Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
Grantová podpora
GO 1968/ 7-1 (Heisenberg Program)
Deutsche Forschungsgemeinschaft (German Research Foundation)
GO 1968/6-1
Deutsche Forschungsgemeinschaft (German Research Foundation)
21-03156S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
21-04420S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
LTAB19011
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
35181766
DOI
10.1038/s41596-021-00670-7
PII: 10.1038/s41596-021-00670-7
Knihovny.cz E-zdroje
- MeSH
- imunosorbenty MeSH
- lidé MeSH
- nádorové biomarkery MeSH
- nádory * diagnóza MeSH
- nanočástice * chemie MeSH
- oxid křemičitý chemie MeSH
- polyethylenglykoly chemie MeSH
- streptavidin MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- imunosorbenty MeSH
- nádorové biomarkery MeSH
- oxid křemičitý MeSH
- polyethylenglykoly MeSH
- streptavidin MeSH
The detection of cancer biomarkers in histological samples and blood is of paramount importance for clinical diagnosis. Current methods are limited in terms of sensitivity, hindering early detection of disease. We have overcome the shortcomings of currently available staining and fluorescence labeling methods by taking an integrative approach to establish photon-upconversion nanoparticles (UCNP) as a powerful platform for cancer detection. These nanoparticles are readily synthesized in different sizes to yield efficient and tunable short-wavelength light emission under near-infrared excitation, which eliminates optical background interference of the specimen. Here we present a protocol for the synthesis of UCNPs by high-temperature co-precipitation or seed-mediated growth by thermal decomposition, surface modification by silica or poly(ethylene glycol) that renders the particles resistant to nonspecific binding, and the conjugation of streptavidin or antibodies for biological detection. To detect blood-based biomarkers, we present an upconversion-linked immunosorbent assay for the analog and digital detection of the cancer marker prostate-specific antigen. When applied to immunocytochemistry analysis, UCNPs enable the detection of the breast cancer marker human epidermal growth factor receptor 2 with a signal-to-background ratio 50-fold higher than conventional fluorescent labels. UCNP synthesis takes 4.5 d, the preparation of the antibody-silica-UCNP conjugate takes 3 d, the streptavidin-poly(ethylene glycol)-UCNP conjugate takes 2-3 weeks, upconversion-linked immunosorbent assay takes 2-4 d and immunocytochemistry takes 8-10 h. The procedures can be performed after standard laboratory training in nanomaterials research.
CEITEC MU Masaryk University Brno Czech Republic
Department of Biochemistry Faculty of Science Masaryk University Brno Czech Republic
Institute of Analytical Chemistry Chemo and Biosensors University of Regensburg Regensburg Germany
Institute of Analytical Chemistry of the Czech Academy of Sciences Brno Czech Republic
Institute of Macromolecular Chemistry of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Oliveira, H. et al. Critical considerations on the clinical translation of upconversion nanoparticles (ucnps): recommendations from the European Upconversion Network (COST Action CM1403). Adv. Healthc. Mater. 8, 1801233 (2019).
Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 44, 4743–4768 (2015). PubMed DOI
Liu, T.-M., Conde, J., Lipiński, T., Bednarkiewicz, A. & Huang, C.-C. Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: prospects in photomedicine. Prog. Mater. Sci. 88, 89–135 (2017). DOI
Zhou, B., Shi, B., Jin, D. & Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10, 924–936 (2015). PubMed DOI
Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139–174 (2004). PubMed DOI
Liu, Q., Feng, W., Yang, T., Yi, T. & Li, F. Upconversion luminescence imaging of cells and small animals. Nat. Protoc. 8, 2033–2044 (2013). PubMed DOI
Wang, F., Deng, R. & Liu, X. Preparation of core–shell NaGdF PubMed DOI
Xing, Y. et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2, 1152–1165 (2007). PubMed DOI
Cai, W. & Chen, X. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat. Protoc. 3, 89–96 (2008). PubMed DOI
Gorris, H. H., Ali, R., Saleh, S. M. & Wolfbeis, O. S. Tuning the dual emission of photon-upconverting nanoparticles for ratiometric multiplexed encoding. Adv. Mater. 23, 1652–1655 (2011). PubMed DOI
Gorris, H. H. & Wolfbeis, O. S. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew. Chem. Int. Ed. 52, 3584–3600 (2013). DOI
Hlaváček, A., Křivánková, J., Přikryl, J. & Foret, F. Photon-upconversion barcoding with multiple barcode channels: application for droplet microfluidics. Anal. Chem. 91, 12630–12635 (2019). PubMed DOI
Hlaváček, A., Křivánková, J., Pizúrová, N., Václavek, T. & Foret, F. Photon-upconversion barcode for monitoring an enzymatic reaction with a fluorescence reporter in droplet microfluidics. Analyst 145, 7718–7723 (2020). PubMed DOI
Wu, S. et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl Acad. Sci. USA 106, 10917–10921 (2009). PubMed DOI PMC
Gnach, A., Lipinski, T., Bednarkiewicz, A., Rybka, J. & Capobianco, J. A. Upconverting nanoparticles: assessing the toxicity. Chem. Soc. Rev. 44, 1561–1584 (2015). PubMed DOI
Torresan, M. F. & Wolosiuk, A. Critical aspects on the chemical stability of NaYF PubMed DOI
Modlitbová, P. et al. The effects of photon-upconversion nanoparticles on the growth of radish and duckweed: bioaccumulation, imaging, and spectroscopic studies. Chemosphere 225, 723–734 (2019). PubMed DOI
Haase, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011). DOI
Zhou, J., Liu, Q., Feng, W., Sun, Y. & Li, F. Upconversion luminescent materials: advances and applications. Chem. Rev. 115, 395–465 (2015). PubMed DOI
Menyuk, N., Dwight, K. & Pierce, J. W. Nayf4: Yb,Er—an efficient upconversion phosphor. Appl. Phys. Lett. 21, 159–161 (1972). DOI
Heer, S., Kömpe, K., Güdel, H.-U. & Haase, M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF DOI
Yi, G. et al. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF DOI
Zeng, J.-H., Su, J., Li, Z.-H., Yan, R.-X. & Li, Y.-D. Synthesis and upconversion luminescence of hexagonal-phase NaYF DOI
Homann, C. et al. NaYF DOI
Chen, B., Kong, W., Wang, N., Zhu, G. & Wang, F. Oleylamine-mediated synthesis of small naybf4 nanoparticles with tunable size. Chem. Mater. 31, 4779–4786 (2019). DOI
Fischer, S., Swabeck, J. K. & Alivisatos, A. P. Controlled isotropic and anisotropic shell growth in β-NaLnF PubMed DOI
Arppe, R. et al. Quenching of the upconversion luminescence of NaYF PubMed DOI
Würth, C., Fischer, S., Grauel, B., Alivisatos, A. P. & Resch-Genger, U. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles. J. Am. Chem. Soc. 140, 4922–4928 (2018). PubMed DOI
Tian, B. et al. Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals. Nat. Commun. 9, 3082 (2018). PubMed DOI PMC
Wang, J. et al. Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat. Mater. 13, 157–162 (2014). PubMed DOI
Johnson, N. J. J. et al. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 139, 3275–3282 (2017). PubMed DOI
Hlaváček, A. et al. Rapid single-step upconversion-linked immunosorbent assay for diclofenac. Microchim. Acta 184, 4159–4165 (2017). DOI
Hlaváček, A. et al. Competitive upconversion-linked immunosorbent assay for the sensitive detection of diclofenac. Anal. Chem. 88, 6011–6017 (2016). PubMed DOI
Farka, Z., Mickert, M. J., Hlaváček, A., Skládal, P. & Gorris, H. H. Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers. Anal. Chem. 89, 11825–11830 (2017). PubMed DOI
Poláchová, V. et al. Click-conjugated photon-upconversion nanoparticles in an immunoassay for honeybee pathogen Melissococcus plutonius. Nanoscale 11, 8343–8351 (2019). PubMed DOI
Farka, Z. et al. Surface design of photon-upconversion nanoparticles for high-contrast immunocytochemistry. Nanoscale 12, 8303–8313 (2020). PubMed DOI
Peltomaa, R. et al. Competitive upconversion-linked immunoassay using peptide mimetics for the detection of the mycotoxin zearalenone. Biosens. Bioelectron. 170, (2020).
Pastucha, M. et al. Upconversion-linked immunoassay for the diagnosis of honeybee disease American foulbrood. IEEE J. Sel. Top. Quantum Electron. 27, 6900311 (2021). DOI
Kraft, M., Würth, C., Palo, E., Soukka, T. & Resch-Genger, U. Colour-optimized quantum yields of Yb, Tm Co-doped upconversion nanocrystals. Methods Appl. Fluoresc. 7, 024001 (2019). PubMed DOI
Zhao, J. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 8, 729–734 (2013). PubMed DOI
Mickert, M. J. et al. Measurement of sub-femtomolar concentrations of prostate-specific antigen through single-molecule counting with an upconversion-linked immunosorbent assay. Anal. Chem. 91, 9435–9441 (2019). PubMed DOI
Brandmeier, J. C. et al. Effect of particle size and surface chemistry of photon-upconversion nanoparticles on analog and digital immunoassays for cardiac troponin. Adv. Healthc. Mater. 10, 2100506 (2021). DOI
Sedlmeier, A. & Gorris, H. H. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem. Soc. Rev. 44, 1526–1560 (2015). PubMed DOI
Andresen, E., Resch-Genger, U. & Schäferling, M. Surface modifications for photon-upconversion-based energy-transfer nanoprobes. Langmuir 35, 5093–5113 (2019). PubMed DOI
Ghisaidoobe, A. B. T. & Chung, S. J. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques. Int. J. Mol. Sci. 15, 22518–22538 (2014). PubMed DOI PMC
Smith, P. K. et al. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85 (1985). PubMed DOI
Rimkus, G., Bremer-Streck, S., Grüttner, C., Kaiser, W. A. & Hilger, I. Can we accurately quantify nanoparticle associated proteins when constructing high-affinity MRI molecular imaging probes? Contrast Media Mol. Imaging 6, 119–125 (2011). PubMed DOI
Zhu, Y., Zhang, W., Li, L., Wu, C. & Xing, J. Preparation of a mixed-mode silica-based sorbent by click reaction and its application in the determination of primary aromatic amines in environmental water samples. Anal. Methods 6, 2102–2111 (2014). DOI
Jayawardena, H. S. N., Liyanage, S. H., Rathnayake, K., Patel, U. & Yan, M. Analytical methods for characterization of nanomaterial surfaces. Anal. Chem. 93, 1889–1911 (2021). PubMed DOI PMC
Sapsford, K. E., Tyner, K. M., Dair, B. J., Deschamps, J. R. & Medintz, I. L. Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal. Chem. 83, 4453–4488 (2011). PubMed DOI
Kostiv, U. et al. Versatile bioconjugation strategies of PEG-modified upconversion nanoparticles for bioanalytical applications. Biomacromolecules 21, 4502–4513 (2020). PubMed DOI
Wilhelm, S. et al. Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability. Nanoscale 7, 1403–1410 (2015). PubMed DOI
Dong, A. et al. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 133, 998–1006 (2011). PubMed DOI
Bogdan, N., Vetrone, F., Ozin, G. A. & Capobianco, J. A. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 11, 835–840 (2011). PubMed DOI
Sun, Y. et al. A supramolecular self-assembly strategy for upconversion nanoparticle bioconjugation. Chem. Commun. 54, 3851–3854 (2018). DOI
Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2, 214–221 (2003). PubMed DOI
Duong, H. T. T. et al. Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles. RSC Adv. 8, 4842–4849 (2018). DOI
Boyer, J.-C., Manseau, M.-P., Murray, J. I. & van Veggel, F. C. J. M. Surface modification of upconverting NaYF PubMed DOI
Cao, P. et al. Improving lanthanide nanocrystal colloidal stability in competitive aqueous buffer solutions using multivalent PEG-phosphonate ligands. Langmuir 28, 12861–12870 (2012). PubMed DOI
Li, L.-L., Wu, P., Hwang, K. & Lu, Y. An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J. Am. Chem. Soc. 135, 2411–2414 (2013). PubMed DOI PMC
Cao, Y., Yang, Y., Shan, Y. & Huang, Z. One-pot and facile fabrication of hierarchical branched Pt–Cu nanoparticles as excellent electrocatalysts for direct methanol fuel cells. ACS Appl. Mater. Interfaces 8, 5998–6003 (2016). PubMed DOI
Kostiv, U. et al. A simple neridronate-based surface coating strategy for upconversion nanoparticles: highly colloidally stable 125I-radiolabeled NaYF PubMed DOI
Vozlič, M. et al. Formation of phosphonate coatings for improved chemical stability of upconverting nanoparticles under physiological conditions. Dalton Trans. 50, 6588–6597 (2021). PubMed DOI
Kostiv, U. et al. Monodisperse core–shell NaYF PubMed DOI PMC
Kostiv, U. et al. Highly colloidally stable trimodal 125 I-radiolabeled PEG-neridronate-coated upconversion/magnetic bioimaging nanoprobes. Sci. Rep. 10, 20016 (2020). PubMed DOI PMC
Palo, E. et al. Effective shielding of NaYF PubMed DOI PMC
Li, L.-L. et al. Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes. Angew. Chem. Int. Ed. 51, 6121–6125 (2012). DOI
Märkl, S., Schroter, A. & Hirsch, T. Small and bright water-protected upconversion nanoparticles with long-time stability in complex, aqueous media by phospholipid membrane coating. Nano Lett. 20, 8620–8625 (2020). PubMed DOI
Beyazit, S. et al. Versatile synthetic strategy for coating upconverting nanoparticles with polymer shells through localized photopolymerization by using the particles as internal light sources. Angew. Chem. Int. Ed. 53, 8919–8923 (2014). DOI
Hlaváček, A., Sedlmeier, A., Skládal, P. & Gorris, H. H. Electrophoretic characterization and purification of silica-coated photon-upconverting nanoparticles and their bioconjugates. ACS Appl. Mater. Interfaces 6, 6930–6935 (2014). PubMed DOI
Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968). DOI
Pisani, C. et al. Experimental separation steps influence the protein content of corona around mesoporous silica nanoparticles. Nanoscale 9, 5769–5772 (2017). PubMed DOI
Stewart, M. H. et al. Multidentate poly(ethylene glycol) ligands provide colloidal stability to semiconductor and metallic nanocrystals in extreme conditions. J. Am. Chem. Soc. 132, 9804–9813 (2010). PubMed DOI
Hlaváček, A. et al. Large-scale purification of photon-upconversion nanoparticles by gel electrophoresis for analogue and digital bioassays. Anal. Chem. 91, 1241–1246 (2019). PubMed DOI
Chen, G. et al. High-purity separation of gold nanoparticle dimers and trimers. J. Am. Chem. Soc. 131, 4218–4219 (2009). PubMed DOI
Hermanson, G. Bioconjugate Techniques (Academic Press, 2008).
Anderson, N. L. & Anderson, N. G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteom. 1, 845–867 (2002). DOI
Cheng, H. et al. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS ONE 6, e17745 (2011). PubMed DOI PMC
Banys-Paluchowski, M., Krawczyk, N. & Fehm, T. Potential role of circulating tumor cell detection and monitoring in breast cancer: a review of current evidence. Front. Oncol. 6, (2016).
Rajagopal, C. & Harikumar, K. B. The origin and functions of exosomes in cancer. Front. Oncol. 8, (2018).
Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015). PubMed DOI
Hayes, J. H. & Barry, M. J. Screening for prostate cancer with the prostate-specific antigen test: a review of current evidence. JAMA 311, 1143–1149 (2014). PubMed DOI
Stephan, C., Jung, K. & Ralla, B. Current biomarkers for diagnosing of prostate cancer. Future Oncol. Lond. Engl. 11, 2743–2755 (2015). DOI
Thaxton, C. S. et al. Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc. Natl. Acad. Sci. USA 106, 18437–18442 (2009). PubMed DOI PMC
Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010). PubMed DOI PMC
Farka, Z. et al. Advances in optical single-molecule detection: en route to supersensitive bioaffinity assays. Angew. Chem. Int. Ed. 59, 10746–10773 (2020). DOI
Tuffaha, M. S. A., Guski, H. & Kristiansen, G. Immunohistochemistry in Tumor Diagnostics (Springer, 2018).
Titford, M. The long history of hematoxylin. Biotech. Histochem. 80, 73–78 (2005). PubMed DOI
Stack, E. C., Wang, C., Roman, K. A. & Hoyt, C. C. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70, 46–58 (2014). PubMed DOI
Coons, A. H., Creech, H. J., Jones, R. N. & Berliner, E. The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J. Immunol. 45, 159–170 (1942).
Yezhelyev, M. V. et al. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 7, 657–667 (2006). PubMed DOI
Zijlmans, H. J. M. A. A. et al. Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. Anal. Biochem. 267, 30–36 (1999). PubMed DOI
Wang, M. et al. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF PubMed DOI
Zhou, L. et al. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers. Nat. Commun. 6, 6938 (2015). PubMed DOI
Liu, C. et al. Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes. Nanoscale 8, 12579–12587 (2016). PubMed DOI
He, H. et al. Bispecific antibody-functionalized upconversion nanoprobe. Anal. Chem. 90, 3024–3029 (2018). PubMed DOI
Dawood, S., Broglio, K., Buzdar, A. U., Hortobagyi, G. N. & Giordano, S. H. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. J. Clin. Oncol. 28, 92–98 (2009). PubMed DOI PMC
Burris, H. A. et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J. Clin. Oncol. 29, 398–405 (2010). PubMed DOI
Swain, S. M. et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 14, 461–471 (2013). PubMed DOI PMC
Ansari, A. A., Parchur, A. K., Thorat, N. D. & Chen, G. New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine. Coord. Chem. Rev. 440, 213971 (2021). DOI
Sedlmeier, A. et al. Highly sensitive laser scanning of photon-upconverting nanoparticles on a macroscopic scale. Anal. Chem. 88, 1835–1841 (2016). PubMed DOI
He, W. et al. Upconversion nanoparticles-based lateral flow immunoassay for point-of-care diagnosis of periodontitis. Sens. Actuators B Chem. 334, 129673 (2021). DOI
Guo, X. et al. Single-line flow assay platform based on orthogonal emissive upconversion nanoparticles. Anal. Chem. 93, 3010–3017 (2021). PubMed DOI
Ji, T. et al. Background-free chromatographic detection of sepsis biomarker in clinical human serum through near-infrared to near-infrared upconversion immunolabeling. ACS Nano 14, 16864–16874 (2020). DOI
Peltomaa, R., Benito-Peña, E., Gorris, H. H. & Moreno-Bondi, M. C. Biosensing based on upconversion nanoparticles for food quality and safety applications. Analyst 146, 13–32 (2021). PubMed DOI
Bhuckory, S. et al. Core or shell? Er DOI
Siefe, C. et al. Sub-20 nm core–shell–shell nanoparticles for bright upconversion and enhanced Förster resonant energy transfer. J. Am. Chem. Soc. 141, 16997–17005 (2019). PubMed DOI PMC
Resch-Genger, U. & Gorris, H. H. Perspectives and challenges of photon-upconversion nanoparticles—Part I: routes to brighter particles and quantitative spectroscopic studies. Anal. Bioanal. Chem. 409, 5855–5874 (2017). PubMed DOI
Gorris, H. H. & Resch-Genger, U. Perspectives and challenges of photon-upconversion nanoparticles—Part II: bioanalytical applications. Anal. Bioanal. Chem. 409, 5875–5890 (2017). PubMed DOI
Chen, X., Peng, D., Ju, Q. & Wang, F. Photon upconversion in core–shell nanoparticles. Chem. Soc. Rev. 44, 1318–1330 (2015). PubMed DOI
Del Rosal, B. & Jaque, D. Upconversion nanoparticles for in vivo applications: limitations and future perspectives. Methods Appl. Fluoresc. 7, 022001 (2019). PubMed DOI
Näreoja, T. et al. Ratiometric sensing and imaging of intracellular pH using polyethylenimine-coated photon upconversion nanoprobes. Anal. Chem. 89, 1501–1508 (2017). PubMed DOI
Zhan, Q. et al. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun. 8, 1058 (2017). PubMed DOI PMC
Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017). PubMed DOI
Lee, C. et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 589, 230–235 (2021). PubMed DOI
Li, Z. & Zhang, Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF PubMed DOI
Podhorodecki, A. et al. Percolation limited emission intensity from upconverting NaYF PubMed DOI
Presolski, S. I., Hong, V. P. & Finn, M. G. Copper-catalyzed azide–alkyne click chemistry for bioconjugation. Curr. Protoc. Chem. Biol. 3, 153–162 (2011). PubMed DOI PMC
Jin, D. et al. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods 15, 415–423 (2018). PubMed DOI
Lu, J. et al. One-step protein conjugation to upconversion nanoparticles. Anal. Chem. 87, 10406–10413 (2015). PubMed DOI
Macpherson, S. A., Webber, G. B. & Moreno-Atanasio, R. Aggregation of nanoparticles in high ionic strength suspensions: effect of Hamaker constant and particle concentration. Adv. Powder Technol. 23, 478–484 (2012). DOI
Lahtinen, S. et al. Disintegration of hexagonal NaYF DOI
Crowther, J. R. The ELISA Guidebook (Humana Press, 2008).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). PubMed DOI PMC
Airy, G. B. On the diffraction of an object-glass with circular aperture. Trans. Camb. Philos. Soc. 5, 283 (1835).
Upconversion Nanoparticle-Based Dot-Blot Immunoassay for Quantitative Biomarker Detection
Artificial Intelligence-Aided Massively Parallel Spectroscopy of Freely Diffusing Nanoscale Entities