukka T., Vosch T., Chem. Eur. J. 2018, 24, 9229–9233. PubMed PMC
Becker W., in Springer Ser. Chem. Phys. Bd. 81, Springer-Verlag, Berlin, Heidelberg, 2005, S. I-387.
Fenzl C., Hirsch T., Baeumner A. J., TRAC Trends Anal. Chem. 2016, 79, 306–316.
Nooney R., Clifford A., LeGuevel X., Stranik O., McDonagh C., MacCraith B. D., Anal. Bioanal. Chem. 2010, 396, 1127–1134. PubMed
Murphy C. J., Gole A. M., Stone J. W., Sisco P. N., Alkilany A. M., Goldsmith E. C., Baxter S. C., Acc. Chem. Res. 2008, 41, 1721–1730. PubMed
Poon C. Y., Wei L., Xu Y. L., Chen B., Xiao L. H., Li H. W., Anal. Chem. 2016, 88, 8849–8856. PubMed
Wu X., Li T., Tao G. Y., Lin R. Y., Pei X. J., Liu F., Li N., Analyst 2017, 142, 4201–4205. PubMed
Zhu L., Li G. H., Sun S. Q., Tan H., He Y. H., RSC Adv. 2017, 7, 27595–27602.
Sriram M., Markhali B. P., Nicovich P. R., Bennett D. T., Reece P. J., Hibbert D. B., Tilley R. D., Gaus K., Vivekchand S. R. C., Gooding J. J., Biosens. Bioelectron. 2018, 117, 530–536. PubMed
Lüthgens E., Janshoff A., ChemPhysChem 2005, 6, 444–448. PubMed
Aćimović S. S., Šípová-Jungová H., Emilsson G., Shao L., Dahlin A. B., Käll M., Antosiewicz T. J., ACS Nano 2018, 12, 9958–9965. PubMed
Yang R., Liu S. W., Wu Z. J., Tan Y., Sun S. Q., Talanta 2018, 182, 348–353. PubMed
Li J. J., Jiao Y. F., Liu Q. Y., Chen Z. B., Anal. Chim. Acta 2018, 1028, 66–76. PubMed
Chen S., Svedendahl M., Van Duyne R. P., Kall M., Nano Lett. 2011, 11, 1826–1830. PubMed
Liu X., Dai Q., Austin L., Coutts J., Knowles G., Zou J. H., Chen H., Huo Q., J. Am. Chem. Soc. 2008, 130, 2780–2782. PubMed
Lan T., Dong C. A., Huang X. Y., Ren J. C., Analyst 2011, 136, 4247–4253. PubMed
Lan T., Dong C. Q., Huang X. Y., Ren J. C., Talanta 2013, 116, 501–507. PubMed
Wang J. J., Huang X. Y., Liu H., Dong C. Q., Ren J. C., Anal. Chem. 2017, 89, 5230–5237. PubMed
Rothenhäusler B., Knoll W., Nature 1988, 332, 615–617.
Sidorenko I., Nizamov S., Hergenroder R., Zybin A., Kuzmichev A., Kiwull B., Niessner R., Mirsky V. M., Microchim. Acta 2016, 183, 101–109.
Huang B., Yu F., Zare R. N., Anal. Chem. 2007, 79, 2979–2983. PubMed
Zybin A., Kuritsyn Y. A., Gurevich E. L., Temchura V. V., Uberla K., Niemax K., Plasmonics 2010, 5, 31–35.
Homola J., Chem. Rev. 2008, 108, 462–493. PubMed
Nizamov S., Scherbahn V., Mirsky V. M., Anal. Chem. 2016, 88, 10206–10214. PubMed
Nizamov S., Kasian O., Mirsky V. M., Angew. Chem. Int. Ed. 2016, 55, 7247–7251; PubMed
Angew. Chem. 2016, 128, 7363–7367.
Halpern A. R., Wood J. B., Wang Y., Corn R. M., ACS Nano 2014, 8, 1022–1030. PubMed
Sevenler D., Daaboul G. G., Kanik F. E., Unlu N. L., Unlu M. S., ACS Nano 2018, 12, 5880–5887. PubMed
Belushkin A., Yesilkoy F., Altug H., ACS Nano 2018, 12, 4453–4461. PubMed
Härmä H., Soukka T., Lövgren T., Clin. Chem. 2001, 47, 561–568. PubMed
Wu Z., Zeng T., Guo W. J., Bai Y. Y., Pang D. W., Zhang Z. L., ACS Appl. Mater. Interfaces 2019, 11, 5762–5770. PubMed
Zhang F., Shi Q. H., Zhang Y. C., Shi Y. F., Ding K. L., Zhao D. Y., Stucky G. D., Adv. Mater. 2011, 23, 3775–3779. PubMed
Gite S., Archambault D., Cappillino M. P., Cunha D., Dorich V., Shatova T., Tempesta A., Walsh B., Walsh J. A., Williams A., Kirby J. E., Bowers J., Straus D., Sci. Rep. 2018, 8, 8. PubMed PMC
Tekin H. C., Cornaglia M., Gijs M. A. M., Lab Chip 2013, 13, 1053–1059. PubMed
Schafer D. A., Gelles J., Sheetz M. P., Landick R., Nature 1991, 352, 444–448. PubMed
Visser E. W. A., Yan J. H., van Ijzendoorn L. J., Prins M. W. J., Nat. Commun. 2018, 9, 2541. PubMed PMC
Silver J., Li Z. Y., Neuman K., Biosens. Bioelectron. 2015, 63, 117–123. PubMed PMC
Akama K., Iwanaga N., Yamawaki K., Okuda M., Jain K., Ueno H., Soga N., Minagawa Y., Noji H., ACS Nano 2019, 13, 13116–13126. PubMed
Taylor A. B., Zijlstra P., ACS Sens. 2017, 2, 1103–1122. PubMed PMC
Sepúlveda B., Angelomé P. C., Lechuga L. M., Liz-Marzán L. M., Nano Today 2009, 4, 244–251.
Halas N. J., Lal S., Chang W. S., Link S., Nordlander P., Chem. Rev. 2011, 111, 3913–3961. PubMed
Beuwer M. A., van Hoof B., Zijlstra P., J. Phys. Chem. C 2018, 122, 4615–4621. PubMed PMC
Garai M., Zhang T. S., Gao N. Y., Zhu H., Xu Q. H., J. Phys. Chem. C 2016, 120, 11621–11630.
Kinkhabwala A., Yu Z. F., Fan S. H., Avlasevich Y., Mullen K., Moerner W. E., Nat. Photonics 2009, 3, 654–657.
Zijlstra P., Paulo P. M. R., Yu K., Xu Q. H., Orrit M., Angew. Chem. Int. Ed. 2012, 51, 8352–8355; PubMed
Angew. Chem. 2012, 124, 8477–8480.
Lee S. E., Chen Q., Bhat R., Petkiewicz S., Smith J. M., Ferry V. E., Correia A. L., Alivisatos A. P., Bissell M. J., Nano Lett. 2015, 15, 4564–4570. PubMed PMC
Beuwer M. A., Prins M. W. J., Zijlstra P., Nano Lett. 2015, 15, 3507–3511. PubMed
Washburn A. L., Luchansky M. S., Bowman A. L., Bailey R. C., Anal. Chem. 2010, 82, 69–72. PubMed PMC
Baaske M. D., Vollmer F., Nat. Photonics 2016, 10, 733–739.
Ferreira M. F. S., Castro-Camus E., Ottaway D. J., Lopez-Higuera J. M., Feng X., Jin W., Jeong Y., Picque N., Tong L. M., Reinhard B. M., Pellegrino P. M., Mendez A., Diem M., Vollmer F., Quan Q. M., J. Optics 2017, 19, 083001. PubMed PMC
Zrimsek A. B., Chiang N. H., Mattei M., Zaleski S., McAnally M. O., Chapman C. T., Henry A. I., Schatz G. C., Van Duyne R. P., Chem. Rev. 2017, 117, 7583–7613. PubMed
Single Molecule Counting (SMC) Erenna Instrument, Software and Kits http://www.merckmillipore.com/CZ/cs/life-science-research/protein-detection-quantification/Immunoassay-Platform-Solutions/single-molecule-counting-immunoassay-technology/SMC-Erenna-Instrument-Software-and-Kits/VS.b.qB.N.UAAAFfn7lc20.J,nav.
Simoa assay kits https://www.quanterix.com/products-technology/simoa-assay-kits.
Smith L., Kohli M., Smith A. M., J. Am. Chem. Soc. 2018, 140, 13904–13912. PubMed PMC
Yeung D., Ciotti S., Purushothama S., Gharakhani E., Kuesters G., Schlain B., Shen C., Donaldson D., Mikulskis A., J. Immunol. Methods 2016, 437, 53–63. PubMed
Costa O. R., Verhaeghen K., Roels S., Starige G., Ling Z. D., Pipeleers D., Gorus F. K., Martens G. A., PLOS One 2018, 13, e0193670. PubMed PMC
Upconversion Nanoparticle-Based Dot-Blot Immunoassay for Quantitative Biomarker Detection