Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging

. 2022 Apr ; 17 (4) : 1028-1072. [epub] 20220218

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35181766

Grantová podpora
GO 1968/ 7-1 (Heisenberg Program) Deutsche Forschungsgemeinschaft (German Research Foundation)
GO 1968/6-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
21-03156S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
21-04420S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
LTAB19011 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)

Odkazy

PubMed 35181766
DOI 10.1038/s41596-021-00670-7
PII: 10.1038/s41596-021-00670-7
Knihovny.cz E-zdroje

The detection of cancer biomarkers in histological samples and blood is of paramount importance for clinical diagnosis. Current methods are limited in terms of sensitivity, hindering early detection of disease. We have overcome the shortcomings of currently available staining and fluorescence labeling methods by taking an integrative approach to establish photon-upconversion nanoparticles (UCNP) as a powerful platform for cancer detection. These nanoparticles are readily synthesized in different sizes to yield efficient and tunable short-wavelength light emission under near-infrared excitation, which eliminates optical background interference of the specimen. Here we present a protocol for the synthesis of UCNPs by high-temperature co-precipitation or seed-mediated growth by thermal decomposition, surface modification by silica or poly(ethylene glycol) that renders the particles resistant to nonspecific binding, and the conjugation of streptavidin or antibodies for biological detection. To detect blood-based biomarkers, we present an upconversion-linked immunosorbent assay for the analog and digital detection of the cancer marker prostate-specific antigen. When applied to immunocytochemistry analysis, UCNPs enable the detection of the breast cancer marker human epidermal growth factor receptor 2 with a signal-to-background ratio 50-fold higher than conventional fluorescent labels. UCNP synthesis takes 4.5 d, the preparation of the antibody-silica-UCNP conjugate takes 3 d, the streptavidin-poly(ethylene glycol)-UCNP conjugate takes 2-3 weeks, upconversion-linked immunosorbent assay takes 2-4 d and immunocytochemistry takes 8-10 h. The procedures can be performed after standard laboratory training in nanomaterials research.

Zobrazit více v PubMed

Oliveira, H. et al. Critical considerations on the clinical translation of upconversion nanoparticles (ucnps): recommendations from the European Upconversion Network (COST Action CM1403). Adv. Healthc. Mater. 8, 1801233 (2019).

Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 44, 4743–4768 (2015). PubMed DOI

Liu, T.-M., Conde, J., Lipiński, T., Bednarkiewicz, A. & Huang, C.-C. Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: prospects in photomedicine. Prog. Mater. Sci. 88, 89–135 (2017). DOI

Zhou, B., Shi, B., Jin, D. & Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10, 924–936 (2015). PubMed DOI

Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139–174 (2004). PubMed DOI

Liu, Q., Feng, W., Yang, T., Yi, T. & Li, F. Upconversion luminescence imaging of cells and small animals. Nat. Protoc. 8, 2033–2044 (2013). PubMed DOI

Wang, F., Deng, R. & Liu, X. Preparation of core–shell NaGdF PubMed DOI

Xing, Y. et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2, 1152–1165 (2007). PubMed DOI

Cai, W. & Chen, X. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat. Protoc. 3, 89–96 (2008). PubMed DOI

Gorris, H. H., Ali, R., Saleh, S. M. & Wolfbeis, O. S. Tuning the dual emission of photon-upconverting nanoparticles for ratiometric multiplexed encoding. Adv. Mater. 23, 1652–1655 (2011). PubMed DOI

Gorris, H. H. & Wolfbeis, O. S. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew. Chem. Int. Ed. 52, 3584–3600 (2013). DOI

Hlaváček, A., Křivánková, J., Přikryl, J. & Foret, F. Photon-upconversion barcoding with multiple barcode channels: application for droplet microfluidics. Anal. Chem. 91, 12630–12635 (2019). PubMed DOI

Hlaváček, A., Křivánková, J., Pizúrová, N., Václavek, T. & Foret, F. Photon-upconversion barcode for monitoring an enzymatic reaction with a fluorescence reporter in droplet microfluidics. Analyst 145, 7718–7723 (2020). PubMed DOI

Wu, S. et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl Acad. Sci. USA 106, 10917–10921 (2009). PubMed DOI PMC

Gnach, A., Lipinski, T., Bednarkiewicz, A., Rybka, J. & Capobianco, J. A. Upconverting nanoparticles: assessing the toxicity. Chem. Soc. Rev. 44, 1561–1584 (2015). PubMed DOI

Torresan, M. F. & Wolosiuk, A. Critical aspects on the chemical stability of NaYF PubMed DOI

Modlitbová, P. et al. The effects of photon-upconversion nanoparticles on the growth of radish and duckweed: bioaccumulation, imaging, and spectroscopic studies. Chemosphere 225, 723–734 (2019). PubMed DOI

Haase, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011). DOI

Zhou, J., Liu, Q., Feng, W., Sun, Y. & Li, F. Upconversion luminescent materials: advances and applications. Chem. Rev. 115, 395–465 (2015). PubMed DOI

Menyuk, N., Dwight, K. & Pierce, J. W. Nayf4: Yb,Er—an efficient upconversion phosphor. Appl. Phys. Lett. 21, 159–161 (1972). DOI

Heer, S., Kömpe, K., Güdel, H.-U. & Haase, M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF DOI

Yi, G. et al. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF DOI

Zeng, J.-H., Su, J., Li, Z.-H., Yan, R.-X. & Li, Y.-D. Synthesis and upconversion luminescence of hexagonal-phase NaYF DOI

Homann, C. et al. NaYF DOI

Chen, B., Kong, W., Wang, N., Zhu, G. & Wang, F. Oleylamine-mediated synthesis of small naybf4 nanoparticles with tunable size. Chem. Mater. 31, 4779–4786 (2019). DOI

Fischer, S., Swabeck, J. K. & Alivisatos, A. P. Controlled isotropic and anisotropic shell growth in β-NaLnF PubMed DOI

Arppe, R. et al. Quenching of the upconversion luminescence of NaYF PubMed DOI

Würth, C., Fischer, S., Grauel, B., Alivisatos, A. P. & Resch-Genger, U. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles. J. Am. Chem. Soc. 140, 4922–4928 (2018). PubMed DOI

Tian, B. et al. Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals. Nat. Commun. 9, 3082 (2018). PubMed DOI PMC

Wang, J. et al. Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat. Mater. 13, 157–162 (2014). PubMed DOI

Johnson, N. J. J. et al. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 139, 3275–3282 (2017). PubMed DOI

Hlaváček, A. et al. Rapid single-step upconversion-linked immunosorbent assay for diclofenac. Microchim. Acta 184, 4159–4165 (2017). DOI

Hlaváček, A. et al. Competitive upconversion-linked immunosorbent assay for the sensitive detection of diclofenac. Anal. Chem. 88, 6011–6017 (2016). PubMed DOI

Farka, Z., Mickert, M. J., Hlaváček, A., Skládal, P. & Gorris, H. H. Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers. Anal. Chem. 89, 11825–11830 (2017). PubMed DOI

Poláchová, V. et al. Click-conjugated photon-upconversion nanoparticles in an immunoassay for honeybee pathogen Melissococcus plutonius. Nanoscale 11, 8343–8351 (2019). PubMed DOI

Farka, Z. et al. Surface design of photon-upconversion nanoparticles for high-contrast immunocytochemistry. Nanoscale 12, 8303–8313 (2020). PubMed DOI

Peltomaa, R. et al. Competitive upconversion-linked immunoassay using peptide mimetics for the detection of the mycotoxin zearalenone. Biosens. Bioelectron. 170, (2020).

Pastucha, M. et al. Upconversion-linked immunoassay for the diagnosis of honeybee disease American foulbrood. IEEE J. Sel. Top. Quantum Electron. 27, 6900311 (2021). DOI

Kraft, M., Würth, C., Palo, E., Soukka, T. & Resch-Genger, U. Colour-optimized quantum yields of Yb, Tm Co-doped upconversion nanocrystals. Methods Appl. Fluoresc. 7, 024001 (2019). PubMed DOI

Zhao, J. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 8, 729–734 (2013). PubMed DOI

Mickert, M. J. et al. Measurement of sub-femtomolar concentrations of prostate-specific antigen through single-molecule counting with an upconversion-linked immunosorbent assay. Anal. Chem. 91, 9435–9441 (2019). PubMed DOI

Brandmeier, J. C. et al. Effect of particle size and surface chemistry of photon-upconversion nanoparticles on analog and digital immunoassays for cardiac troponin. Adv. Healthc. Mater. 10, 2100506 (2021). DOI

Sedlmeier, A. & Gorris, H. H. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem. Soc. Rev. 44, 1526–1560 (2015). PubMed DOI

Andresen, E., Resch-Genger, U. & Schäferling, M. Surface modifications for photon-upconversion-based energy-transfer nanoprobes. Langmuir 35, 5093–5113 (2019). PubMed DOI

Ghisaidoobe, A. B. T. & Chung, S. J. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques. Int. J. Mol. Sci. 15, 22518–22538 (2014). PubMed DOI PMC

Smith, P. K. et al. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85 (1985). PubMed DOI

Rimkus, G., Bremer-Streck, S., Grüttner, C., Kaiser, W. A. & Hilger, I. Can we accurately quantify nanoparticle associated proteins when constructing high-affinity MRI molecular imaging probes? Contrast Media Mol. Imaging 6, 119–125 (2011). PubMed DOI

Zhu, Y., Zhang, W., Li, L., Wu, C. & Xing, J. Preparation of a mixed-mode silica-based sorbent by click reaction and its application in the determination of primary aromatic amines in environmental water samples. Anal. Methods 6, 2102–2111 (2014). DOI

Jayawardena, H. S. N., Liyanage, S. H., Rathnayake, K., Patel, U. & Yan, M. Analytical methods for characterization of nanomaterial surfaces. Anal. Chem. 93, 1889–1911 (2021). PubMed DOI PMC

Sapsford, K. E., Tyner, K. M., Dair, B. J., Deschamps, J. R. & Medintz, I. L. Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal. Chem. 83, 4453–4488 (2011). PubMed DOI

Kostiv, U. et al. Versatile bioconjugation strategies of PEG-modified upconversion nanoparticles for bioanalytical applications. Biomacromolecules 21, 4502–4513 (2020). PubMed DOI

Wilhelm, S. et al. Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability. Nanoscale 7, 1403–1410 (2015). PubMed DOI

Dong, A. et al. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 133, 998–1006 (2011). PubMed DOI

Bogdan, N., Vetrone, F., Ozin, G. A. & Capobianco, J. A. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 11, 835–840 (2011). PubMed DOI

Sun, Y. et al. A supramolecular self-assembly strategy for upconversion nanoparticle bioconjugation. Chem. Commun. 54, 3851–3854 (2018). DOI

Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2, 214–221 (2003). PubMed DOI

Duong, H. T. T. et al. Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles. RSC Adv. 8, 4842–4849 (2018). DOI

Boyer, J.-C., Manseau, M.-P., Murray, J. I. & van Veggel, F. C. J. M. Surface modification of upconverting NaYF PubMed DOI

Cao, P. et al. Improving lanthanide nanocrystal colloidal stability in competitive aqueous buffer solutions using multivalent PEG-phosphonate ligands. Langmuir 28, 12861–12870 (2012). PubMed DOI

Li, L.-L., Wu, P., Hwang, K. & Lu, Y. An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J. Am. Chem. Soc. 135, 2411–2414 (2013). PubMed DOI PMC

Cao, Y., Yang, Y., Shan, Y. & Huang, Z. One-pot and facile fabrication of hierarchical branched Pt–Cu nanoparticles as excellent electrocatalysts for direct methanol fuel cells. ACS Appl. Mater. Interfaces 8, 5998–6003 (2016). PubMed DOI

Kostiv, U. et al. A simple neridronate-based surface coating strategy for upconversion nanoparticles: highly colloidally stable 125I-radiolabeled NaYF PubMed DOI

Vozlič, M. et al. Formation of phosphonate coatings for improved chemical stability of upconverting nanoparticles under physiological conditions. Dalton Trans. 50, 6588–6597 (2021). PubMed DOI

Kostiv, U. et al. Monodisperse core–shell NaYF PubMed DOI PMC

Kostiv, U. et al. Highly colloidally stable trimodal 125 I-radiolabeled PEG-neridronate-coated upconversion/magnetic bioimaging nanoprobes. Sci. Rep. 10, 20016 (2020). PubMed DOI PMC

Palo, E. et al. Effective shielding of NaYF PubMed DOI PMC

Li, L.-L. et al. Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes. Angew. Chem. Int. Ed. 51, 6121–6125 (2012). DOI

Märkl, S., Schroter, A. & Hirsch, T. Small and bright water-protected upconversion nanoparticles with long-time stability in complex, aqueous media by phospholipid membrane coating. Nano Lett. 20, 8620–8625 (2020). PubMed DOI

Beyazit, S. et al. Versatile synthetic strategy for coating upconverting nanoparticles with polymer shells through localized photopolymerization by using the particles as internal light sources. Angew. Chem. Int. Ed. 53, 8919–8923 (2014). DOI

Hlaváček, A., Sedlmeier, A., Skládal, P. & Gorris, H. H. Electrophoretic characterization and purification of silica-coated photon-upconverting nanoparticles and their bioconjugates. ACS Appl. Mater. Interfaces 6, 6930–6935 (2014). PubMed DOI

Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968). DOI

Pisani, C. et al. Experimental separation steps influence the protein content of corona around mesoporous silica nanoparticles. Nanoscale 9, 5769–5772 (2017). PubMed DOI

Stewart, M. H. et al. Multidentate poly(ethylene glycol) ligands provide colloidal stability to semiconductor and metallic nanocrystals in extreme conditions. J. Am. Chem. Soc. 132, 9804–9813 (2010). PubMed DOI

Hlaváček, A. et al. Large-scale purification of photon-upconversion nanoparticles by gel electrophoresis for analogue and digital bioassays. Anal. Chem. 91, 1241–1246 (2019). PubMed DOI

Chen, G. et al. High-purity separation of gold nanoparticle dimers and trimers. J. Am. Chem. Soc. 131, 4218–4219 (2009). PubMed DOI

Hermanson, G. Bioconjugate Techniques (Academic Press, 2008).

Anderson, N. L. & Anderson, N. G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteom. 1, 845–867 (2002). DOI

Cheng, H. et al. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS ONE 6, e17745 (2011). PubMed DOI PMC

Banys-Paluchowski, M., Krawczyk, N. & Fehm, T. Potential role of circulating tumor cell detection and monitoring in breast cancer: a review of current evidence. Front. Oncol. 6, (2016).

Rajagopal, C. & Harikumar, K. B. The origin and functions of exosomes in cancer. Front. Oncol. 8, (2018).

Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015). PubMed DOI

Hayes, J. H. & Barry, M. J. Screening for prostate cancer with the prostate-specific antigen test: a review of current evidence. JAMA 311, 1143–1149 (2014). PubMed DOI

Stephan, C., Jung, K. & Ralla, B. Current biomarkers for diagnosing of prostate cancer. Future Oncol. Lond. Engl. 11, 2743–2755 (2015). DOI

Thaxton, C. S. et al. Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc. Natl. Acad. Sci. USA 106, 18437–18442 (2009). PubMed DOI PMC

Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010). PubMed DOI PMC

Farka, Z. et al. Advances in optical single-molecule detection: en route to supersensitive bioaffinity assays. Angew. Chem. Int. Ed. 59, 10746–10773 (2020). DOI

Tuffaha, M. S. A., Guski, H. & Kristiansen, G. Immunohistochemistry in Tumor Diagnostics (Springer, 2018).

Titford, M. The long history of hematoxylin. Biotech. Histochem. 80, 73–78 (2005). PubMed DOI

Stack, E. C., Wang, C., Roman, K. A. & Hoyt, C. C. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70, 46–58 (2014). PubMed DOI

Coons, A. H., Creech, H. J., Jones, R. N. & Berliner, E. The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J. Immunol. 45, 159–170 (1942).

Yezhelyev, M. V. et al. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 7, 657–667 (2006). PubMed DOI

Zijlmans, H. J. M. A. A. et al. Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. Anal. Biochem. 267, 30–36 (1999). PubMed DOI

Wang, M. et al. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF PubMed DOI

Zhou, L. et al. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers. Nat. Commun. 6, 6938 (2015). PubMed DOI

Liu, C. et al. Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes. Nanoscale 8, 12579–12587 (2016). PubMed DOI

He, H. et al. Bispecific antibody-functionalized upconversion nanoprobe. Anal. Chem. 90, 3024–3029 (2018). PubMed DOI

Dawood, S., Broglio, K., Buzdar, A. U., Hortobagyi, G. N. & Giordano, S. H. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. J. Clin. Oncol. 28, 92–98 (2009). PubMed DOI PMC

Burris, H. A. et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J. Clin. Oncol. 29, 398–405 (2010). PubMed DOI

Swain, S. M. et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 14, 461–471 (2013). PubMed DOI PMC

Ansari, A. A., Parchur, A. K., Thorat, N. D. & Chen, G. New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine. Coord. Chem. Rev. 440, 213971 (2021). DOI

Sedlmeier, A. et al. Highly sensitive laser scanning of photon-upconverting nanoparticles on a macroscopic scale. Anal. Chem. 88, 1835–1841 (2016). PubMed DOI

He, W. et al. Upconversion nanoparticles-based lateral flow immunoassay for point-of-care diagnosis of periodontitis. Sens. Actuators B Chem. 334, 129673 (2021). DOI

Guo, X. et al. Single-line flow assay platform based on orthogonal emissive upconversion nanoparticles. Anal. Chem. 93, 3010–3017 (2021). PubMed DOI

Ji, T. et al. Background-free chromatographic detection of sepsis biomarker in clinical human serum through near-infrared to near-infrared upconversion immunolabeling. ACS Nano 14, 16864–16874 (2020). DOI

Peltomaa, R., Benito-Peña, E., Gorris, H. H. & Moreno-Bondi, M. C. Biosensing based on upconversion nanoparticles for food quality and safety applications. Analyst 146, 13–32 (2021). PubMed DOI

Bhuckory, S. et al. Core or shell? Er DOI

Siefe, C. et al. Sub-20 nm core–shell–shell nanoparticles for bright upconversion and enhanced Förster resonant energy transfer. J. Am. Chem. Soc. 141, 16997–17005 (2019). PubMed DOI PMC

Resch-Genger, U. & Gorris, H. H. Perspectives and challenges of photon-upconversion nanoparticles—Part I: routes to brighter particles and quantitative spectroscopic studies. Anal. Bioanal. Chem. 409, 5855–5874 (2017). PubMed DOI

Gorris, H. H. & Resch-Genger, U. Perspectives and challenges of photon-upconversion nanoparticles—Part II: bioanalytical applications. Anal. Bioanal. Chem. 409, 5875–5890 (2017). PubMed DOI

Chen, X., Peng, D., Ju, Q. & Wang, F. Photon upconversion in core–shell nanoparticles. Chem. Soc. Rev. 44, 1318–1330 (2015). PubMed DOI

Del Rosal, B. & Jaque, D. Upconversion nanoparticles for in vivo applications: limitations and future perspectives. Methods Appl. Fluoresc. 7, 022001 (2019). PubMed DOI

Näreoja, T. et al. Ratiometric sensing and imaging of intracellular pH using polyethylenimine-coated photon upconversion nanoprobes. Anal. Chem. 89, 1501–1508 (2017). PubMed DOI

Zhan, Q. et al. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun. 8, 1058 (2017). PubMed DOI PMC

Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017). PubMed DOI

Lee, C. et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 589, 230–235 (2021). PubMed DOI

Li, Z. & Zhang, Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF PubMed DOI

Podhorodecki, A. et al. Percolation limited emission intensity from upconverting NaYF PubMed DOI

Presolski, S. I., Hong, V. P. & Finn, M. G. Copper-catalyzed azide–alkyne click chemistry for bioconjugation. Curr. Protoc. Chem. Biol. 3, 153–162 (2011). PubMed DOI PMC

Jin, D. et al. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods 15, 415–423 (2018). PubMed DOI

Lu, J. et al. One-step protein conjugation to upconversion nanoparticles. Anal. Chem. 87, 10406–10413 (2015). PubMed DOI

Macpherson, S. A., Webber, G. B. & Moreno-Atanasio, R. Aggregation of nanoparticles in high ionic strength suspensions: effect of Hamaker constant and particle concentration. Adv. Powder Technol. 23, 478–484 (2012). DOI

Lahtinen, S. et al. Disintegration of hexagonal NaYF DOI

Crowther, J. R. The ELISA Guidebook (Humana Press, 2008).

Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). PubMed DOI PMC

Airy, G. B. On the diffraction of an object-glass with circular aperture. Trans. Camb. Philos. Soc. 5, 283 (1835).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Optical Microscopy and Deep Learning for Absolute Quantification of Nanoparticles on a Macroscopic Scale and Estimating Their Number Concentration

. 2025 Feb 11 ; 97 (5) : 2588-2592. [epub] 20250131

Amplification-Free Attomolar Detection of Short Nucleic Acids with Upconversion Luminescence: Eliminating Nonspecific Binding by Hybridization Complex Transfer

. 2025 Jan 28 ; 97 (3) : 1775-1782. [epub] 20250112

Luminescent photon-upconversion nanoparticles with advanced functionalization for smart sensing and imaging

. 2024 Aug 21 ; 191 (9) : 551. [epub] 20240821

Upconversion Nanoparticle-Based Dot-Blot Immunoassay for Quantitative Biomarker Detection

. 2024 Jun 25 ; 96 (25) : 10237-10245. [epub] 20240613

Bright photon upconversion in LiYbF4:Tm3+@LiYF4 nanoparticles and their application for singlet oxygen generation and in immunoassay for SARS-CoV-2 nucleoprotein

. 2023 Nov ; 649 () : 49-57. [epub] 20230611

Artificial Intelligence-Aided Massively Parallel Spectroscopy of Freely Diffusing Nanoscale Entities

. 2023 Aug 22 ; 95 (33) : 12256-12263. [epub] 20230808

Digital and Analog Detection of SARS-CoV-2 Nucleocapsid Protein via an Upconversion-Linked Immunosorbent Assay

. 2023 Mar 14 ; 95 (10) : 4753-4759. [epub] 20230227

Up and down the spectrum: upconversion nanocrystal and semiconductor material fused into a single nanocomposite

. 2022 Jun 14 ; 11 (1) : 179. [epub] 20220614

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...