Sandwich Immuno-RCA Assay with Single Molecule Counting Readout: The Importance of Biointerface Design
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38530402
PubMed Central
PMC11009916
DOI
10.1021/acsami.3c18304
Knihovny.cz E-zdroje
- Klíčová slova
- antifouling biointerface, biomarker, digital readout of assay, rolling circle amplification, single molecule detection, surface plasmon resonance, surface plasmon-enhanced fluorescence,
- MeSH
- jednovláknová DNA * MeSH
- lidé MeSH
- povrchová plasmonová rezonance * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- jednovláknová DNA * MeSH
The analysis of low-abundance protein molecules in human serum is reported based on counting of the individual affinity-captured analyte on a solid sensor surface, yielding a readout format similar to digital assays. In this approach, a sandwich immunoassay with rolling circle amplification (RCA) is used for single molecule detection (SMD) through associating the target analyte with spatially distinct bright spots observed by fluorescence microscopy. The unspecific interaction of the target analyte and other immunoassay constituents with the sensor surface is of particular interest in this work, as it ultimately limits the performance of this assay. It is minimized by the design of the respective biointerface and thiol self-assembled monolayer with oligoethylene (OEG) head groups, and a poly[oligo(ethylene glycol) methacrylate] (pHOEGMA) antifouling polymer brush was used for the immobilization of the capture antibody (cAb) on the sensor surface. The assay relying on fluorescent postlabeling of long single-stranded DNA that are grafted from the detection antibody (dAb) by RCA was established with the help of combined surface plasmon resonance and surface plasmon-enhanced fluorescence monitoring of reaction kinetics. These techniques were employed for in situ measurements of conjugating of cAb to the sensor surface, tagging of short single-stranded DNA to dAb, affinity capture of the target analyte from the analyzed liquid sample, and the fluorescence readout of the RCA product. Through mitigation of adsorption of nontarget molecules on the sensor surface by tailoring of the antifouling biointerface, optimizing conjugation chemistry, and by implementing weak Coulombic repelling between dAb and the sensor surface, the limit of detection (LOD) of the assay was substantially improved. For the chosen interleukin-6 biomarker, SMD assay with LOD at a concentration of 4.3 fM was achieved for model (spiked) samples, and validation of the ability of detection of standard human serum samples is demonstrated.
Zobrazit více v PubMed
Shen H.; Jin Y.; Zhao H.; Wu M.; Zhang K.; Wei Z.; Wang X.; Wang Z.; Li Y.; Yang F.; Wang J.; Chen K. Potential Clinical Utility of Liquid Biopsy in Early-Stage Non-Small Cell Lung Cancer. BMC. Med. 2022, 20 (1), 480.10.1186/s12916-022-02681-x. PubMed DOI PMC
Lone S. N.; Nisar S.; Masoodi T.; Singh M.; Rizwan A.; Hashem S.; El-Rifai W.; Bedognetti D.; Batra S. K.; Haris M.; Bhat A. A.; Macha M. A. Liquid Biopsy: A Step Closer to Transform Diagnosis, Prognosis and Future of Cancer Treatments. Mol. Cancer 2022, 21 (1), 79.10.1186/s12943-022-01543-7. PubMed DOI PMC
Zhang Y.; Noji H. Digital Bioassays: Theory, Applications, and Perspectives. Anal. Chem. 2017, 89 (1), 92–101. 10.1021/acs.analchem.6b04290. PubMed DOI
Farka Z.; Mickert M. J.; Pastucha M.; Mikušová Z.; Skládal P.; Gorris H. H. Advances in Optical Single-Molecule Detection: En Route to Supersensitive Bioaffinity Assays. Angew. Chem., Int. Ed. 2020, 59 (27), 10746–10773. 10.1002/anie.201913924. PubMed DOI PMC
Usha S. P.; Manoharan H.; Deshmukh R.; Álvarez-Diduk R.; Calucho E.; Sai V. V. R.; Merkoçi A. Attomolar Analyte Sensing Techniques (AttoSens): A Review on a Decade of Progress on Chemical and Biosensing Nanoplatforms. Chem. Soc. Rev. 2021, 50 (23), 13012–13089. 10.1039/D1CS00137J. PubMed DOI
Rondelez Y.; Tresset G.; Tabata K. V.; Arata H.; Fujita H.; Takeuchi S.; Noji H. Microfabricated Arrays of Femtoliter Chambers Allow Single Molecule Enzymology. Nat. Biotechnol. 2005, 23 (3), 361–365. 10.1038/nbt1072. PubMed DOI
Hindson B. J.; Ness K. D.; Masquelier D. A.; Belgrader P.; Heredia N. J.; Makarewicz A. J.; Bright I. J.; Lucero M. Y.; Hiddessen A. L.; Legler T. C.; Kitano T. K.; Hodel M. R.; Petersen J. F.; Wyatt P. W.; Steenblock E. R.; Shah P. H.; Bousse L. J.; Troup C. B.; Mellen J. C.; Wittmann D. K.; Erndt N. G.; Cauley T. H.; Koehler R. T.; So A. P.; Dube S.; Rose K. A.; Montesclaros L.; Wang S.; Stumbo D. P.; Hodges S. P.; Romine S.; Milanovich F. P.; White H. E.; Regan J. F.; Karlin-Neumann G. A.; Hindson C. M.; Saxonov S.; Colston B. W. High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number. Anal. Chem. 2011, 83 (22), 8604–8610. 10.1021/ac202028g. PubMed DOI PMC
Schweitzer B.; Wiltshire S.; Lambert J.; O’Malley S.; Kukanskis K.; Zhu Z.; Kingsmore S. F.; Lizardi P. M.; Ward D. C. Immunoassays with Rolling Circle DNA Amplification: A Versatile Platform for Ultrasensitive Antigen Detection. Proc. Natl. Acad. Sci. U.S.A. 2000, 97 (18), 10113–10119. 10.1073/pnas.170237197. PubMed DOI PMC
Taylor A. B.; Zijlstra P. Single-Molecule Plasmon Sensing: Current Status and Future Prospects. ACS Sens. 2017, 2 (8), 1103–1122. 10.1021/acssensors.7b00382. PubMed DOI PMC
Farka Z.; Mickert M. J.; Hlaváček A.; Skládal P.; Gorris H. H. Single Molecule Upconversion-Linked Immunosorbent Assay with Extended Dynamic Range for the Sensitive Detection of Diagnostic Biomarkers. Anal. Chem. 2017, 89 (21), 11825–11830. 10.1021/acs.analchem.7b03542. PubMed DOI
Brandmeier J. C.; Jurga N.; Grzyb T.; Hlaváček A.; Obořilová R.; Skládal P.; Farka Z.; Gorris H. H. Digital and Analog Detection of SARS-CoV-2 Nucleocapsid Protein via an Upconversion-Linked Immunosorbent Assay. Anal. Chem. 2023, 95 (10), 4753–4759. 10.1021/acs.analchem.2c05670. PubMed DOI PMC
Vaisocherová H.; Ševců V.; Adam P.; Špačková B.; Hegnerová K.; de los Santos Pereira A.; Rodriguez-Emmenegger C.; Riedel T.; Houska M.; Brynda E.; Homola J. Functionalized Ultra-Low Fouling Carboxy- and Hydroxy-Functional Surface Platforms: Functionalization Capacity, Biorecognition Capability and Resistance to Fouling from Undiluted Biological Media. Biosens. Bioelectron. 2014, 51, 150–157. 10.1016/j.bios.2013.07.015. PubMed DOI
Forinová M.; Pilipenco A.; Víšová I.; Lynn N. S.; Dostálek J.; Mašková H.; Hönig V.; Palus M.; Selinger M.; Kočová P.; Dyčka F.; Štěrba J.; Houska M.; Vrabcová M.; Horák P.; Anthi J.; Tung C.-P.; Yu C.-M.; Chen C.-Y.; Huang Y.-C.; Tsai P.-H.; Lin S.-Y.; Hsu H.-J.; Yang A.-S.; Dejneka A.; Vaisocherová-Lísalová H. Functionalized Terpolymer-Brush-Based Biointerface with Improved Antifouling Properties for Ultra-Sensitive Direct Detection of Virus in Crude Clinical Samples. ACS Appl. Mater. Interfaces 2021, 13 (50), 60612–60624. 10.1021/acsami.1c16930. PubMed DOI
D’Agata R.; Bellassai N.; Giuffrida M. C.; Aura A. M.; Petri C.; Kögler P.; Vecchio G.; Jonas U.; Spoto G. A New Ultralow Fouling Surface for the Analysis of Human Plasma Samples with Surface Plasmon Resonance. Talanta 2021, 221, 121483.10.1016/j.talanta.2020.121483. PubMed DOI
Lísalová H.; Brynda E.; Houska M.; Víšová I.; Mrkvová K.; Song X. C.; Gedeonová E.; Surman F.; Riedel T.; Pop-Georgievski O.; Homola J. Ultralow-Fouling Behavior of Biorecognition Coatings Based on Carboxy-Functional Brushes of Zwitterionic Homo- and Copolymers in Blood Plasma: Functionalization Matters. Anal. Chem. 2017, 89 (6), 3524–3531. 10.1021/acs.analchem.6b04731. PubMed DOI
Schmidt K.; Hageneder S.; Lechner B.; Zbiral B.; Fossati S.; Ahmadi Y.; Minunni M.; Toca-Herrera J. L.; Reimhult E.; Barisic I.; Dostalek J. Rolling Circle Amplification Tailored for Plasmonic Biosensors: From Ensemble to Single-Molecule Detection. ACS Appl. Mater. Interfaces 2022, 14 (49), 55017–55027. 10.1021/acsami.2c14500. PubMed DOI PMC
Jones D. M.; Brown A. A.; Huck W. T. S. Surface-Initiated Polymerizations in Aqueous Media: Effect of Initiator Density. Langmuir 2002, 18 (4), 1265–1269. 10.1021/la011365f. DOI
de los Santos Pereira A.; Riedel T.; Brynda E.; Rodriguez-Emmenegger C. Hierarchical Antifouling Brushes for Biosensing Applications. Sens. Actuators, B 2014, 202, 1313–1321. 10.1016/j.snb.2014.06.075. DOI
Lechner B.; Hageneder S.; Schmidt K.; Kreuzer M. P.; Conzemius R.; Reimhult E.; Barišić I.; Dostalek J. In Situ Monitoring of Rolling Circle Amplification on a Solid Support by Surface Plasmon Resonance and Optical Waveguide Spectroscopy. ACS Appl. Mater. Interfaces 2021, 13 (27), 32352–32362. 10.1021/acsami.1c03715. PubMed DOI
Homola J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108 (2), 462–493. 10.1021/cr068107d. PubMed DOI
Dehghani E. S.; Du Y.; Zhang T.; Ramakrishna S. N.; Spencer N. D.; Jordan R.; Benetti E. M. Fabrication and Interfacial Properties of Polymer Brush Gradients by Surface-Initiated Cu(0)-Mediated Controlled Radical Polymerization. Macromolecules 2017, 50 (6), 2436–2446. 10.1021/acs.macromol.7b00088. DOI
Roberts D.; Keeling R.; Tracka M.; van der Walle C. F.; Uddin S.; Warwicker J.; Curtis R. The Role of Electrostatics in Protein-Protein Interactions of a Monoclonal Antibody. Mol. Pharmacol. 2014, 11 (7), 2475–2489. 10.1021/mp5002334. PubMed DOI
Tang Y.; Cain P.; Anguiano V.; Shih J. J.; Chai Q.; Feng Y. Impact of IgG Subclass on Molecular Properties of Monoclonal Antibodies. MAbs 2021, 13 (1), 1993768.10.1080/19420862.2021.1993768. PubMed DOI PMC
Víšová I.; Houska M.; Spasovová M.; Forinová M.; Pilipenco A.; Mezuláníková K.; Tomandlová M.; Mrkvová K.; Vrabcová M.; Dejneka A.; Dostálek J.; Vaisocherová-Lísalová H. Tuning of Surface Charge of Functionalized Poly(Carboxybetaine) Brushes Can Significantly Improve Label-Free Biosensing in Complex Media. Adv. Mater. Interfaces 2022, 9 (33), 2201210.10.1002/admi.202201210. DOI
Rissin D. M.; Kan C. W.; Campbell T. G.; Howes S. C.; Fournier D. R.; Song L.; Piech T.; Patel P. P.; Chang L.; Rivnak A. J.; Ferrell E. P.; Randall J. D.; Provuncher G. K.; Walt D. R.; Duffy D. C. Single-Molecule Enzyme-Linked Immunosorbent Assay Detects Serum Proteins at Subfemtomolar Concentrations. Nat. Biotechnol. 2010, 28 (6), 595–599. 10.1038/nbt.1641. PubMed DOI PMC