Sandwich Immuno-RCA Assay with Single Molecule Counting Readout: The Importance of Biointerface Design

. 2024 Apr 10 ; 16 (14) : 17109-17119. [epub] 20240326

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38530402

The analysis of low-abundance protein molecules in human serum is reported based on counting of the individual affinity-captured analyte on a solid sensor surface, yielding a readout format similar to digital assays. In this approach, a sandwich immunoassay with rolling circle amplification (RCA) is used for single molecule detection (SMD) through associating the target analyte with spatially distinct bright spots observed by fluorescence microscopy. The unspecific interaction of the target analyte and other immunoassay constituents with the sensor surface is of particular interest in this work, as it ultimately limits the performance of this assay. It is minimized by the design of the respective biointerface and thiol self-assembled monolayer with oligoethylene (OEG) head groups, and a poly[oligo(ethylene glycol) methacrylate] (pHOEGMA) antifouling polymer brush was used for the immobilization of the capture antibody (cAb) on the sensor surface. The assay relying on fluorescent postlabeling of long single-stranded DNA that are grafted from the detection antibody (dAb) by RCA was established with the help of combined surface plasmon resonance and surface plasmon-enhanced fluorescence monitoring of reaction kinetics. These techniques were employed for in situ measurements of conjugating of cAb to the sensor surface, tagging of short single-stranded DNA to dAb, affinity capture of the target analyte from the analyzed liquid sample, and the fluorescence readout of the RCA product. Through mitigation of adsorption of nontarget molecules on the sensor surface by tailoring of the antifouling biointerface, optimizing conjugation chemistry, and by implementing weak Coulombic repelling between dAb and the sensor surface, the limit of detection (LOD) of the assay was substantially improved. For the chosen interleukin-6 biomarker, SMD assay with LOD at a concentration of 4.3 fM was achieved for model (spiked) samples, and validation of the ability of detection of standard human serum samples is demonstrated.

Zobrazit více v PubMed

Shen H.; Jin Y.; Zhao H.; Wu M.; Zhang K.; Wei Z.; Wang X.; Wang Z.; Li Y.; Yang F.; Wang J.; Chen K. Potential Clinical Utility of Liquid Biopsy in Early-Stage Non-Small Cell Lung Cancer. BMC. Med. 2022, 20 (1), 480.10.1186/s12916-022-02681-x. PubMed DOI PMC

Lone S. N.; Nisar S.; Masoodi T.; Singh M.; Rizwan A.; Hashem S.; El-Rifai W.; Bedognetti D.; Batra S. K.; Haris M.; Bhat A. A.; Macha M. A. Liquid Biopsy: A Step Closer to Transform Diagnosis, Prognosis and Future of Cancer Treatments. Mol. Cancer 2022, 21 (1), 79.10.1186/s12943-022-01543-7. PubMed DOI PMC

Zhang Y.; Noji H. Digital Bioassays: Theory, Applications, and Perspectives. Anal. Chem. 2017, 89 (1), 92–101. 10.1021/acs.analchem.6b04290. PubMed DOI

Farka Z.; Mickert M. J.; Pastucha M.; Mikušová Z.; Skládal P.; Gorris H. H. Advances in Optical Single-Molecule Detection: En Route to Supersensitive Bioaffinity Assays. Angew. Chem., Int. Ed. 2020, 59 (27), 10746–10773. 10.1002/anie.201913924. PubMed DOI PMC

Usha S. P.; Manoharan H.; Deshmukh R.; Álvarez-Diduk R.; Calucho E.; Sai V. V. R.; Merkoçi A. Attomolar Analyte Sensing Techniques (AttoSens): A Review on a Decade of Progress on Chemical and Biosensing Nanoplatforms. Chem. Soc. Rev. 2021, 50 (23), 13012–13089. 10.1039/D1CS00137J. PubMed DOI

Rondelez Y.; Tresset G.; Tabata K. V.; Arata H.; Fujita H.; Takeuchi S.; Noji H. Microfabricated Arrays of Femtoliter Chambers Allow Single Molecule Enzymology. Nat. Biotechnol. 2005, 23 (3), 361–365. 10.1038/nbt1072. PubMed DOI

Hindson B. J.; Ness K. D.; Masquelier D. A.; Belgrader P.; Heredia N. J.; Makarewicz A. J.; Bright I. J.; Lucero M. Y.; Hiddessen A. L.; Legler T. C.; Kitano T. K.; Hodel M. R.; Petersen J. F.; Wyatt P. W.; Steenblock E. R.; Shah P. H.; Bousse L. J.; Troup C. B.; Mellen J. C.; Wittmann D. K.; Erndt N. G.; Cauley T. H.; Koehler R. T.; So A. P.; Dube S.; Rose K. A.; Montesclaros L.; Wang S.; Stumbo D. P.; Hodges S. P.; Romine S.; Milanovich F. P.; White H. E.; Regan J. F.; Karlin-Neumann G. A.; Hindson C. M.; Saxonov S.; Colston B. W. High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number. Anal. Chem. 2011, 83 (22), 8604–8610. 10.1021/ac202028g. PubMed DOI PMC

Schweitzer B.; Wiltshire S.; Lambert J.; O’Malley S.; Kukanskis K.; Zhu Z.; Kingsmore S. F.; Lizardi P. M.; Ward D. C. Immunoassays with Rolling Circle DNA Amplification: A Versatile Platform for Ultrasensitive Antigen Detection. Proc. Natl. Acad. Sci. U.S.A. 2000, 97 (18), 10113–10119. 10.1073/pnas.170237197. PubMed DOI PMC

Taylor A. B.; Zijlstra P. Single-Molecule Plasmon Sensing: Current Status and Future Prospects. ACS Sens. 2017, 2 (8), 1103–1122. 10.1021/acssensors.7b00382. PubMed DOI PMC

Farka Z.; Mickert M. J.; Hlaváček A.; Skládal P.; Gorris H. H. Single Molecule Upconversion-Linked Immunosorbent Assay with Extended Dynamic Range for the Sensitive Detection of Diagnostic Biomarkers. Anal. Chem. 2017, 89 (21), 11825–11830. 10.1021/acs.analchem.7b03542. PubMed DOI

Brandmeier J. C.; Jurga N.; Grzyb T.; Hlaváček A.; Obořilová R.; Skládal P.; Farka Z.; Gorris H. H. Digital and Analog Detection of SARS-CoV-2 Nucleocapsid Protein via an Upconversion-Linked Immunosorbent Assay. Anal. Chem. 2023, 95 (10), 4753–4759. 10.1021/acs.analchem.2c05670. PubMed DOI PMC

Vaisocherová H.; Ševců V.; Adam P.; Špačková B.; Hegnerová K.; de los Santos Pereira A.; Rodriguez-Emmenegger C.; Riedel T.; Houska M.; Brynda E.; Homola J. Functionalized Ultra-Low Fouling Carboxy- and Hydroxy-Functional Surface Platforms: Functionalization Capacity, Biorecognition Capability and Resistance to Fouling from Undiluted Biological Media. Biosens. Bioelectron. 2014, 51, 150–157. 10.1016/j.bios.2013.07.015. PubMed DOI

Forinová M.; Pilipenco A.; Víšová I.; Lynn N. S.; Dostálek J.; Mašková H.; Hönig V.; Palus M.; Selinger M.; Kočová P.; Dyčka F.; Štěrba J.; Houska M.; Vrabcová M.; Horák P.; Anthi J.; Tung C.-P.; Yu C.-M.; Chen C.-Y.; Huang Y.-C.; Tsai P.-H.; Lin S.-Y.; Hsu H.-J.; Yang A.-S.; Dejneka A.; Vaisocherová-Lísalová H. Functionalized Terpolymer-Brush-Based Biointerface with Improved Antifouling Properties for Ultra-Sensitive Direct Detection of Virus in Crude Clinical Samples. ACS Appl. Mater. Interfaces 2021, 13 (50), 60612–60624. 10.1021/acsami.1c16930. PubMed DOI

D’Agata R.; Bellassai N.; Giuffrida M. C.; Aura A. M.; Petri C.; Kögler P.; Vecchio G.; Jonas U.; Spoto G. A New Ultralow Fouling Surface for the Analysis of Human Plasma Samples with Surface Plasmon Resonance. Talanta 2021, 221, 121483.10.1016/j.talanta.2020.121483. PubMed DOI

Lísalová H.; Brynda E.; Houska M.; Víšová I.; Mrkvová K.; Song X. C.; Gedeonová E.; Surman F.; Riedel T.; Pop-Georgievski O.; Homola J. Ultralow-Fouling Behavior of Biorecognition Coatings Based on Carboxy-Functional Brushes of Zwitterionic Homo- and Copolymers in Blood Plasma: Functionalization Matters. Anal. Chem. 2017, 89 (6), 3524–3531. 10.1021/acs.analchem.6b04731. PubMed DOI

Schmidt K.; Hageneder S.; Lechner B.; Zbiral B.; Fossati S.; Ahmadi Y.; Minunni M.; Toca-Herrera J. L.; Reimhult E.; Barisic I.; Dostalek J. Rolling Circle Amplification Tailored for Plasmonic Biosensors: From Ensemble to Single-Molecule Detection. ACS Appl. Mater. Interfaces 2022, 14 (49), 55017–55027. 10.1021/acsami.2c14500. PubMed DOI PMC

Jones D. M.; Brown A. A.; Huck W. T. S. Surface-Initiated Polymerizations in Aqueous Media: Effect of Initiator Density. Langmuir 2002, 18 (4), 1265–1269. 10.1021/la011365f. DOI

de los Santos Pereira A.; Riedel T.; Brynda E.; Rodriguez-Emmenegger C. Hierarchical Antifouling Brushes for Biosensing Applications. Sens. Actuators, B 2014, 202, 1313–1321. 10.1016/j.snb.2014.06.075. DOI

Lechner B.; Hageneder S.; Schmidt K.; Kreuzer M. P.; Conzemius R.; Reimhult E.; Barišić I.; Dostalek J. In Situ Monitoring of Rolling Circle Amplification on a Solid Support by Surface Plasmon Resonance and Optical Waveguide Spectroscopy. ACS Appl. Mater. Interfaces 2021, 13 (27), 32352–32362. 10.1021/acsami.1c03715. PubMed DOI

Homola J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108 (2), 462–493. 10.1021/cr068107d. PubMed DOI

Dehghani E. S.; Du Y.; Zhang T.; Ramakrishna S. N.; Spencer N. D.; Jordan R.; Benetti E. M. Fabrication and Interfacial Properties of Polymer Brush Gradients by Surface-Initiated Cu(0)-Mediated Controlled Radical Polymerization. Macromolecules 2017, 50 (6), 2436–2446. 10.1021/acs.macromol.7b00088. DOI

Roberts D.; Keeling R.; Tracka M.; van der Walle C. F.; Uddin S.; Warwicker J.; Curtis R. The Role of Electrostatics in Protein-Protein Interactions of a Monoclonal Antibody. Mol. Pharmacol. 2014, 11 (7), 2475–2489. 10.1021/mp5002334. PubMed DOI

Tang Y.; Cain P.; Anguiano V.; Shih J. J.; Chai Q.; Feng Y. Impact of IgG Subclass on Molecular Properties of Monoclonal Antibodies. MAbs 2021, 13 (1), 1993768.10.1080/19420862.2021.1993768. PubMed DOI PMC

Víšová I.; Houska M.; Spasovová M.; Forinová M.; Pilipenco A.; Mezuláníková K.; Tomandlová M.; Mrkvová K.; Vrabcová M.; Dejneka A.; Dostálek J.; Vaisocherová-Lísalová H. Tuning of Surface Charge of Functionalized Poly(Carboxybetaine) Brushes Can Significantly Improve Label-Free Biosensing in Complex Media. Adv. Mater. Interfaces 2022, 9 (33), 2201210.10.1002/admi.202201210. DOI

Rissin D. M.; Kan C. W.; Campbell T. G.; Howes S. C.; Fournier D. R.; Song L.; Piech T.; Patel P. P.; Chang L.; Rivnak A. J.; Ferrell E. P.; Randall J. D.; Provuncher G. K.; Walt D. R.; Duffy D. C. Single-Molecule Enzyme-Linked Immunosorbent Assay Detects Serum Proteins at Subfemtomolar Concentrations. Nat. Biotechnol. 2010, 28 (6), 595–599. 10.1038/nbt.1641. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...