Luminescent photon-upconversion nanoparticles with advanced functionalization for smart sensing and imaging

. 2024 Aug 21 ; 191 (9) : 551. [epub] 20240821

Jazyk angličtina Země Rakousko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39167235

Grantová podpora
CZ.02.01.01/00/22_008/0004596 Ministry of Education of the Czech Republic
21-03156S Czech Science Foundation

Odkazy

PubMed 39167235
DOI 10.1007/s00604-024-06615-7
PII: 10.1007/s00604-024-06615-7
Knihovny.cz E-zdroje

Photon-upconversion nanoparticles (UCNP) have already been established as labels for affinity assays in analog and digital formats. Here, advanced, or smart, systems based on UCNPs coated with active shells, fluorescent dyes, and metal and semiconductor nanoparticles participating in energy transfer reactions are reviewed. In addition, switching elements can be embedded in such assemblies and provide temporal and spatial control of action, which is important for intracellular imaging and monitoring activities. Demonstration and critical comments on representative approaches demonstrating the progress in the use of such UCNPs in bioanalytical assays, imaging, and monitoring of target molecules in cells are reported, including particular examples in the field of cancer theranostics.

Zobrazit více v PubMed

Chen G, Qiu H, Prasad PN, Chen X (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114:5161–5214. https://doi.org/10.1021/cr400425h PubMed DOI PMC

Zheng K, Loh KY, Wang Y, Chen Q, Fan J, Jung T, Nam SH, Suh YD, Liu X (2019) Recent advances in upconversion nanocrystals: expanding the kaleidoscopic toolbox for emerging applications. Nano Today 29:100797. https://doi.org/10.1016/j.nantod.2019.100797 DOI

Zhu X, Zhang J, Liu J, Zhang Y (2019) Recent progress of rare-Earth doped upconversion nanoparticles: synthesis, optimization, and applications. Adv Sci 6(1901):58. https://doi.org/10.1002/advs.201901358 DOI

Schroter A, Hirsch T (2023) Control of luminescence and interfacial properties as perspective for upconversion nanoparticles. Small 20. https://doi.org/10.1002/smll.202306042

Andresen E, Resch-Genger U, Schäferling M (2019) Surface modifications for photon-upconversion-based energy-transfer nanoprobes. Langmuir 35:5093–5113. https://doi.org/10.1021/acs.langmuir.9b00238 PubMed DOI

Wen S, Zhou J, Schuck PJ, Suh YD, Schmidt TW, Jin D (2019) Future and challenges for hybrid upconversion nanosystems. Nat Photonics 13:828–838. https://doi.org/10.1038/s41566-019-0528-x DOI

Wang X, Valiev RR, Ohulchanskyy TY, Ågren H, Yang C, Chen G (2017) Dye-sensitized lanthanide-doped upconversion nanoparticles. Chem Soc Rev 46:4150–4167. https://doi.org/10.1039/c7cs00053g PubMed DOI

Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44:4743–4768. https://doi.org/10.1039/c4cs00392f PubMed DOI

Li M, Zhao J, Chu H, Mi Y, Zhou Z, Di Z, Zhao M, Li L (2018) Light-activated nanoprobes for biosensing and imaging. Adv Mater 31:1804745. https://doi.org/10.1002/adma.201804745 DOI

Algar WR, Hildebrandt N, Vogel SS, Medintz IL (2019) FRET as a biomolecular research tool — understanding its potential while avoiding pitfalls. Nat Methods 16:815–829. https://doi.org/10.1038/s41592-019-0530-8 PubMed DOI

Liu Q, Zhang Y, Peng CS, Yang T, Joubert L-M, Chu S (2018) Single upconversion nanoparticle imaging at sub-10 W cm PubMed DOI PMC

Farka Z, Mickert MJ, Pastucha M, Mikušová Z, Skládal P, Gorris HH (2020) Advances in optical single-molecule detection: en-route to supersensitive bioaffinity assays. Angew Chem Int Ed 59:10746–10773. https://doi.org/10.1002/anie.201913924 DOI

Liu J, Pan L, Shang C, Lu B, Wu R, Feng Y, Chen W, Zhang R, Bu J, Xiong Z, Bu W, Du J, Shi J (2020) A highly sensitive and selective nanosensor for near-infrared potassium imaging. Sci. Adv. 6. https://doi.org/10.1126/sciadv.aax9757 .

Gao R, Xu L, Hao C, Xu C, Kuang H (2019) Circular polarized light activated chiral satellite nanoprobes for the imaging and analysis of multiple metal ions in living cells. Angew Chem Int Ed 58:3913–3917. https://doi.org/10.1002/anie.201814282 DOI

Abramson R, Wilson H, Natile MM, Natrajan LS (2023) Development of an Fe PubMed DOI PMC

Zhang R, Liang L, Meng Q, Zhao J, Ta HT, Li L, Zhang Z, Sultanbawa Y, Xu ZP (2018) Responsive upconversion nanoprobe for background-free hypochlorous acid detection and bioimaging. Small 15:1803712. https://doi.org/10.1002/smll.201803712 DOI

Zou X, Zhou X, Cao C, Lu W, Yuan W, Liu Q, Feng W, Li F (2019) Dye-sensitized upconversion nanocomposites for ratiometric semi-quantitative detection of hypochlorite in vivo. Nanoscale 11:2959–2965. https://doi.org/10.1039/c8nr09531k PubMed DOI

Rong Y, Li H, Ouyang Q, Ali S, Chen Q (2020) Rapid and sensitive detection of diazinon in food based on the FRET between rare-earth doped upconversion nanoparticles and graphene oxide. Spectrochim Acta A 239:118500. https://doi.org/10.1016/j.saa.2020.118500 DOI

Yang L, Sun H, Wang X, Yao W, Zhang W, Jiang L (2019) An aptamer based aggregation assay for the neonicotinoid insecticide acetamiprid using fluorescent upconversion nanoparticles and DNA functionalized gold nanoparticles. Microchim. Acta 186. https://doi.org/10.1007/s00604-019-3422-9 .

Li J, Zhang C, Yin M, Zhang Z, Chen Y, Deng Q, Wang S (2019) Surfactant-sensitized covalent organic frameworks-functionalized lanthanide-doped nanocrystals: an ultrasensitive sensing platform for perfluorooctane sulfonate. ACS Omega 4:15947–15955. https://doi.org/10.1021/acsomega.9b01996 PubMed DOI PMC

Gu Y, Wang J, Shi H, Pan M, Liu B, Fang G, Wang S (2019) Electrochemiluminescence sensor based on upconversion nanoparticles and oligoaniline-crosslinked gold nanoparticles imprinting recognition sites for the determination of dopamine. Biosens Bioelectron 128:129–136. https://doi.org/10.1016/j.bios.2018.12.043 PubMed DOI

Li C-Y, Zheng B, Liu Y-H, Gao J-L, Zheng M-Q, Pang D-W, Tang H-W (2020) A boosting upconversion luminescent resonance energy transfer and biomimetic periodic chip integrated CRISPR/Cas12a biosensor for functional DNA regulated transduction of non-nucleic acid targets. Biosens Bioelectron 169:112650. https://doi.org/10.1016/j.bios.2020.112650 PubMed DOI

Zheng J, Wu Y, Xing D, Zhang T (2019) Synchronous detection of glutathione/hydrogen peroxide for monitoring redox status in vivo with a ratiometric upconverting nanoprobe. Nano Res 12:931–938. https://doi.org/10.1007/s12274-019-2327-6 DOI

Wang F, Zhang C, Qu X, Cheng S, Xian Y (2019) Cationic cyanine chromophore-assembled upconversion nanoparticles for sensing and imaging H PubMed DOI

Abraham MK, Madanan AS, Varghese S, Shkhair AI, Indongo G, Rajeevan G, Vijila NS, George S (2024) MnO PubMed DOI

Luo Z, Zhang L, Zeng R, Su L, Tang D (2018) Near-infrared light-excited core–core–shell UCNP@Au@CdS upconversion nanospheres for ultrasensitive photoelectrochemical enzyme immunoassay. Anal Chem 90:9568–9575. https://doi.org/10.1021/acs.analchem.8b02421 PubMed DOI

Khan IM, Niazi S, Mohsin A, Zhou Y (2024) Soft scaffold aided plasmon-enhanced upconversion luminescence and its application in vascular endothelial growth factor (VEGF) detection. Sens Actuat B 410:135657. https://doi.org/10.1016/j.snb.2024.135657 DOI

Chen J, Ho WKH, Yin B, Zhang Q, Li C, Yan J, Huang Y, Hao J, Yi C, Zhang Y, Wong SHD, Yang M (2024) Magnetic-responsive upconversion luminescence resonance energy transfer (LRET) biosensor for ultrasensitive detection of SARS-CoV-2 spike protein. Biosens Bioelectron 248:115969. https://doi.org/10.1016/j.bios.2023.115969 PubMed DOI

Tseng Y-T, Chiu Y-C, Pham V-D, Wu W-H, Le-Vu TT, Wang C-H, Kuo S-W, Chan MWY, Lin C-H, Li S-C, Li Y-D, Kan H-C, Lin J-Y, Chau L-K, Hsu C-C (2024) Ultrasensitive upconversion nanoparticle immunoassay for human serum cardiac troponin i detection achieved with resonant waveguide grating. ACS Sens 9:455–463. https://doi.org/10.1021/acssensors.3c02240 PubMed DOI

Liu L, Zhang H, Wang Z, Song D (2019) Peptide-functionalized upconversion nanoparticles-based FRET sensing platform for caspase-9 activity detection in vitro and in vivo. Biosens Bioelectron 141:111403. https://doi.org/10.1016/j.bios.2019.111403 PubMed DOI

Shao Y, Zhao J, Yuan J, Zhao Y, Li L (2021) Organelle-specific photoactivation of DNA nanosensors for precise profiling of subcellular enzymatic activity. Angew Chem Int Ed 60:8923–8931. https://doi.org/10.1002/anie.202016738 DOI

Ma W, Fu P, Sun M, Xu L, Kuang H, Xu C (2017) Dual quantification of microRNAs and telomerase in living cells. J Am Chem Soc 139:11752–11759. https://doi.org/10.1021/jacs.7b03617 PubMed DOI

Guo J, Chen S, Tian S, Liu K, Ni J, Zhao M, Kang Y, Ma X, Guo J (2021) 5G-enabled ultra-sensitive fluorescence sensor for proactive prognosis of COVID-19. Biosens Bioelectron 181:113160. https://doi.org/10.1016/j.bios.2021.113160 PubMed DOI PMC

He W, Wang M, Cheng P, Liu Y, You M (2024) Recent advances of upconversion nanoparticles-based lateral flow assays for point-of-care testing. TrAC Trends Anal Chem 173:117641. https://doi.org/10.1016/j.trac.2024.117641 DOI

Ekman M, Salminen T, Raiko K, Soukka T, Gidwani K, Martiskainen I (2024) Spectrally separated dual-label upconversion luminescence lateral flow assay for cancer-specific STn-glycosylation in CA125 and CA15-3. Anal Bioanal Chem 416:3251–3260. https://doi.org/10.1007/s00216-024-05275-z PubMed DOI PMC

Hlaváček A, Uhrová K, Weisová J, Křivánková J (2023) Artificial intelligence-aided massively parallel spectroscopy of freely diffusing nanoscale entities. Anal Chem 95:12256–12263. https://doi.org/10.1021/acs.analchem.3c01043 PubMed DOI PMC

Qu A, Sun M, Xu L, Hao C, Wu X, Xu C, Kotov NA, Kuang H (2019) Quantitative zeptomolar imaging of miRNA cancer markers with nanoparticle assemblies. Proc Natl Acad Sci USA 116:3391–3400. https://doi.org/10.1073/pnas.1810764116 PubMed DOI PMC

Zhang Y, Zhang Y, Zhang X, Li Y, He Y, Liu Y, Ju H (2020) A photo zipper locked DNA nanomachine with an internal standard for precise miRNA imaging in living cells. Chem Sci 11:6289–6296. https://doi.org/10.1039/d0sc00394h PubMed DOI PMC

Chen F, Lu Q, Zhang Y, Yao S (2019) Strand displacement dual amplification miRNAs strategy with FRET between NaYF DOI

Pini F, Francés-Soriano L, Andrigo V, Natile MM, Hildebrandt N (2023) Optimizing upconversion nanoparticles for FRET biosensing. ACS Nano 17:4971–4984. https://doi.org/10.1021/acsnano.2c12523 PubMed DOI

Bhuckory S, Lahtinen S, Höysniemi N, Guo J, Qiu X, Soukka T, Hildebrandt N (2023) Understanding FRET in upconversion nanoparticle nucleic acid biosensors. Nano Lett 23:2253–2261. https://doi.org/10.1021/acs.nanolett.2c04899 PubMed DOI

Jin B, Wang S, Lin M, Jin Y, Zhang S, Cui X, Gong Y, Li A, Xu F, Lu TJ (2017) Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosens Bioelectron 90:525–533. https://doi.org/10.1016/j.bios.2016.10.029 PubMed DOI

Yin M, Jing C, Li H, Deng Q, Wang S (2020) Surface chemistry modified upconversion nanoparticles as fluorescent sensor array for discrimination of foodborne pathogenic bacteria. J Nanobiotechnol 18. https://doi.org/10.1186/s12951-020-00596-4 .

Wang H, Li Y, Yang M, Wang P, Gu Y (2019) FRET-based upconversion nanoprobe sensitized by Nd PubMed DOI

Liu Y, Ouyang Q, Li H, Chen M, Zhang Z, Chen Q (2018) Turn-on fluoresence sensor for Hg PubMed DOI

Runowski M, Stopikowska N, Szeremeta D, Goderski S, Skwierczyńska M, Lis S (2019) Upconverting lanthanide fluoride Core@Shell nanorods for luminescent thermometry in the first and second biological windows: β-NaYF PubMed DOI

Runowski M, Goderski S, Przybylska D, Grzyb T, Lis S, Martín IR (2020) Sr DOI

Geitenbeek RG, Vollenbroek JC, Weijgertze HMH, Tregouet CBM, Nieuwelink A-E, Kennedy CL, Weckhuysen BM, Lohse D, van Blaaderen A, van den Berg A, Odijk M, Meijerink A (2019) Luminescence thermometry for in situ temperature measurements in microfluidic devices. Lab Chip 19:1236–1246. https://doi.org/10.1039/c8lc01292j PubMed DOI

Bednarkiewicz A, Marciniak L, Carlos LD, Jaque D (2020) Standardizing luminescence nanothermometry for biomedical applications. Nanoscale 12:14405–14421. https://doi.org/10.1039/d0nr03568h PubMed DOI

Bastos ARN, Brites CDS, Rojas‐Gutierrez PA, DeWolf C, Ferreira RAS, Capobianco JA, Carlos LD (2019) Thermal properties of lipid bilayers determined using upconversion nanothermometry. Adv. Funct. Materials 29. https://doi.org/10.1002/adfm.201905474 .

Guo J, Zhou B, Yang C, Dai Q, Kong L (2019) Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring. Adv Funct Mater 29:1902898. https://doi.org/10.1002/adfm.201902898 DOI

Puccini A, Liu N, Hemmer E (2024) Lanthanide-based nanomaterials for temperature sensing in the near-infrared spectral region: illuminating progress and challenges. Nanoscale 16:10975–10993. https://doi.org/10.1039/D4NR00307A PubMed DOI

Hlaváček A, Farka Z, Mickert MJ, Kostiv U, Brandmeier JC, Horák D, Skládal P, Foret F, Gorris HH (2022) Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. Nat Protoc 17:1028–1072. https://doi.org/10.1038/s41596-021-00670-7 PubMed DOI

Liu L, Wang S, Zhao B, Pei P, Fan Y, Li X, Zhang F (2018) Er DOI

Shao W, Chen G, Kuzmin A, Kutscher HL, Pliss A, Ohulchanskyy TY, Prasad PN (2016) Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window. J Am Chem Soc 138:16192–16195. https://doi.org/10.1021/jacs.6b08973 PubMed DOI PMC

Ding C, Cheng S, Zhang C, Xiong Y, Ye M, Xian Y (2019) Ratiometric upconversion luminescence nanoprobe with near-infrared Ag PubMed DOI

Ghosh S, Chang Y-F, Yang D-M, Chattopadhyay S (2020) Upconversion nanoparticle-mOrange protein FRET nanoprobes for self-ratiometric/ratiometric determination of intracellular pH, and single cell pH imaging. Biosens Bioelectron 155:112115. https://doi.org/10.1016/j.bios.2020.112115 PubMed DOI

Zhan Y, Mao Y, Sun P, Liu C, Gou H, Qi H, Chen G, Hu S, Tian B (2024) Tumor-associated antigen-specific cell imaging based on upconversion luminescence and nucleic acid rolling circle amplification. Microchim Acta 191:248. https://doi.org/10.1007/s00604-024-06331-2 DOI

Dukhno O, Ghosh S, Greiner V, Bou S, Godet J, Muhr V, Buchner M, Hirsch T, Mély Y, Przybilla F (2024) Targeted single particle tracking with upconverting nanoparticles. ACS Appl Mater Interfaces 16:11217–11227. https://doi.org/10.1021/acsami.3c17116 PubMed DOI

Trifanova EM, Babayeva G, Khvorostina MA, Atanova AV, Nikolaeva ME, Sochilina AV, Khaydukov EV, Popov VK (2023) Photoluminescent scaffolds based on natural and synthetic biodegradable polymers for bioimaging and tissue engineering. Life 13:870. https://doi.org/10.3390/life13040870 PubMed DOI PMC

Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F (2021) Supramolecular cancer nanotheranostics. Chem Soc Rev 50:2839–2891. https://doi.org/10.1039/d0cs00011f PubMed DOI

Wang J, Potocny AM, Rosenthal J, Day ES (2019) Gold nanoshell-linear tetrapyrrole conjugates for near infrared-activated dual photodynamic and photothermal therapies. ACS Omega 5:926–940. https://doi.org/10.1021/acsomega.9b04150 PubMed DOI PMC

Zhou Z, Song J, Nie L, Chen X (2016) Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev 45:6597–6626. https://doi.org/10.1039/c6cs00271d PubMed DOI PMC

Lan M, Zhao S, Liu W, Lee C, Zhang W, Wang P (2019) Photosensitizers for photodynamic therapy. Adv Healthcare Mater 8:1900132. https://doi.org/10.1002/adhm.201900132 DOI

Fan W, Huang P, Chen X (2016) Overcoming the Achilles’ heel of photodynamic therapy. Chem Soc Rev 45:6488–6519. https://doi.org/10.1039/c6cs00616g PubMed DOI

Shen Y, Shuhendler AJ, Ye D, Xu J-J, Chen H-Y (2016) Two-photon excitation nanoparticles for photodynamic therapy. Chem Soc Rev 45:6725–6741. https://doi.org/10.1039/c6cs00442c PubMed DOI

Kong X, Cheng R, Wang J, Fang Y, Hwang KC (2021) Nanomedicines inhibiting tumor metastasis and recurrence and their clinical applications. Nano Today 36:101004. https://doi.org/10.1016/j.nantod.2020.101004 DOI

Wang Y, Wu J, Chen M, Zhang J, Sun X, Zhou H, Gao Z (2024) Application of near-infrared-activated and ATP-responsive trifunctional upconversion nano-jelly for in vivo tumor imaging and synergistic therapy. Biosens Bioelectron 250:116094. https://doi.org/10.1016/j.bios.2024.116094 PubMed DOI

Xu J, Yang P, Sun M, Bi H, Liu B, Yang D, Gai S, He F, Lin J (2017) Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano 11:4133–4144. https://doi.org/10.1021/acsnano.7b00944 PubMed DOI

Xu J, Han W, Yang P, Jia T, Dong S, Bi H, Gulzar A, Yang D, Gai S, He F, Lin J, Li C (2018) Tumor Microenvironment‐Responsive Mesoporous MnO

Zhang P, Hou Y, Zeng J, Li Y, Wang Z, Zhu R, Ma T, Gao M (2019) Coordinatively unsaturated Fe DOI

Nsubuga A, Morice K, Fayad N, Pini F, Josserand V, Le Guével X, Alhabi A, Henry M, Puchan Sanchez D, Plassais N, Josse N, Boixel J, Blanchard P, Cabanetos C, Hildebrand N (2024) Sub 20 nm upconversion photosensitizers for near-infrared photodynamic theranostics. Adv. Funct. Mater. 2410077. https://doi.org/10.1002/adfm.202410077

Wang M, Chang M, Li C, Chen Q, Hou Z, Xing B, Lin J (2021) Tumor-microenvironment-activated reactive oxygen species amplifier for enzymatic cascade cancer starvation / chemodynamic / immunotherapy. Adv Mater 34:2106010. https://doi.org/10.1002/adma.202106010 DOI

He L, Ni Q, Mu J, Fan W, Liu L, Wang Z, Li L, Tang W, Liu Y, Cheng Y, Tang L, Yang Z, Liu Y, Zou J, Yang W, Jacobson O, Zhang F, Huang P, Chen X (2020) Solvent-assisted self-assembly of a metal-organic framework based biocatalyst for cascade reaction driven photodynamic therapy. J Am Chem Soc 142:6822–6832. https://doi.org/10.1021/jacs.0c02497 PubMed DOI

Panikar SS, Ramírez-García G, Vallejo-Cardona AA, Banu N, Patrón-Soberano OA, Cialla-May D, Camacho-Villegas TA, de la Rosa E (2019) Novel anti-HER2 peptide-conjugated theranostic nanoliposomes combining NaYF PubMed DOI

Li Y, Zeng S, Hao J (2019) Non-invasive optical guided tumor metastasis/vessel imaging by using lanthanide nanoprobe with enhanced down-shifting emission beyond 1500 nm. ACS Nano 13:248–259. https://doi.org/10.1021/acsnano.8b05431 PubMed DOI

Ren F, Liu H, Zhang H, Jiang Z, Xia B, Genevois C, He T, Allix M, Sun Q, Li Z, Gao M (2020) Engineering NIR-IIb fluorescence of Er-based lanthanide nanoparticles for through-skull targeted imaging and imaging-guided surgery of orthotopic glioma. Nano Today 34:100905. https://doi.org/10.1016/j.nantod.2020.100905 DOI

Li X, Jiang M, Li Y, Xue Z, Zeng S, Liu H (2019) 808 nm laser-triggered NIR-II emissive rare-earth nanoprobes for small tumor detection and blood vessel imaging. Mater Sci Eng C 100:260–268. https://doi.org/10.1016/j.msec.2019.02.106 DOI

Tian R, Sun W, Li M, Long S, Li M, Fan J, Guo L, Peng X (2019) Development of a novel anti-tumor theranostic platform: a near-infrared molecular upconversion sensitizer for deep-seated cancer photodynamic therapy. Chem Sci 10:10106–10112. https://doi.org/10.1039/c9sc04034j PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...