High Resolution Powder Electron Diffraction in Scanning Electron Microscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA21-13541S
Czech Science Foundation
TN01000008
Technology Agency of the Czech Republic
PubMed
34947146
PubMed Central
PMC8708290
DOI
10.3390/ma14247550
PII: ma14247550
Knihovny.cz E-zdroje
- Klíčová slova
- 4D-STEM, nanoparticle analysis, powder nanobeam electron diffraction,
- Publikační typ
- časopisecké články MeSH
A modern scanning electron microscope equipped with a pixelated detector of transmitted electrons can record a four-dimensional (4D) dataset containing a two-dimensional (2D) array of 2D nanobeam electron diffraction patterns; this is known as a four-dimensional scanning transmission electron microscopy (4D-STEM). In this work, we introduce a new version of our method called 4D-STEM/PNBD (powder nanobeam diffraction), which yields high-resolution powder diffractograms, whose quality is fully comparable to standard TEM/SAED (selected-area electron diffraction) patterns. Our method converts a complex 4D-STEM dataset measured on a nanocrystalline material to a single 2D powder electron diffractogram, which is easy to process with standard software. The original version of 4D-STEM/PNBD method, which suffered from low resolution, was improved in three important areas: (i) an optimized data collection protocol enables the experimental determination of the point spread function (PSF) of the primary electron beam, (ii) an improved data processing combines an entropy-based filtering of the whole dataset with a PSF-deconvolution of the individual 2D diffractograms and (iii) completely re-written software automates all calculations and requires just a minimal user input. The new method was applied to Au, TbF3 and TiO2 nanocrystals and the resolution of the 4D-STEM/PNBD diffractograms was even slightly better than that of TEM/SAED.
Zobrazit více v PubMed
Watt I.M. The Principles and Practice of Electron Microscopy. 2nd ed. Cambridge University Press; Cambridge, UK: 1997. p. 500.
Shibata N., Kohno Y., Findlay S.D., Sawada H., Kondo Y., Ikuhara Y. New area detector for atomic-resolution scanning transmission electron microscopy. J. Electron. Microsc. (Tokyo) 2010;59:473–479. doi: 10.1093/jmicro/dfq014. PubMed DOI
Skoupy R., Nebesarova J., Slouf M., Krzyzanek V. Quantitative STEM imaging of electron beam induced mass loss of epoxy resin sections. Ultramicroscopy. 2019;202:44–50. doi: 10.1016/j.ultramic.2019.03.018. PubMed DOI
Sun C., Muller E., Meffert M., Gerthsen D. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope. Microsc. Microanal. 2018;24:99–106. doi: 10.1017/S1431927618000181. PubMed DOI
Beche A., Rouviere J.L., Barnes J.P., Cooper D. Strain measurement at the nanoscale: Comparison between convergent beam electron diffraction, nano-beam electron diffraction, high resolution imaging and dark field electron holography. Ultramicroscopy. 2013;131:10–23. doi: 10.1016/j.ultramic.2013.03.014. PubMed DOI
Faruqi A.R., McMullan G. Direct imaging detectors for electron microscopy. Nucl. Instrum. Methods Phys. Res. Sect. A. 2018;878:180–190. doi: 10.1016/j.nima.2017.07.037. DOI
MacLaren I., Macgregor T.A., Allen C.S., Kirkland A.I. Detectors—The ongoing revolution in scanning transmission electron microscopy and why this important to material characterization. APL Mater. 2020;8:110901. doi: 10.1063/5.0026992. DOI
Ophus C. Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond. Microsc. Microanal. 2019;25:563–582. doi: 10.1017/S1431927619000497. PubMed DOI
Savitzky B.H., Zeltmann S.E., Hughes L.A., Brown H.G., Zhao S., Pelz P.M., Pekin T.C., Barnard E.S., Donohue J., Rangel DaCosta L., et al. py4DSTEM: A Software Package for Four-Dimensional Scanning Transmission Electron Microscopy Data Analysis. Microsc. Microanal. 2021;27:712–743. doi: 10.1017/S1431927621000477. PubMed DOI
Vystavěl T., Tůma L., Stejskal P., Unčovský M., Skalický J., Young R. Expanding Capabilities of Low-kV STEM Imaging and Transmission Electron Diffraction in FIB/SEM Systems. Microsc. Microanal. 2017;23:554–555. doi: 10.1017/S1431927617003452. DOI
Holm J.D., Caplins B.W. STEM in SEM: Introduction to Scanning Transmission Electron Microscopy for Microelectronics Failure Analysis. ASM International; Novelty, OH, USA: 2020.
Caplins B.W., Holm J.D., Keller R.R. Orientation mapping of graphene in a scanning electron microscope. Carbon. 2019;149:400–406. doi: 10.1016/j.carbon.2019.04.042. DOI
Caplins B.W., Holm J.D., White R.M., Keller R.R. Orientation mapping of graphene using 4D STEM-in-SEM. Ultramicroscopy. 2020;219:113137. doi: 10.1016/j.ultramic.2020.113137. PubMed DOI PMC
Schweizer P., Denninger P., Dolle C., Spiecker E. Low energy nano diffraction (LEND)—A versatile diffraction technique in SEM. Ultramicroscopy. 2020;213:112956. doi: 10.1016/j.ultramic.2020.112956. PubMed DOI
Slouf M., Skoupy R., Pavlova E., Krzyzanek V. Powder Nano-Beam Diffraction in Scanning Electron Microscope: Fast and Simple Method for Analysis of Nanoparticle Crystal Structure. Nanomaterials. 2021;11:962. doi: 10.3390/nano11040962. PubMed DOI PMC
Labar J.L., Adamik M., Barna B.P., Czigany Z., Fogarassy Z., Horvath Z.E., Geszti O., Misjak F., Morgiel J., Radnoczi G., et al. Electron diffraction based analysis of phase fractions and texture in nanocrystalline thin films, Part III: Application examples. Microsc. Microanal. 2012;18:406–420. doi: 10.1017/S1431927611012803. PubMed DOI
Slouf M., Vacková T., Zhigunov A., Sikora A., Piorkowska E. Nucleation of Polypropylene Crystallization with Gold Nanoparticles. Part 2: Relation between Particle Morphology and Nucleation Activity. J. Macromol. Sci. Part B. 2016;55:393–410. doi: 10.1080/00222348.2016.1153402. DOI
Shapoval O., Oleksa V., Slouf M., Lobaz V., Trhlikova O., Filipova M., Janouskova O., Engstova H., Pankrac J., Modry A., et al. Colloidally Stable P(DMA-AGME)-Ale-Coated Gd(Tb)F3:Tb(3+)(Gd(3+)),Yb(3+),Nd(3+) Nanoparticles as a Multimodal Contrast Agent for Down- and Upconversion Luminescence, Magnetic Resonance Imaging, and Computed Tomography. Nanomaterials. 2021;11:230. doi: 10.3390/nano11010230. PubMed DOI PMC
Kraus W., Nolze G. POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 1996;29:301–303. doi: 10.1107/S0021889895014920. DOI
Glasser L. Crystallographic Information Resources. J. Chem. Educ. 2016;93:542–549. doi: 10.1021/acs.jchemed.5b00253. DOI
Granja C., Jakubek J., Polansky S., Zach V., Krist P., Chvatil D., Stursa J., Sommer M., Ploc O., Kodaira S., et al. Resolving power of pixel detector Timepix for wide-range electron, proton and ion detection. Nucl. Instrum. Methods Phys. Res. Sect. A. 2018;908:60–71. doi: 10.1016/j.nima.2018.08.014. DOI
Andrews K.W., Dyson D.J., Keown S.R. Interpretation of Electron Diffraction Patterns. Plenum Press; New York, NY, USA: 1967.
Shannon C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948;27:379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x. DOI
Fabbri R., Gonçalves W.N., Lopes F.J.P., Bruno O.M. Multi-q pattern analysis: A case study in image classification. Phys. A Stat. Mech. Appl. 2012;391:4487–4496. doi: 10.1016/j.physa.2012.05.001. DOI
Nord M., Webster R.W.H., Paton K.A., McVitie S., McGrouther D., MacLaren I., Paterson G.W. Fast Pixelated Detectors in Scanning Transmission Electron Microscopy. Part I: Data Acquisition, Live Processing, and Storage. Microsc. Microanal. 2020;26:653–666. doi: 10.1017/S1431927620001713. PubMed DOI
Moskvin M., Huntosova V., Herynek V., Matous P., Michalcova A., Lobaz V., Zasonska B., Slouf M., Seliga R., Horak D. In vitro cellular activity of maghemite/cerium oxide magnetic nanoparticles with antioxidant properties. Colloids Surf. B Biointerfaces. 2021;204:111824. doi: 10.1016/j.colsurfb.2021.111824. PubMed DOI
Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI
Gammer C., Burak Ozdol V., Liebscher C.H., Minor A.M. Diffraction contrast imaging using virtual apertures. Ultramicroscopy. 2015;155:1–10. doi: 10.1016/j.ultramic.2015.03.015. PubMed DOI
Shukla A.K., Ramasse Q.M., Ophus C., Kepaptsoglou D.M., Hage F.S., Gammer C., Bowling C., Gallegos P.A.H., Venkatachalam S. Effect of composition on the structure of lithium- and manganese-rich transition metal oxides. Energy Environ. Sci. 2018;11:830–840. doi: 10.1039/C7EE02443F. DOI
Allen F.I., Pekin T.C., Persaud A., Rozeveld S.J., Meyers G.F., Ciston J., Ophus C., Minor A.M. Fast Grain Mapping with Sub-Nanometer Resolution Using 4D-STEM with Grain Classification by Principal Component Analysis and Non-Negative Matrix Factorization. Microsc. Microanal. 2021;27:794–803. doi: 10.1017/S1431927621011946. PubMed DOI
Pekin T.C., Gammer C., Ciston J., Ophus C., Minor A.M. In situ nanobeam electron diffraction strain mapping of planar slip in stainless steel. Scr. Mater. 2018;146:87–90. doi: 10.1016/j.scriptamat.2017.11.005. DOI
Jiang Y., Chen Z., Han Y., Deb P., Gao H., Xie S., Purohit P., Tate M.W., Park J., Gruner S.M., et al. Electron ptychography of 2D materials to deep sub-angstrom resolution. Nature. 2018;559:343–349. doi: 10.1038/s41586-018-0298-5. PubMed DOI
Guo M., Li Y., Su Y., Lambert T., Nogare D.D., Moyle M.W., Duncan L.H., Ikegami R., Santella A., Rey-Suarez I., et al. Rapid image deconvolution and multiview fusion for optical microscopy. Nat. Biotechnol. 2020;38:1337–1346. doi: 10.1038/s41587-020-0560-x. PubMed DOI PMC
Sage D., Donati L., Soulez F., Fortun D., Schmit G., Seitz A., Guiet R., Vonesch C., Unser M. DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods. 2017;115:28–41. doi: 10.1016/j.ymeth.2016.12.015. PubMed DOI
Sarder P., Nehorai A. Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process. Mag. 2006;23:32–45. doi: 10.1109/MSP.2006.1628876. DOI
McBride W., Cockayne D.J.H., Tsuda K. Deconvolution of electron diffraction patterns of amorphous materials formed with convergent beam. Ultramicroscopy. 2003;94:305–308. doi: 10.1016/S0304-3991(02)00340-6. PubMed DOI
Zuo B., Hu X., Cai Z., Tian J. Deconvolution image ringing artifacts removal via anisotropic diffusion. Opt. Eng. 2012;51:057001. doi: 10.1117/1.OE.51.5.057001. DOI
Horák D., Hlídková H., Trachtová Š., Šlouf M., Rittich B., Španová A. Evaluation of poly(ethylene glycol)-coated monodispersed magnetic poly(2-hydroxyethyl methacrylate) and poly(glycidyl methacrylate) microspheres by PCR. Eur. Polym. J. 2015;68:687–696. doi: 10.1016/j.eurpolymj.2015.03.036. DOI
Tarkistani M.A.M., Komalla V., Kayser V. Recent Advances in the Use of Iron-Gold Hybrid Nanoparticles for Biomedical Applications. Nanomaterials. 2021;11:1227. doi: 10.3390/nano11051227. PubMed DOI PMC
Mansor M., Hamilton T.L., Fantle M.S., Macalady J.L. Metabolic diversity and ecological niches of Achromatium populations revealed with single-cell genomic sequencing. Front. Microbiol. 2015;6:822. doi: 10.3389/fmicb.2015.00822. PubMed DOI PMC
Torres-Torres D., Bornacelli J., Vega-Becerra O., Garay-Tapia A.M., Aguirre-Tostado F.S., Torres-Torres C., Oliver A. Magnetic Force Microscopy Study of Multiscale Ion-Implanted Platinum in Silica Glass, Recorded by an Ultrafast Two-Wave Mixing Configuration. Microsc. Microanal. 2020;26:53–62. doi: 10.1017/S1431927619015204. PubMed DOI
VanderPlas J. Python Data Science Handbook. O’Reilly Media, Inc.; Sebastopol, CA, USA: 2017. p. 529.
Injection Moulding into 3D-Printed Plastic Inserts Produced Using the Multi Jet Fusion Method