Liraglutide-Conjugated Poly(methyl vinyl ether-alt-maleic acid)-Coated Core-Shell Upconversion Nanoparticles for Theranostics of Diabetes

. 2025 Jul 30 ; 17 (30) : 42863-42876. [epub] 20250716

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40665745

In the diagnostics of diabetes, specific targeting of drugs (e.g., liraglutide) to insulin-deficient β-cells with their simultaneous noninvasive imaging is currently needed. In this report, liraglutide (LGL)-conjugated poly(methyl vinyl ether-alt-maleic acid) (PMVEMA)-coated core-shell NaYF4:Yb,Er,Fe@NaYF4:Nd upconversion nanoparticles (CS-UCNPs) have been developed, thoroughly physicochemically characterized, and evaluated in vivo. Novel codoping of Fe2+, Yb3+, and Er3+ ions in the host NaYF4 induced upconversion emission in the red region at both 980 and 808 nm excitation, making the particles suitable for deep-tissue imaging. Surface functionalization with PMVEMA provided colloidal stability and facilitated covalent conjugation with LGL, enabling targeted binding to GLP-1 receptors on pancreatic β-cells, increasing glucose-stimulated insulin secretion from isolated Langerhans islets. Biocompatibility of CS-UCNP@PMVEMA-LGL nanoparticles was confirmed by the trypan blue dye exclusion assay. When the fluorescent dye Flamma was conjugated to the nanoparticles, in vivo fluorescence imaging revealed significantly enhanced accumulation of CS-UCNP@PMVEMA-LGL-Flamma nanoparticles in the pancreas 24 h after intramuscular injection compared with intravenous administration, with luminescence intensity approximately doubled. The improved pancreatic targeting efficiency was attributed to enhanced binding to GLP-1 receptors. Confocal microscopy and elemental analysis confirmed receptor-mediated uptake of the nanoparticles by internalization and their localization within pancreatic β-cells. These findings highlight the potential of CS-UCNP@PMVEMA-LGL nanoparticles as biocompatible targetable imaging agents with future applications in pancreatic diagnostics.

Zobrazit více v PubMed

Ježek P.. Physiological fatty acid-stimulated insulin secretion and redox signaling versus lipotoxicity. Antioxid. Redox Signal. 2025;42:566. doi: 10.1089/ars.2024.0799. PubMed DOI

Chen C., Cohrs C. M., Stertmann J., Bozsak R., Speier S.. Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Mol. Metab. 2017;6:943–957. doi: 10.1016/j.molmet.2017.06.019. PubMed DOI PMC

Xourafa G., Korbmacher M., Roden M.. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2024;20:27–49. doi: 10.1038/s41574-023-00898-1. PubMed DOI

Ringholm L., Søholm J. C., Pedersen B. W., Clausen T. D., Damm P., Mathiesen E. R.. Glucose control during labour and delivery in type 1 diabetes - An update on current evidence. Curr. Diab. Rep. 2025;25:7. doi: 10.1007/s11892-024-01563-1. PubMed DOI

Vergès B.. Cardiovascular disease in type 1 diabetes, an underestimated danger: Epidemiological and pathophysiological data. Atherosclerosis. 2024;394:117158. doi: 10.1016/j.atherosclerosis.2023.06.005. PubMed DOI

Amaral D. C., Guedes J., Cruz M. R. B., Cheidde L., Nepomuceno M., Magalhães P. L. M., Brazuna R., Mora-Paez D. J., Huang P., Razeghinejad R., Schuman J. S., Myers J. S.. GLP-1 receptor agonists use and incidence of glaucoma: A systematic review and meta-analysis. Am. J. Ophthalmol. 2025;271:488–497. doi: 10.1016/j.ajo.2024.12.024. PubMed DOI

Dimitrios P., Michael D., Vasilios K., Konstantinos S., Konstantinos I., Ioanna Z., Konstantinos P., Spyridon B., Asterios K.. Liraglutide as adjunct to insulin treatment in patients with type 1 diabetes: A systematic review and meta-analysis. Curr. Diabetes Rev. 2020;16:313–326. doi: 10.2174/1573399815666190614141918. PubMed DOI

Juère E., Caillard R., Marko D., Del Favero G., Kleitz F.. Smart protein-based formulation of dendritic mesoporous silica nanoparticles: Toward oral delivery of insulin. Chem.Eur. J. 2020;26:5195–5199. doi: 10.1002/chem.202000773. PubMed DOI PMC

Wang Y., Cheng S., Hu W., Lin X., Cao C., Zou S., Tong Z., Jiang G., Kong X.. Polymer-grafted hollow mesoporous silica nanoparticles integrated with microneedle patches for glucose-responsive drug delivery. Front. Mater. Sci. 2021;15:98–112. doi: 10.1007/s11706-021-0532-1. DOI

Abeer M. M., Meka A. K., Pujara N., Kumeria T., Strounina E., Nunes R., Costa A., Sarmento B., Hasnain S. Z., Ross B. P., Popat A.. Rationally designed dendritic silica nanoparticles for oral delivery of exenatide. Pharmaceutics. 2019;11:418. doi: 10.3390/pharmaceutics11080418. PubMed DOI PMC

Yu X., Liu T., Lin R.. Development and characterization of a glimepiride-loaded gelatin-coated mesoporous hollow silica nanoparticle formulation and evaluation of its hypoglycemic effect on type-2 diabetes model rats. Assay Drug Dev. Technol. 2020;18:369–378. doi: 10.1089/adt.2020.987. PubMed DOI

Geng S., Qin L., He Y., Li X., Yang M., Li L., Liu D., Li Y., Niu D., Yang G.. Effective and safe delivery of GLP-1AR and FGF-21 plasmids using amino-functionalized dual-mesoporous silica nanoparticles in vitro and in vivo . Biomaterials. 2021;271:120763. doi: 10.1016/j.biomaterials.2021.120763. PubMed DOI

Liu Y., Zeng S., Ji W., Yao H., Lin L., Cui H., Santos H. A., Pan G.. Emerging theranostic nanomaterials in diabetes and its complications. Adv. Sci. 2022;9:2102466. doi: 10.1002/advs.202102466. PubMed DOI PMC

Shanker K., Krishna Mohan G., Mayasa V., Pravallika L.. Antihyperglycemic and anti-hyperlipidemic effect of biologically synthesized silver nanoparticles and G. sylvestre extract on streptozotocin induced diabetic rats-an in vivo approach. Mater. Lett. 2017;195:240–244. doi: 10.1016/j.matlet.2017.02.137. DOI

Skládal P., Farka Z.. Luminescent photon-upconversion nanoparticles with advanced functionalization for smart sensing and imaging. Microchim. Acta. 2024;191:551. doi: 10.1007/s00604-024-06615-7. PubMed DOI

Nam N. N., Trinh T. N. D., Do H. D. K., Phan T. B., Trinh K. T. L., Lee N. Y.. Advances and opportunities of luminescence nanomaterial for bioanalysis and diagnostics. Spectrochim. Acta, Part A. 2025;327:125347. doi: 10.1016/j.saa.2024.125347. PubMed DOI

Kar A., Patra A.. Impacts of core–shell structures on properties of lanthanide-based nanocrystals: Crystal phase, lattice strain, downconversion, upconversion and energy transfer. Nanoscale. 2012;4:3608–3619. doi: 10.1039/c2nr30389b. PubMed DOI

Chen Y., D’Amario C., Gee A., Duong H. T. T., Shimoni O., Valenzuela S. M.. Dispersion stability and biocompatibility of four ligand-exchanged NaYF4:Yb,Er upconversion nanoparticles. Acta Biomater. 2020;102:384–393. doi: 10.1016/j.actbio.2019.11.048. PubMed DOI

Duong H. T. T., Chen Y., Tawfik S. A., Wen S., Parviz M., Shimoni O., Jin D.. Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles. RSC Adv. 2018;8:4842–4849. doi: 10.1039/C7RA13765F. PubMed DOI PMC

Nahorniak M., Patsula V., Mareková D., Matouš P., Shapoval O., Oleksa V., Vosmanská M., Machová Urdzíková L., Jendelová P., Herynek V., Horák D.. Chemical and colloidal stability of polymer-coated NaYF4:Yb,Er nanoparticles in aqueous media and viability of cells: The effect of a protective coating. Int. J. Mol. Sci. 2023;24:2724. doi: 10.3390/ijms24032724. PubMed DOI PMC

Himmelstoß S. F., Hirsch T.. Long-term colloidal and chemical stability in aqueous media of NaYF4-type upconversion nanoparticles modified by ligand-exchange. Part. Part. Syst. Charact. 2019;36:1900235. doi: 10.1002/ppsc.201900235. DOI

Malhotra K., Fuku R., Kumar B., Hrovat D., Van Houten J., Piunno P. A. E., Gunning P. T., Krull U. J.. Unlocking long-term stability of upconversion nanoparticles with biocompatible phosphonate-based polymer coatings. Nano Lett. 2022;22:7285–7293. doi: 10.1021/acs.nanolett.2c00437. PubMed DOI

MacKenzie L. E., Alvarez-Ruiz D., Pal R.. Low-temperature open-air synthesis of PVP-coated NaYF4:Yb,Er,Mn upconversion nanoparticles with strong red emission. R. Soc. Open Sci. 2022;9:211508. doi: 10.1098/rsos.211508. PubMed DOI PMC

Shao H., Xu D., Ding Y., Hong X., Liu Y.. An “off-on” colorimetric and fluorometric assay for Cu­(II) based on the use of NaYF4:Yb­(III),Er­(III) upconversion nanoparticles functionalized with branched polyethylenimine. Microchim. Acta. 2018;185:211. doi: 10.1007/s00604-018-2740-7. PubMed DOI

Shapoval O., Patsula V., Větvička D., Oleksa V., Kabešová M., Vasylyshyn T., Poučková P., Horák D.. Temoporfin-conjugated PEGylated poly­(N,N-dimethylacrylamide)-stabilized upconversion colloid for NIR-induced photodynamic therapy of pancreatic cancer. Biomacromolecules. 2024;25:5771–5785. doi: 10.1021/acs.biomac.4c00317. PubMed DOI PMC

Oleksa V., Macková H., Engstová H., Patsula V., Shapoval O., Velychkivska N., Ježek P., Horák D.. Poly­(N,N-dimethylacrylamide)-coated upconverting NaYF4:Yb,Er@NaYF4:Nd core–shell nanoparticles for fluorescent labeling of carcinoma cells. Sci. Rep. 2021;11:21373. doi: 10.1038/s41598-021-00845-y. PubMed DOI PMC

Shapoval O., Brandmeier J. C., Nahorniak M., Oleksa V., Makhneva E., Gorris H. H., Farka Z., Horák D.. PMVEMA-coated upconverting nanoparticles for upconversion-linked immunoassay of cardiac troponin. Talanta. 2022;244:123400. doi: 10.1016/j.talanta.2022.123400. PubMed DOI

Schneider C. A., Rasband W. S., Eliceiri K. W.. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Slouf M., Skoupy R., Pavlova E., Krzyzanek V.. High resolution powder electron diffraction in scanning electron microscopy. Materials. 2021;14:7550. doi: 10.3390/ma14247550. PubMed DOI PMC

Secret E., Kelly S. J., Crannell K. E., Andrew J. S.. Enzyme-responsive hydrogel microparticles for pulmonary drug delivery. ACS Appl. Mater. Interfaces. 2014;6:10313–10321. doi: 10.1021/am501754s. PubMed DOI

Yonamine Y., Yoshimatsu K., Lee S. H., Hoshino Y., Okahata Y., Shea K. J.. Polymer nanoparticle-protein interface. Evaluation of the contribution of positively charged functional groups to protein affinity. ACS Appl. Mater. Interfaces. 2013;5:374–379. doi: 10.1021/am302404q. PubMed DOI

Jabůrek M., Klöppel E., Průchová P., Mozheitova O., Tauber J., Engstová H., Ježek P.. Mitochondria to plasma membrane redox signaling is essential for fatty acid β-oxidation-driven insulin secretion. Redox Biol. 2024;75:103283. doi: 10.1016/j.redox.2024.103283. PubMed DOI PMC

Ramasamy P., Chandra P., Rhee S. W., Kim J.. Enhanced upconversion luminescence in NaGdF4:Yb,Er nanocrystals by Fe3+ doping and their application in bioimaging. Nanoscale. 2013;5:8711–8717. doi: 10.1039/c3nr01608k. PubMed DOI

Kamimura M., Omoto A., Chiu H.-C., Soga K.. Enhanced red upconversion emission of NaYF4:Yb3+,Er3+,Mn2+ nanoparticles for near-infrared-induced photodynamic therapy and fluorescence imaging. Chem. Lett. 2017;46:1076–1078. doi: 10.1246/cl.170322. DOI

Jiao Y., Ling C., Wang J. X., Amanico H., Saczek J., Wang H., Sridhar S., Xu B. B., Wang S., Wang D.. Controllable synthesis of upconversion nanophosphors toward scale-up productions. Part. Part. Syst. Charact. 2020;37:2000129. doi: 10.1002/PPSC.202000129. DOI

Shapoval O., Větvička D., Patsula V., Engstová H., Kočková O., Konefał M., Kabešová M., Horák D.. Temoporfin-conjugated upconversion nanoparticles for NIR-induced photodynamic therapy: Studies with pancreatic adenocarcinoma cells in vitro and in vivo . Pharmaceutics. 2023;15:2694. doi: 10.3390/pharmaceutics15122694. PubMed DOI PMC

Mohanty S., Kaczmarek A. M.. Unravelling the benefits of transition-metal-co-doping in lanthanide upconversion nanoparticles. Chem. Soc. Rev. 2022;51:6893–6908. doi: 10.1039/D2CS00495J. PubMed DOI

Han S., Deng R., Xie X., Liu X.. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem., Int. Ed. 2014;53:11702–11715. doi: 10.1002/anie.201403408. PubMed DOI

Ye S., Song E. H., Zhang Q. Y.. Transition metal-involved photon upconversion. Adv. Sci. 2016;3:1600302. doi: 10.1002/advs.201600302. PubMed DOI PMC

Cong T., Ding Y., Liu J., Zhao H., Hong X.. Synthesis and optical properties of Zn2+ doped NaYF4:Yb3+,Er3+ upconversion nanoparticles. Mater. Lett. 2016;165:59–62. doi: 10.1016/j.matlet.2015.11.109. DOI

Ramasamy P., Chandra P., Rhee S. W., Kim J.. Enhanced upconversion luminescence in NaGdF4:Yb,Er nanocrystals by Fe3+ doping and their application in bioimaging. Nanoscale. 2013;5:8711–8717. doi: 10.1039/c3nr01608k. PubMed DOI

Luo X., Chen Q., Guo H., Zhang H., He X., Zhao W.. One-step hydrothermal synthesis of Cit-NaYbF4:Er3+ nanocrystals with enhanced red upconversion emission for in vivo fluorescence molecular tomography. J. Rare Earths. 2024;42:36–45. doi: 10.1016/j.jre.2022.09.027. DOI

Tang J., Chen L., Li J., Wang Z., Zhang J., Zhang L., Luo Y., Wang X.. Selectively enhanced red upconversion luminescence and phase/size manipulation via Fe(3+) doping in NaYF4:Yb,Er nanocrystals. Nanoscale. 2015;7:14752–14759. doi: 10.1039/C5NR04125B. PubMed DOI

Su J., Wang L.. Core-shell upconversion nanoparticle@metal–organic framework fluorescent nanoprobes for the detection of ferric ions and ferrous ions. Eur. J. Inorg. Chem. 2024;27:e202400463. doi: 10.1002/ejic.202400463. DOI

Gajahi Soudahome A., Catan A., Giraud P., Assouan Kouao S., Guerin-Dubourg A., Debussche X., Le Moullec N., Bourdon E., Bravo S. B., Paradela-Dobarro B., Álvarez E., Meilhac O., Rondeau P., Couprie J.. Glycation of human serum albumin impairs binding to the glucagon-like peptide-1 analogue liraglutide. J. Biol. Chem. 2018;293:4778–4791. doi: 10.1074/jbc.M117.815274. PubMed DOI PMC

Jakhar D. K., Vishwakarma V. K., Singh R., Jadhav K., Shah S., Arora T., Verma R. K., Yadav H. N.. Fat fighting liraglutide based nano-formulation to reverse obesity: Design, development and animal trials. Int. J. Pharm. 2023;634:122585. doi: 10.1016/j.ijpharm.2023.122585. PubMed DOI

Bao X., Qian K., Xu M., Chen Y., Wang H., Pan T., Wang Z., Yao P., Lin L.. Intestinal epithelium penetration of liraglutide via cholic acid pre-complexation and zein/rhamnolipids nanocomposite delivery. J. Nanobiotechnol. 2023;21:16. doi: 10.1186/s12951-022-01743-9. PubMed DOI PMC

Ismail R., Bocsik A., Katona G., Gróf I., Deli M. A., Csóka I.. Encapsulation in polymeric nanoparticles enhances the enzymatic stability and the permeability of the GLP-1 analog, liraglutide, across a culture model of intestinal permeability. Pharmaceutics. 2019;11:599. doi: 10.3390/pharmaceutics11110599. PubMed DOI PMC

Marassi V., Macis M., Giordani S., Ferrazzano L., Tolomelli A., Roda B., Zattoni A., Ricci A., Reschiglian P., Cabri W.. Application of Af4-multidetection to liraglutide in its formulation: Preserving and representing native aggregation. Molecules. 2022;27:5485. doi: 10.3390/molecules27175485. PubMed DOI PMC

Shapoval O., Engstová H., Jirák D., Drahokoupil J., Sulková K., Pop-Georgievski O., Ježek P., Horák D.. Poly­(4-styrenesulfonic acid-co-maleic anhydride)-coated NaGdF4:Yb,Tb,Nd nanoparticles with luminescent and magnetic properties for pancreatic β-cell and Langerhans islet imaging. ACS Appl. Mater. Interfaces. 2022;14:18233–18247. doi: 10.1021/acsami.2c04274. PubMed DOI

Plecitá-Hlavatá L., Jabůrek M., Holendová B., Tauber J., Pavluch V., Berková Z., Cahová M., Schröder K., Brandes R. P., Siemen D., Ježek P.. Glucose-stimulated insulin secretion fundamentally requires H2O2 signaling by NADPH oxidase 4. Diabetes. 2020;69:1341–1354. doi: 10.2337/db19-1130. PubMed DOI

Rosenkilde M. M., Lindquist P., Kizilkaya H. S., Gasbjerg L. S.. GIP-derived GIP receptor antagonists – a review of their role in GIP receptor pharmacology. Peptides. 2024;177:171212. doi: 10.1016/j.peptides.2024.171212. PubMed DOI

Cerillo, J. L. ; Parmar, M. . Liraglutide; StatPearls, 2025. https://www.ncbi.nlm.nih.gov/books/NBK608007/. PubMed

Xie Y., Hang Y., Wang Y., Sleightholm R., Prajapati D. R., Bader J., Yu A., Tang W., Jaramillo L., Li J., Singh R. K., Oupický D.. Stromal modulation and treatment of metastatic pancreatic cancer with local intraperitoneal triple miRNA/siRNA nanotherapy. ACS Nano. 2020;14:255–271. doi: 10.1021/acsnano.9b03978. PubMed DOI PMC

Reddiar S. B., Abdallah M., Styles I. K., Müllertz O. O., Trevaskis N. L.. Lymphatic uptake of the lipidated and non-lipidated GLP-1 agonists liraglutide and exenatide is similar in rats. Eur. J. Pharm. Biopharm. 2024;200:114339. doi: 10.1016/j.ejpb.2024.114339. PubMed DOI

Gajahi Soudahome A., Catan A., Giraud P., Assouan Kouao S., Guerin-Dubourg A., Debussche X., Le Moullec N., Bourdon E., Bravo S. B., Paradela-Dobarro B., Álvarez E., Meilhac O., Rondeau P., Couprie J.. Glycation of human serum albumin impairs binding to the glucagon-like peptide-1 analogue liraglutide. J. Biol. Chem. 2018;293:4778–4791. doi: 10.1074/jbc.M117.815274. PubMed DOI PMC

Zou P., Wang F., Wang J., Lu Y., Tran D., Seo S. K.. Impact of injection sites on clinical pharmacokinetics of subcutaneously administered peptides and proteins. J. Controlled Release. 2021;336:310–321. doi: 10.1016/j.jconrel.2021.06.038. PubMed DOI

Hosseini-Kharat M., Bremmell K. E., Grubor-Bauk B., Prestidge C. A.. Enhancing non-viral DNA delivery systems: Recent advances in improving efficiency and target specificity. J. Controlled Release. 2025;378:170–194. doi: 10.1016/j.jconrel.2024.12.002. PubMed DOI

Vinet L., Lamprianou S., Babič A., Lange N., Thorel F., Herrera P. L., Montet X., Meda P.. Targeting GLP-1 receptors for repeated magnetic resonance imaging differentiates graded losses of pancreatic beta cells in mice. Diabetologia. 2015;58:304–312. doi: 10.1007/s00125-014-3442-2. PubMed DOI PMC

Rossi L., Pignatelli C., Kerekes K., Cadamuro F., Dinnyes A., Lindheimer F., Seissler J., Lindner M., Ziegler S., Bartenstein P., Qiu Y., Kovács-Kocsi J., Körhegyi Z., Bodnár M., Fazekas E., Prépost E., Nicotra F., Russo L.. Chitosan-based multimodal polymeric nanoparticles targeting pancreatic β-cells. Carbohydr. Polym. Technol. 2024;8:100610. doi: 10.1016/j.carpta.2024.100610. DOI

Weissleder R., Stark D. D., Engelstad B. L., Bacon B. R., Compton C. C., White D. L., Jacobs P., Lewis J.. Superparamagnetic iron oxide: Pharmacokinetics and toxicity. Am. J. Roentgenol. 1989;152:167–173. doi: 10.2214/ajr.152.1.167. PubMed DOI

Jirak D., Kriz J., Strzelecki M., Yang J., Hasilo C., White D. J., Foster P. J.. Monitoring the survival of islet transplants by MRI using a novel technique for their automated detection and quantification. Magn. Reson. Mater. Phys. Biol. Med. 2009;22:257–265. doi: 10.1007/s10334-009-0172-4. PubMed DOI

Berkova Z., Jirak D., Zacharovova K., Kriz J., Lodererova A., Girman P., Koblas T., Dovolilova E., Vancova M., Hajek M., Saudek F.. Labeling of pancreatic islets with iron oxide nanoparticles for in vivo detection with magnetic resonance. Transplantation. 2008;85:155–159. doi: 10.1097/01.tp.0000297247.08627.ff. PubMed DOI

Jirák D., Kříž J., Herynek V., Andersson B., Girman P., Burian M., Saudek F., Hájek M.. MRI of transplanted pancreatic islets. Mag. Res. Med. 2004;52:1228–1233. doi: 10.1002/mrm.20282. PubMed DOI

Zacharovová K., Berková Z., Jirák D., Herynek V., Vancová M., Dovolilová E., Saudek F.. Processing of superparamagnetic iron contrast agent ferucarbotran in transplanted pancreatic islets. Contrast Media Mol. Imaging. 2012;7:485–493. doi: 10.1002/cmmi.1477. PubMed DOI

Briley-Saebo K. C., Shaw P. X., Mulder W. J. M., Choi S.-H., Vucic E., Aguinaldo J. G. S., Witztum J. L., Fuster V., Tsimikas S., Fayad Z. A.. Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation. 2008;117:3206–3215. doi: 10.1161/CIRCULATIONAHA.107.757120. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...