Liraglutide-Conjugated Poly(methyl vinyl ether-alt-maleic acid)-Coated Core-Shell Upconversion Nanoparticles for Theranostics of Diabetes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40665745
PubMed Central
PMC12314866
DOI
10.1021/acsami.5c11275
Knihovny.cz E-zdroje
- Klíčová slova
- Flamma, diabetes, liraglutide, nanoparticles, poly(methyl vinyl ether-alt-maleic acid), theranostics, upconversion,
- MeSH
- beta-buňky metabolismus účinky léků MeSH
- experimentální diabetes mellitus * farmakoterapie diagnostické zobrazování MeSH
- inzulin metabolismus MeSH
- lidé MeSH
- liraglutid * chemie farmakologie MeSH
- maleáty * chemie MeSH
- myši MeSH
- nanočástice * chemie MeSH
- polyvinyly chemie MeSH
- teranostická nanomedicína * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fluoridy MeSH
- inzulin MeSH
- liraglutid * MeSH
- maleáty * MeSH
- polyvinyly MeSH
- sodium yttriumtetrafluoride MeSH Prohlížeč
- ytrium MeSH
In the diagnostics of diabetes, specific targeting of drugs (e.g., liraglutide) to insulin-deficient β-cells with their simultaneous noninvasive imaging is currently needed. In this report, liraglutide (LGL)-conjugated poly(methyl vinyl ether-alt-maleic acid) (PMVEMA)-coated core-shell NaYF4:Yb,Er,Fe@NaYF4:Nd upconversion nanoparticles (CS-UCNPs) have been developed, thoroughly physicochemically characterized, and evaluated in vivo. Novel codoping of Fe2+, Yb3+, and Er3+ ions in the host NaYF4 induced upconversion emission in the red region at both 980 and 808 nm excitation, making the particles suitable for deep-tissue imaging. Surface functionalization with PMVEMA provided colloidal stability and facilitated covalent conjugation with LGL, enabling targeted binding to GLP-1 receptors on pancreatic β-cells, increasing glucose-stimulated insulin secretion from isolated Langerhans islets. Biocompatibility of CS-UCNP@PMVEMA-LGL nanoparticles was confirmed by the trypan blue dye exclusion assay. When the fluorescent dye Flamma was conjugated to the nanoparticles, in vivo fluorescence imaging revealed significantly enhanced accumulation of CS-UCNP@PMVEMA-LGL-Flamma nanoparticles in the pancreas 24 h after intramuscular injection compared with intravenous administration, with luminescence intensity approximately doubled. The improved pancreatic targeting efficiency was attributed to enhanced binding to GLP-1 receptors. Confocal microscopy and elemental analysis confirmed receptor-mediated uptake of the nanoparticles by internalization and their localization within pancreatic β-cells. These findings highlight the potential of CS-UCNP@PMVEMA-LGL nanoparticles as biocompatible targetable imaging agents with future applications in pancreatic diagnostics.
Faculty of Health Studies Technical University of Liberec 461 17 Liberec Czech Republic
Institute for Clinical and Experimental Medicine Vídeňská 1958 9 140 21 Prague 4 Czech Republic
Zobrazit více v PubMed
Ježek P.. Physiological fatty acid-stimulated insulin secretion and redox signaling versus lipotoxicity. Antioxid. Redox Signal. 2025;42:566. doi: 10.1089/ars.2024.0799. PubMed DOI
Chen C., Cohrs C. M., Stertmann J., Bozsak R., Speier S.. Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Mol. Metab. 2017;6:943–957. doi: 10.1016/j.molmet.2017.06.019. PubMed DOI PMC
Xourafa G., Korbmacher M., Roden M.. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2024;20:27–49. doi: 10.1038/s41574-023-00898-1. PubMed DOI
Ringholm L., Søholm J. C., Pedersen B. W., Clausen T. D., Damm P., Mathiesen E. R.. Glucose control during labour and delivery in type 1 diabetes - An update on current evidence. Curr. Diab. Rep. 2025;25:7. doi: 10.1007/s11892-024-01563-1. PubMed DOI
Vergès B.. Cardiovascular disease in type 1 diabetes, an underestimated danger: Epidemiological and pathophysiological data. Atherosclerosis. 2024;394:117158. doi: 10.1016/j.atherosclerosis.2023.06.005. PubMed DOI
Amaral D. C., Guedes J., Cruz M. R. B., Cheidde L., Nepomuceno M., Magalhães P. L. M., Brazuna R., Mora-Paez D. J., Huang P., Razeghinejad R., Schuman J. S., Myers J. S.. GLP-1 receptor agonists use and incidence of glaucoma: A systematic review and meta-analysis. Am. J. Ophthalmol. 2025;271:488–497. doi: 10.1016/j.ajo.2024.12.024. PubMed DOI
Dimitrios P., Michael D., Vasilios K., Konstantinos S., Konstantinos I., Ioanna Z., Konstantinos P., Spyridon B., Asterios K.. Liraglutide as adjunct to insulin treatment in patients with type 1 diabetes: A systematic review and meta-analysis. Curr. Diabetes Rev. 2020;16:313–326. doi: 10.2174/1573399815666190614141918. PubMed DOI
Juère E., Caillard R., Marko D., Del Favero G., Kleitz F.. Smart protein-based formulation of dendritic mesoporous silica nanoparticles: Toward oral delivery of insulin. Chem.Eur. J. 2020;26:5195–5199. doi: 10.1002/chem.202000773. PubMed DOI PMC
Wang Y., Cheng S., Hu W., Lin X., Cao C., Zou S., Tong Z., Jiang G., Kong X.. Polymer-grafted hollow mesoporous silica nanoparticles integrated with microneedle patches for glucose-responsive drug delivery. Front. Mater. Sci. 2021;15:98–112. doi: 10.1007/s11706-021-0532-1. DOI
Abeer M. M., Meka A. K., Pujara N., Kumeria T., Strounina E., Nunes R., Costa A., Sarmento B., Hasnain S. Z., Ross B. P., Popat A.. Rationally designed dendritic silica nanoparticles for oral delivery of exenatide. Pharmaceutics. 2019;11:418. doi: 10.3390/pharmaceutics11080418. PubMed DOI PMC
Yu X., Liu T., Lin R.. Development and characterization of a glimepiride-loaded gelatin-coated mesoporous hollow silica nanoparticle formulation and evaluation of its hypoglycemic effect on type-2 diabetes model rats. Assay Drug Dev. Technol. 2020;18:369–378. doi: 10.1089/adt.2020.987. PubMed DOI
Geng S., Qin L., He Y., Li X., Yang M., Li L., Liu D., Li Y., Niu D., Yang G.. Effective and safe delivery of GLP-1AR and FGF-21 plasmids using amino-functionalized dual-mesoporous silica nanoparticles in vitro and in vivo . Biomaterials. 2021;271:120763. doi: 10.1016/j.biomaterials.2021.120763. PubMed DOI
Liu Y., Zeng S., Ji W., Yao H., Lin L., Cui H., Santos H. A., Pan G.. Emerging theranostic nanomaterials in diabetes and its complications. Adv. Sci. 2022;9:2102466. doi: 10.1002/advs.202102466. PubMed DOI PMC
Shanker K., Krishna Mohan G., Mayasa V., Pravallika L.. Antihyperglycemic and anti-hyperlipidemic effect of biologically synthesized silver nanoparticles and G. sylvestre extract on streptozotocin induced diabetic rats-an in vivo approach. Mater. Lett. 2017;195:240–244. doi: 10.1016/j.matlet.2017.02.137. DOI
Skládal P., Farka Z.. Luminescent photon-upconversion nanoparticles with advanced functionalization for smart sensing and imaging. Microchim. Acta. 2024;191:551. doi: 10.1007/s00604-024-06615-7. PubMed DOI
Nam N. N., Trinh T. N. D., Do H. D. K., Phan T. B., Trinh K. T. L., Lee N. Y.. Advances and opportunities of luminescence nanomaterial for bioanalysis and diagnostics. Spectrochim. Acta, Part A. 2025;327:125347. doi: 10.1016/j.saa.2024.125347. PubMed DOI
Kar A., Patra A.. Impacts of core–shell structures on properties of lanthanide-based nanocrystals: Crystal phase, lattice strain, downconversion, upconversion and energy transfer. Nanoscale. 2012;4:3608–3619. doi: 10.1039/c2nr30389b. PubMed DOI
Chen Y., D’Amario C., Gee A., Duong H. T. T., Shimoni O., Valenzuela S. M.. Dispersion stability and biocompatibility of four ligand-exchanged NaYF4:Yb,Er upconversion nanoparticles. Acta Biomater. 2020;102:384–393. doi: 10.1016/j.actbio.2019.11.048. PubMed DOI
Duong H. T. T., Chen Y., Tawfik S. A., Wen S., Parviz M., Shimoni O., Jin D.. Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles. RSC Adv. 2018;8:4842–4849. doi: 10.1039/C7RA13765F. PubMed DOI PMC
Nahorniak M., Patsula V., Mareková D., Matouš P., Shapoval O., Oleksa V., Vosmanská M., Machová Urdzíková L., Jendelová P., Herynek V., Horák D.. Chemical and colloidal stability of polymer-coated NaYF4:Yb,Er nanoparticles in aqueous media and viability of cells: The effect of a protective coating. Int. J. Mol. Sci. 2023;24:2724. doi: 10.3390/ijms24032724. PubMed DOI PMC
Himmelstoß S. F., Hirsch T.. Long-term colloidal and chemical stability in aqueous media of NaYF4-type upconversion nanoparticles modified by ligand-exchange. Part. Part. Syst. Charact. 2019;36:1900235. doi: 10.1002/ppsc.201900235. DOI
Malhotra K., Fuku R., Kumar B., Hrovat D., Van Houten J., Piunno P. A. E., Gunning P. T., Krull U. J.. Unlocking long-term stability of upconversion nanoparticles with biocompatible phosphonate-based polymer coatings. Nano Lett. 2022;22:7285–7293. doi: 10.1021/acs.nanolett.2c00437. PubMed DOI
MacKenzie L. E., Alvarez-Ruiz D., Pal R.. Low-temperature open-air synthesis of PVP-coated NaYF4:Yb,Er,Mn upconversion nanoparticles with strong red emission. R. Soc. Open Sci. 2022;9:211508. doi: 10.1098/rsos.211508. PubMed DOI PMC
Shao H., Xu D., Ding Y., Hong X., Liu Y.. An “off-on” colorimetric and fluorometric assay for Cu(II) based on the use of NaYF4:Yb(III),Er(III) upconversion nanoparticles functionalized with branched polyethylenimine. Microchim. Acta. 2018;185:211. doi: 10.1007/s00604-018-2740-7. PubMed DOI
Shapoval O., Patsula V., Větvička D., Oleksa V., Kabešová M., Vasylyshyn T., Poučková P., Horák D.. Temoporfin-conjugated PEGylated poly(N,N-dimethylacrylamide)-stabilized upconversion colloid for NIR-induced photodynamic therapy of pancreatic cancer. Biomacromolecules. 2024;25:5771–5785. doi: 10.1021/acs.biomac.4c00317. PubMed DOI PMC
Oleksa V., Macková H., Engstová H., Patsula V., Shapoval O., Velychkivska N., Ježek P., Horák D.. Poly(N,N-dimethylacrylamide)-coated upconverting NaYF4:Yb,Er@NaYF4:Nd core–shell nanoparticles for fluorescent labeling of carcinoma cells. Sci. Rep. 2021;11:21373. doi: 10.1038/s41598-021-00845-y. PubMed DOI PMC
Shapoval O., Brandmeier J. C., Nahorniak M., Oleksa V., Makhneva E., Gorris H. H., Farka Z., Horák D.. PMVEMA-coated upconverting nanoparticles for upconversion-linked immunoassay of cardiac troponin. Talanta. 2022;244:123400. doi: 10.1016/j.talanta.2022.123400. PubMed DOI
Schneider C. A., Rasband W. S., Eliceiri K. W.. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Slouf M., Skoupy R., Pavlova E., Krzyzanek V.. High resolution powder electron diffraction in scanning electron microscopy. Materials. 2021;14:7550. doi: 10.3390/ma14247550. PubMed DOI PMC
Secret E., Kelly S. J., Crannell K. E., Andrew J. S.. Enzyme-responsive hydrogel microparticles for pulmonary drug delivery. ACS Appl. Mater. Interfaces. 2014;6:10313–10321. doi: 10.1021/am501754s. PubMed DOI
Yonamine Y., Yoshimatsu K., Lee S. H., Hoshino Y., Okahata Y., Shea K. J.. Polymer nanoparticle-protein interface. Evaluation of the contribution of positively charged functional groups to protein affinity. ACS Appl. Mater. Interfaces. 2013;5:374–379. doi: 10.1021/am302404q. PubMed DOI
Jabůrek M., Klöppel E., Průchová P., Mozheitova O., Tauber J., Engstová H., Ježek P.. Mitochondria to plasma membrane redox signaling is essential for fatty acid β-oxidation-driven insulin secretion. Redox Biol. 2024;75:103283. doi: 10.1016/j.redox.2024.103283. PubMed DOI PMC
Ramasamy P., Chandra P., Rhee S. W., Kim J.. Enhanced upconversion luminescence in NaGdF4:Yb,Er nanocrystals by Fe3+ doping and their application in bioimaging. Nanoscale. 2013;5:8711–8717. doi: 10.1039/c3nr01608k. PubMed DOI
Kamimura M., Omoto A., Chiu H.-C., Soga K.. Enhanced red upconversion emission of NaYF4:Yb3+,Er3+,Mn2+ nanoparticles for near-infrared-induced photodynamic therapy and fluorescence imaging. Chem. Lett. 2017;46:1076–1078. doi: 10.1246/cl.170322. DOI
Jiao Y., Ling C., Wang J. X., Amanico H., Saczek J., Wang H., Sridhar S., Xu B. B., Wang S., Wang D.. Controllable synthesis of upconversion nanophosphors toward scale-up productions. Part. Part. Syst. Charact. 2020;37:2000129. doi: 10.1002/PPSC.202000129. DOI
Shapoval O., Větvička D., Patsula V., Engstová H., Kočková O., Konefał M., Kabešová M., Horák D.. Temoporfin-conjugated upconversion nanoparticles for NIR-induced photodynamic therapy: Studies with pancreatic adenocarcinoma cells in vitro and in vivo . Pharmaceutics. 2023;15:2694. doi: 10.3390/pharmaceutics15122694. PubMed DOI PMC
Mohanty S., Kaczmarek A. M.. Unravelling the benefits of transition-metal-co-doping in lanthanide upconversion nanoparticles. Chem. Soc. Rev. 2022;51:6893–6908. doi: 10.1039/D2CS00495J. PubMed DOI
Han S., Deng R., Xie X., Liu X.. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem., Int. Ed. 2014;53:11702–11715. doi: 10.1002/anie.201403408. PubMed DOI
Ye S., Song E. H., Zhang Q. Y.. Transition metal-involved photon upconversion. Adv. Sci. 2016;3:1600302. doi: 10.1002/advs.201600302. PubMed DOI PMC
Cong T., Ding Y., Liu J., Zhao H., Hong X.. Synthesis and optical properties of Zn2+ doped NaYF4:Yb3+,Er3+ upconversion nanoparticles. Mater. Lett. 2016;165:59–62. doi: 10.1016/j.matlet.2015.11.109. DOI
Ramasamy P., Chandra P., Rhee S. W., Kim J.. Enhanced upconversion luminescence in NaGdF4:Yb,Er nanocrystals by Fe3+ doping and their application in bioimaging. Nanoscale. 2013;5:8711–8717. doi: 10.1039/c3nr01608k. PubMed DOI
Luo X., Chen Q., Guo H., Zhang H., He X., Zhao W.. One-step hydrothermal synthesis of Cit-NaYbF4:Er3+ nanocrystals with enhanced red upconversion emission for in vivo fluorescence molecular tomography. J. Rare Earths. 2024;42:36–45. doi: 10.1016/j.jre.2022.09.027. DOI
Tang J., Chen L., Li J., Wang Z., Zhang J., Zhang L., Luo Y., Wang X.. Selectively enhanced red upconversion luminescence and phase/size manipulation via Fe(3+) doping in NaYF4:Yb,Er nanocrystals. Nanoscale. 2015;7:14752–14759. doi: 10.1039/C5NR04125B. PubMed DOI
Su J., Wang L.. Core-shell upconversion nanoparticle@metal–organic framework fluorescent nanoprobes for the detection of ferric ions and ferrous ions. Eur. J. Inorg. Chem. 2024;27:e202400463. doi: 10.1002/ejic.202400463. DOI
Gajahi Soudahome A., Catan A., Giraud P., Assouan Kouao S., Guerin-Dubourg A., Debussche X., Le Moullec N., Bourdon E., Bravo S. B., Paradela-Dobarro B., Álvarez E., Meilhac O., Rondeau P., Couprie J.. Glycation of human serum albumin impairs binding to the glucagon-like peptide-1 analogue liraglutide. J. Biol. Chem. 2018;293:4778–4791. doi: 10.1074/jbc.M117.815274. PubMed DOI PMC
Jakhar D. K., Vishwakarma V. K., Singh R., Jadhav K., Shah S., Arora T., Verma R. K., Yadav H. N.. Fat fighting liraglutide based nano-formulation to reverse obesity: Design, development and animal trials. Int. J. Pharm. 2023;634:122585. doi: 10.1016/j.ijpharm.2023.122585. PubMed DOI
Bao X., Qian K., Xu M., Chen Y., Wang H., Pan T., Wang Z., Yao P., Lin L.. Intestinal epithelium penetration of liraglutide via cholic acid pre-complexation and zein/rhamnolipids nanocomposite delivery. J. Nanobiotechnol. 2023;21:16. doi: 10.1186/s12951-022-01743-9. PubMed DOI PMC
Ismail R., Bocsik A., Katona G., Gróf I., Deli M. A., Csóka I.. Encapsulation in polymeric nanoparticles enhances the enzymatic stability and the permeability of the GLP-1 analog, liraglutide, across a culture model of intestinal permeability. Pharmaceutics. 2019;11:599. doi: 10.3390/pharmaceutics11110599. PubMed DOI PMC
Marassi V., Macis M., Giordani S., Ferrazzano L., Tolomelli A., Roda B., Zattoni A., Ricci A., Reschiglian P., Cabri W.. Application of Af4-multidetection to liraglutide in its formulation: Preserving and representing native aggregation. Molecules. 2022;27:5485. doi: 10.3390/molecules27175485. PubMed DOI PMC
Shapoval O., Engstová H., Jirák D., Drahokoupil J., Sulková K., Pop-Georgievski O., Ježek P., Horák D.. Poly(4-styrenesulfonic acid-co-maleic anhydride)-coated NaGdF4:Yb,Tb,Nd nanoparticles with luminescent and magnetic properties for pancreatic β-cell and Langerhans islet imaging. ACS Appl. Mater. Interfaces. 2022;14:18233–18247. doi: 10.1021/acsami.2c04274. PubMed DOI
Plecitá-Hlavatá L., Jabůrek M., Holendová B., Tauber J., Pavluch V., Berková Z., Cahová M., Schröder K., Brandes R. P., Siemen D., Ježek P.. Glucose-stimulated insulin secretion fundamentally requires H2O2 signaling by NADPH oxidase 4. Diabetes. 2020;69:1341–1354. doi: 10.2337/db19-1130. PubMed DOI
Rosenkilde M. M., Lindquist P., Kizilkaya H. S., Gasbjerg L. S.. GIP-derived GIP receptor antagonists – a review of their role in GIP receptor pharmacology. Peptides. 2024;177:171212. doi: 10.1016/j.peptides.2024.171212. PubMed DOI
Cerillo, J. L. ; Parmar, M. . Liraglutide; StatPearls, 2025. https://www.ncbi.nlm.nih.gov/books/NBK608007/. PubMed
Xie Y., Hang Y., Wang Y., Sleightholm R., Prajapati D. R., Bader J., Yu A., Tang W., Jaramillo L., Li J., Singh R. K., Oupický D.. Stromal modulation and treatment of metastatic pancreatic cancer with local intraperitoneal triple miRNA/siRNA nanotherapy. ACS Nano. 2020;14:255–271. doi: 10.1021/acsnano.9b03978. PubMed DOI PMC
Reddiar S. B., Abdallah M., Styles I. K., Müllertz O. O., Trevaskis N. L.. Lymphatic uptake of the lipidated and non-lipidated GLP-1 agonists liraglutide and exenatide is similar in rats. Eur. J. Pharm. Biopharm. 2024;200:114339. doi: 10.1016/j.ejpb.2024.114339. PubMed DOI
Gajahi Soudahome A., Catan A., Giraud P., Assouan Kouao S., Guerin-Dubourg A., Debussche X., Le Moullec N., Bourdon E., Bravo S. B., Paradela-Dobarro B., Álvarez E., Meilhac O., Rondeau P., Couprie J.. Glycation of human serum albumin impairs binding to the glucagon-like peptide-1 analogue liraglutide. J. Biol. Chem. 2018;293:4778–4791. doi: 10.1074/jbc.M117.815274. PubMed DOI PMC
Zou P., Wang F., Wang J., Lu Y., Tran D., Seo S. K.. Impact of injection sites on clinical pharmacokinetics of subcutaneously administered peptides and proteins. J. Controlled Release. 2021;336:310–321. doi: 10.1016/j.jconrel.2021.06.038. PubMed DOI
Hosseini-Kharat M., Bremmell K. E., Grubor-Bauk B., Prestidge C. A.. Enhancing non-viral DNA delivery systems: Recent advances in improving efficiency and target specificity. J. Controlled Release. 2025;378:170–194. doi: 10.1016/j.jconrel.2024.12.002. PubMed DOI
Vinet L., Lamprianou S., Babič A., Lange N., Thorel F., Herrera P. L., Montet X., Meda P.. Targeting GLP-1 receptors for repeated magnetic resonance imaging differentiates graded losses of pancreatic beta cells in mice. Diabetologia. 2015;58:304–312. doi: 10.1007/s00125-014-3442-2. PubMed DOI PMC
Rossi L., Pignatelli C., Kerekes K., Cadamuro F., Dinnyes A., Lindheimer F., Seissler J., Lindner M., Ziegler S., Bartenstein P., Qiu Y., Kovács-Kocsi J., Körhegyi Z., Bodnár M., Fazekas E., Prépost E., Nicotra F., Russo L.. Chitosan-based multimodal polymeric nanoparticles targeting pancreatic β-cells. Carbohydr. Polym. Technol. 2024;8:100610. doi: 10.1016/j.carpta.2024.100610. DOI
Weissleder R., Stark D. D., Engelstad B. L., Bacon B. R., Compton C. C., White D. L., Jacobs P., Lewis J.. Superparamagnetic iron oxide: Pharmacokinetics and toxicity. Am. J. Roentgenol. 1989;152:167–173. doi: 10.2214/ajr.152.1.167. PubMed DOI
Jirak D., Kriz J., Strzelecki M., Yang J., Hasilo C., White D. J., Foster P. J.. Monitoring the survival of islet transplants by MRI using a novel technique for their automated detection and quantification. Magn. Reson. Mater. Phys. Biol. Med. 2009;22:257–265. doi: 10.1007/s10334-009-0172-4. PubMed DOI
Berkova Z., Jirak D., Zacharovova K., Kriz J., Lodererova A., Girman P., Koblas T., Dovolilova E., Vancova M., Hajek M., Saudek F.. Labeling of pancreatic islets with iron oxide nanoparticles for in vivo detection with magnetic resonance. Transplantation. 2008;85:155–159. doi: 10.1097/01.tp.0000297247.08627.ff. PubMed DOI
Jirák D., Kříž J., Herynek V., Andersson B., Girman P., Burian M., Saudek F., Hájek M.. MRI of transplanted pancreatic islets. Mag. Res. Med. 2004;52:1228–1233. doi: 10.1002/mrm.20282. PubMed DOI
Zacharovová K., Berková Z., Jirák D., Herynek V., Vancová M., Dovolilová E., Saudek F.. Processing of superparamagnetic iron contrast agent ferucarbotran in transplanted pancreatic islets. Contrast Media Mol. Imaging. 2012;7:485–493. doi: 10.1002/cmmi.1477. PubMed DOI
Briley-Saebo K. C., Shaw P. X., Mulder W. J. M., Choi S.-H., Vucic E., Aguinaldo J. G. S., Witztum J. L., Fuster V., Tsimikas S., Fayad Z. A.. Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation. 2008;117:3206–3215. doi: 10.1161/CIRCULATIONAHA.107.757120. PubMed DOI PMC