Digital and Analog Detection of SARS-CoV-2 Nucleocapsid Protein via an Upconversion-Linked Immunosorbent Assay

. 2023 Mar 14 ; 95 (10) : 4753-4759. [epub] 20230227

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36916131

The COVID-19 crisis requires fast and highly sensitive tests for the early stage detection of the SARS-CoV-2 virus. For detecting the nucleocapsid protein (N protein), the most abundant viral antigen, we have employed upconversion nanoparticles that emit short-wavelength light under near-infrared excitation (976 nm). The anti-Stokes emission avoids autofluorescence and light scattering and thus enables measurements without optical background interference. The sandwich upconversion-linked immunosorbent assay (ULISA) can be operated both in a conventional analog mode and in a digital mode based on counting individual immune complexes. We have investigated how different antibody combinations affect the detection of the wildtype N protein and the detection of SARS-CoV-2 (alpha variant) in lysed culture fluid via the N protein. The ULISA yielded a limit of detection (LOD) of 1.3 pg/mL (27 fM) for N protein detection independent of the analog or digital readout, which is approximately 3 orders of magnitude more sensitive than conventional enzyme-linked immunosorbent assays or commercial lateral flow assays for home testing. In the case of SARS-CoV-2, the digital ULISA additionally improved the LOD by a factor of 10 compared to the analog readout.

Zobrazit více v PubMed

Perez-Reche F. J.; Forbes K. J.; Strachan N. J. C. Importance of untested infectious individuals for interventions to suppress COVID-19. Sci. Rep. 2021, 11 (1), 20728.10.1038/s41598-021-00056-5. PubMed DOI PMC

Fröberg J.; Gillard J.; Philipsen R.; Lanke K.; Rust J.; van Tuijl D.; Teelen K.; Bousema T.; Simonetti E.; van der Gaast-de Jongh C. E.; Bos M.; van Kuppeveld F. J.; Bosch B. J.; Nabuurs-Franssen M.; van der Geest-Blankert N.; van Daal C.; Huynen M. A.; de Jonge M. I.; Diavatopoulos D. A. SARS-CoV-2 mucosal antibody development and persistence and their relation to viral load and COVID-19 symptoms. Nat. Commun. 2021, 12 (1), 5621.10.1038/s41467-021-25949-x. PubMed DOI PMC

Lee J.; Song J. U.; Shim S. R. Comparing the diagnostic accuracy of rapid antigen detection tests to real time polymerase chain reaction in the diagnosis of SARS-CoV-2 infection: A systematic review and meta-analysis. J. Clin. Virol. 2021, 144, 104985.10.1016/j.jcv.2021.104985. PubMed DOI PMC

van den Beld M. J. C.; Murk J. L.; Kluytmans J.; Koopmans M. P. G.; Reimerink J.; van Loo I. H. M.; Wegdam-Blans M. C. A.; Zaaijer H.; GeurtsvanKessel C.; Reusken C. Increasing the efficiency of a national laboratory response to COVID-19: a nationwide multicenter evaluation of 47 commercial SARS-CoV-2 immunoassays by 41 laboratories. J. Clin. Microbiol. 2021, 59 (9), e007672110.1128/JCM.00767-21. PubMed DOI PMC

Li X. W.; Xiong M. Y.; Deng Q. L.; Guo X. B.; Li Y. R. The utility of SARS-CoV-2 nucleocapsid protein in laboratory diagnosis. J. Clin. Lab. Anal. 2022, 36 (7), e2453410.1002/jcla.24534. PubMed DOI PMC

Liotti F. M.; Menchinelli G.; Lalle E.; Palucci I.; Marchetti S.; Colavita F.; La Sorda M.; Sberna G.; Bordi L.; Sanguinetti M.; Cattani P.; Capobianchi M. R.; Posteraro B. Performance of a novel diagnostic assay for rapid SARS-CoV-2 antigen detection in nasopharynx samples. Clin. Microbio. Infect. 2021, 27 (3), 487–488. 10.1016/j.cmi.2020.09.030. PubMed DOI PMC

Kabay G.; DeCastro J.; Altay A.; Smith K.; Lu H. W.; Capossela A. M.; Moarefian M.; Aran K.; Dincer C. Emerging biosensing technologies for the diagnostics of viral infectious diseases. Adv. Mater. 2022, 34 (30), 2201085.10.1002/adma.202201085. PubMed DOI

Yuan H.; Chen P.; Wan C.; Li Y.; Liu B. F. Merging microfluidics with luminescence immunoassays for urgent point-of-care diagnostics of COVID-19. Trends Anal. Chem. 2022, 157, 116814.10.1016/j.trac.2022.116814. PubMed DOI PMC

Resch-Genger U.; Gorris H. H. Perspectives and challenges of photon-upconversion nanoparticles - Part I: routes to brighter particles and quantitative spectroscopic studies. Anal. Bioanal. Chem. 2017, 409 (25), 5855–5874. 10.1007/s00216-017-0499-z. PubMed DOI

Gorris H. H.; Resch-Genger U. Perspectives and challenges of photon-upconversion nanoparticles - Part II: bioanalytical applications. Anal. Bioanal. Chem. 2017, 409 (25), 5875–5890. 10.1007/s00216-017-0482-8. PubMed DOI

Mickert M. J.; Farka Z.; Kostiv U.; Hlaváček A.; Horák D.; Skládal P.; Gorris H. H. Measurement of sub-femtomolar concentrations of prostate-specific antigen through single-molecule counting with an upconversion-linked immunosorbent assay. Anal. Chem. 2019, 91 (15), 9435–9441. 10.1021/acs.analchem.9b02872. PubMed DOI

Sedlmeier A.; Hlaváček A.; Birner L.; Mickert M. J.; Muhr V.; Hirsch T.; Corstjens P. L. A. M.; Tanke H. J.; Soukka T.; Gorris H. H. Highly sensitive laser scanning of photon-upconverting nanoparticles on a macroscopic scale. Anal. Chem. 2016, 88 (3), 1835–1841. 10.1021/acs.analchem.5b04147. PubMed DOI

Hlaváček A.; Farka Z.; Mickert M. J.; Kostiv U.; Brandmeier J. C.; Horák D.; Skládal P.; Foret F.; Gorris H. H. Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. Nat. Prot. 2022, 17 (4), 1028–1072. 10.1038/s41596-021-00670-7. PubMed DOI

Farka Z.; Mickert M. J.; Pastucha M.; Mikušová Z.; Skládal P.; Gorris H. H. Advances in optical single-molecule detection: En route to supersensitive bioaffinity assays. Angew. Chem. Int. Edit 2020, 59 (27), 10746–10773. 10.1002/anie.201913924. PubMed DOI PMC

Gorris H. H.; Soukka T. What digital immunoassays can learn from ambient analyte theory: A perspective. Anal. Chem. 2022, 94 (16), 6073–6083. 10.1021/acs.analchem.1c05591. PubMed DOI

Brandmeier J. C.; Raiko K.; Farka Z.; Peltomaa R.; Mickert M. J.; Hlaváček A.; Skládal P.; Soukka T.; Gorris H. H. Effect of particle size and surface chemistry of photon-upconversion nanoparticles on analog and digital immunoassays for cardiac troponin. Adv. Healthc. Mater. 2021, 10 (18), 2100506.10.1002/adhm.202100506. PubMed DOI PMC

Alexaki K.; Kyriazi M. E.; Greening J.; Taemaitree L.; El-Sagheer A. H.; Brown T.; Zhang X. L.; Muskens O. L.; Kanaras A. G. A SARS-CoV-2 sensor based on upconversion nanoparticles and graphene oxide. RSC Adv. 2022, 12 (29), 18445–18449. 10.1039/D2RA03599E. PubMed DOI PMC

Balinski B.Australian-made COVID-19 test returns results within minutes. Create. https://createdigital.org.au/australian-made-covid-19-test-results-within-minutes/.

Makhneva E.; Sklenárová D.; Brandmeier J. C.; Hlaváček A.; Gorris H. H.; Skládal P.; Farka Z. Influence of Label and Solid Support on the Performance of Heterogeneous Immunoassays. Anal. Chem. 2022, 94 (47), 16376–16383. 10.1021/acs.analchem.2c03543. PubMed DOI

Ogata A. F.; Maley A. M.; Wu C.; Gilboa T.; Norman M.; Lazarovits R.; Mao C. P.; Newton G.; Chang M.; Nguyen K.; Kamkaew M.; Zhu Q.; Gibson T. E.; Ryan E. T.; Charles R. C.; Marasco W. A.; Walt D. R. Ultra-sensitive serial profiling of SARS-CoV-2 antigens and antibodies in plasma to understand disease progression in COVID-19 patients with severe disease. Clin. Chem. 2020, 66 (12), 1562–1572. 10.1093/clinchem/hvaa213. PubMed DOI PMC

Lahtinen S.; Lyytikäinen A.; Päkkilä H.; Hömppi E.; Perälä N.; Lastusaari M.; Soukka T. Disintegration of hexagonal NaYF4:Yb3+,Er3+ upconverting nanoparticles in aqueous media: The role of fluoride in solubility equilibrium. J. Phys. Chem. C 2017, 121 (1), 656–665. 10.1021/acs.jpcc.6b09301. DOI

Boom R.; Sol C. J. A.; Salimans M. M. M.; Jansen C. L.; Wertheimvandillen P. M. E.; Vandernoordaa J. Rapid and simple method for purification of nucleic-acids. J. Clin. Microbiol. 1990, 28 (3), 495–503. 10.1128/jcm.28.3.495-503.1990. PubMed DOI PMC

Shatzkes K.; Teferedegne B.; Murata H. A simple, inexpensive method for preparing cell lysates suitable for downstream reverse transcription quantitative PCR. Sci. Rep. 2014, 4, 4659.10.1038/srep04659. PubMed DOI PMC

HyTest SARS-CoV-2 antibodies and detection of variants. HyTest. https://shop.hytest.fi/spree/products/4156/SARS-CoV-2_detection_of_variants.pdf?1648709822.

Hytest TechNotes: Reagents of SARS-CoV-2 antigen and antibody assays. HyTest. https://hytest.fi/sites/5cd13840ff4f702c0cbc4c8d/content_entry5cd13897ff4f702c0cbc4cb2/5f09b34cff4f703a3f35bdf3/files/SARS-CoV-2_TechNotes.pdf?1647263232.

Rissin D. M.; Kan C. W.; Campbell T. G.; Howes S. C.; Fournier D. R.; Song L.; Piech T.; Patel P. P.; Chang L.; Rivnak A. J.; Ferrell E. P.; Randall J. D.; Provuncher G. K.; Walt D. R.; Duffy D. C. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 2010, 28 (6), 595–599. 10.1038/nbt.1641. PubMed DOI PMC

Białobrzeska W.; Ficek M.; Dec B.ło.; Osella S.; Trzaskowski B.; Jaramillo-Botero A.; Pierpaoli M.; Rycewicz M.ł; Dashkevich Y.; Łega T.; Malinowska N.; Cebula Z.; Bigus D.; Firganek D.; Biega E.; Dziabowska K.; Brodowski M.; Kowalski M.; Panasiuk M.ła.; Gromadzka B.; Zołedowska S.; Nidzworski D.; Pyrc K.; Goddard W. A.; Bogdanowicz R. Performance of electrochemical immunoassays for clinical diagnostics of SARS-CoV-2 based on selective nucleocapsid N protein detection: Boron-doped diamond, gold and glassy carbon evaluation. Biosens. Bioelectron. 2022, 209, 114222.10.1016/j.bios.2022.114222. PubMed DOI PMC

Pollock N. R.; Savage T. J.; Wardell H.; Lee R. A.; Mathew A.; Stengelin M.; Sigal G. B. Correlation of SARS-CoV-2 nucleocapsid antigen and RNA concentrations in nasopharyngeal samples from children and adults using an ultrasensitive and quantitative antigen assay. J. Clin. Microbiol. 2021, 59 (4), e03077-2010.1128/JCM.03077-20. PubMed DOI PMC

Cai Q.; Mu J.; Lei Y.; Ge J.; Aryee A. A.; Zhang X.; Li Z. Simultaneous detection of the spike and nucleocapsid proteins from SARS-CoV-2 based on ultrasensitive single molecule assays. Anal. Bioanal. Chem. 2021, 413 (18), 4645–4654. 10.1007/s00216-021-03435-z. PubMed DOI PMC

Park J. H.; Lee G. Y.; Song Z.; Bong J. H.; Chang Y. W.; Cho S.; Kang M. J.; Pyun J. C. Capacitive biosensor based on vertically paired electrodes for the detection of SARS-CoV-2. Biosens. Bioelectron. 2022, 202, 113975.10.1016/j.bios.2022.113975. PubMed DOI PMC

Grant B. D.; Anderson C. E.; Williford J. R.; Alonzo L. F.; Glukhova V. A.; Boyle D. S.; Weigl B. H.; Nichols K. P. SARS-CoV-2 coronavirus nucleocapsid antigen-detecting half-strip Lateral Flow Assay toward the development of point of care tests using commercially available reagents. Anal. Chem. 2020, 92 (16), 11305–11309. 10.1021/acs.analchem.0c01975. PubMed DOI

Grant B. D.; Anderson C. E.; Alonzo L. F.; Garing S. H.; Williford J. R.; Baughman T. A.; Rivera R.; Glukhova V. A.; Boyle D. S.; Dewan P. K.; Weigl B. H.; Nichols K. P. A SARS-CoV-2 coronavirus nucleocapsid protein antigen-detecting lateral flow assay. PLoS One 2021, 16 (11), e025881910.1371/journal.pone.0258819. PubMed DOI PMC

Farka Z.; Mickert M. J.; Hlaváček A.; Skládal P.; Gorris H. H. Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers. Anal. Chem. 2017, 89 (21), 11825–11830. 10.1021/acs.analchem.7b03542. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...