Powder Nano-Beam Diffraction in Scanning Electron Microscope: Fast and Simple Method for Analysis of Nanoparticle Crystal Structure
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-13541S
Grantová Agentura České Republiky
TN01000008
Technologická Agentura České Republiky
PubMed
33918700
PubMed Central
PMC8070269
DOI
10.3390/nano11040962
PII: nano11040962
Knihovny.cz E-zdroje
- Klíčová slova
- 4D-STEM/PNBD, nanoparticle analysis, powder nanobeam electron diffraction,
- Publikační typ
- časopisecké články MeSH
We introduce a novel scanning electron microscopy (SEM) method which yields powder electron diffraction patterns. The only requirement is that the SEM microscope must be equipped with a pixelated detector of transmitted electrons. The pixelated detectors for SEM have been commercialized recently. They can be used routinely to collect a high number of electron diffraction patterns from individual nanocrystals and/or locations (this is called four-dimensional scanning transmission electron microscopy (4D-STEM), as we obtain two-dimensional (2D) information for each pixel of the 2D scanning array). Nevertheless, the individual 4D-STEM diffractograms are difficult to analyze due to the random orientation of nanocrystalline material. In our method, all individual diffractograms (showing randomly oriented diffraction spots from a few nanocrystals) are combined into one composite diffraction pattern (showing diffraction rings typical of polycrystalline/powder materials). The final powder diffraction pattern can be analyzed by means of standard programs for TEM/SAED (Selected-Area Electron Diffraction). We called our new method 4D-STEM/PNBD (Powder NanoBeam Diffraction) and applied it to three different systems: Au nano-islands (well diffracting nanocrystals with size ~20 nm), small TbF3 nanocrystals (size < 5 nm), and large NaYF4 nanocrystals (size > 100 nm). In all three cases, the STEM/PNBD results were comparable to those obtained from TEM/SAED. Therefore, the 4D-STEM/PNBD method enables fast and simple analysis of nanocrystalline materials, which opens quite new possibilities in the field of SEM.
Zobrazit více v PubMed
Egerton R.F. Physical Principles of Electron Microscopy. An Introduction to TEM, SEM, and AEM. 2nd ed. Springer International Publishing; Berlin/Heidelberg, Germany: 2016.
Holm J., Caplins B., Killgore J. Obtaining diffraction patterns from annular dark-field STEM-in-SEM images: Towards a better understanding of image contrast. Ultramicroscopy. 2020;212:112972. doi: 10.1016/j.ultramic.2020.112972. PubMed DOI
Pfaff M., Müller E., Klein M.F.G., Colsmann A., Lemmer U., Krzyzanek V., Reichelt R., Gerthsen D. Low-energy electron scattering in carbon-based materials analyzed by scanning transmission electron microscopy and its application to sample thickness determination. J. Microsc. 2010;243:31–39. doi: 10.1111/j.1365-2818.2010.03475.x. PubMed DOI
Skoupy R., Nebesarova J., Slouf M., Krzyzanek V. Quantitative STEM imaging of electron beam induced mass loss of epoxy resin sections. Ultramicroscopy. 2019;202:44–50. doi: 10.1016/j.ultramic.2019.03.018. PubMed DOI
Ferroni M., Signoroni A., Sanzogni A., Masini L., Migliori A., Ortolani L., Pezza A., Morandi V. Biological application of Compressed Sensing Tomography in the Scanning Electron Microscope. Sci. Rep. 2016;6:33354. doi: 10.1038/srep33354. PubMed DOI PMC
Sun C., Muller E., Meffert M., Gerthsen D. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope. Microsc. Microanal. 2018;24:99–106. doi: 10.1017/S1431927618000181. PubMed DOI
Holm J.D., Caplins B.W. STEM in SEM: Introduction to Scanning Transmission Electron Microscopy for Microelectronics Failure Analysis. ASM International; Novelty, OH, USA: 2020.
Faruqi A., McMullan G. Direct imaging detectors for electron microscopy. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2018;878:180–190. doi: 10.1016/j.nima.2017.07.037. DOI
MacLaren I., MacGregor T.A., Allen C.S., Kirkland A.I. Detectors—The ongoing revolution in scanning transmission electron microscopy and why this important to material characterization. APL Mater. 2020;8:110901. doi: 10.1063/5.0026992. DOI
Ganesh K., Kawasaki M., Zhou J., Ferreira P. D-STEM: A Parallel Electron Diffraction Technique Applied to Nanomaterials. Microsc. Microanal. 2010;16:614–621. doi: 10.1017/S1431927610000334. PubMed DOI
Ophus C. Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond. Microsc. Microanal. 2019;25:563–582. doi: 10.1017/S1431927619000497. PubMed DOI
Bammes B., Ramachandra R., Mackey M.R., Bilhorn R., Ellisman M. Multi-Color Electron Microscopy of Cellular Ultrastructure Using 4D-STEM. Microsc. Microanal. 2019;25:1060–1061. doi: 10.1017/S1431927619006032. DOI
Fang S., Wen Y., Allen C.S., Ophus C., Han G.G.D., Kirkland A.I., Kaxiras E., Warner J.H. Atomic electrostatic maps of 1D channels in 2D semiconductors using 4D scanning transmission electron microscopy. Nat. Commun. 2019;10:1–9. doi: 10.1038/s41467-019-08904-9. PubMed DOI PMC
Wang P., Zhang F., Gao S., Zhang M., Kirkland A.I. Electron Ptychographic Diffractive Imaging of Boron Atoms in LaB6 Crystals. Sci. Rep. 2017;7:1–8. doi: 10.1038/s41598-017-02778-x. PubMed DOI PMC
Mu X., Mazilkin A., Sprau C., Colsmann A., Kübel C. Mapping structure and morphology of amorphous organic thin films by 4D-STEM pair distribution function analysis. Microscopy. 2019;68:301–309. doi: 10.1093/jmicro/dfz015. PubMed DOI
Panova O., Ophus C., Takacs C.J., Bustillo K.C., Balhorn L., Salleo A., Balsara N., Minor A.M. Diffraction imaging of nanocrystalline structures in organic semiconductor molecular thin films. Nat. Mater. 2019;18:860–865. doi: 10.1038/s41563-019-0387-3. PubMed DOI
Vystavěl T., Tůma L., Stejskal P., Unčovský M., Skalický J., Young R. Expanding Capabilities of Low-kV STEM Imaging and Transmission Electron Diffraction in FIB/SEM Systems. Microsc. Microanal. 2017;23:554–555. doi: 10.1017/S1431927617003452. DOI
Caplins B.W., Holm J.D., Keller R.R. Orientation mapping of graphene in a scanning electron microscope. Carbon. 2019;149:400–406. doi: 10.1016/j.carbon.2019.04.042. DOI
Caplins B.W., Holm J.D., White R.M., Keller R.R. Orientation mapping of graphene using 4D STEM-in-SEM. Ultramicroscopy. 2020;219:113137. doi: 10.1016/j.ultramic.2020.113137. PubMed DOI PMC
Humphry M., Kraus B., Hurst A., Maiden A., Rodenburg J. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nat. Commun. 2012;3:730. doi: 10.1038/ncomms1733. PubMed DOI PMC
Schweizer P., Denninger P., Dolle C., Spiecker E. Low energy nano diffraction (LEND)—A versatile diffraction technique in SEM. Ultramicroscopy. 2020;213:112956. doi: 10.1016/j.ultramic.2020.112956. PubMed DOI
Lábár J.L. Consistent indexing of a (set of) single crystal SAED pattern(s) with the ProcessDiffraction program. Ultramicroscopy. 2005;103:237–249. doi: 10.1016/j.ultramic.2004.12.004. PubMed DOI
Šlouf M., Vacková T., Zhigunov A., Sikora A., Piorkowska E., Taťana V., Alexander Z., Antonin S., Ewa P. Nucleation of Polypropylene Crystallization with Gold Nanoparticles. Part 2: Relation between Particle Morphology and Nucleation Activity. J. Macromol. Sci. Part B. 2016;55:393–410. doi: 10.1080/00222348.2016.1153402. DOI
Shapoval O., Oleksa V., Šlouf M., Lobaz V., Trhlíková O., Filipová M., Janoušková O., Engstová H., Pankrác J., Modrý A., et al. Colloidally Stable P(DMA-AGME)-Ale-Coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ Nanoparticles as a Multimodal Contrast Agent for Down- and Upconversion Luminescence, Magnetic Resonance Imaging, and Computed Tomography. Nanomaterials. 2021;11:230. doi: 10.3390/nano11010230. PubMed DOI PMC
Kostiv U., Janouskova O., Slouf M., Kotov N., Engstova H., Smolkova K., Jezek P., Horak D. Silica-modified monodisperse hexagonal lanthanide nanocrystals: Synthesis and biological properties. Nanoscale. 2015;7:18096–18104. doi: 10.1039/C5NR05572E. PubMed DOI
Glasser L. Crystallographic Information Resources. J. Chem. Educ. 2016;93:542–549. doi: 10.1021/acs.jchemed.5b00253. DOI
Kraus W., Nolze G. POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 1996;29:301–303. doi: 10.1107/S0021889895014920. DOI
Granja C., Jakubek J., Polansky S., Zach V., Krist P., Chvatil D., Stursa J., Sommer M., Ploc O., Kodaira S., et al. Resolving power of pixel detector Timepix for wide-range electron, proton and ion detection. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2018;908:60–71. doi: 10.1016/j.nima.2018.08.014. DOI
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Kukleva E., Suchánková P., Štamberg K., Vlk M., Šlouf M., Kozempel J. Surface protolytic property characterization of hydroxyapatite and titanium dioxide nanoparticles. RSC Adv. 2019;9:21989–21995. doi: 10.1039/C9RA03698A. PubMed DOI PMC
Andrews K.W., Dyson D.J., Keown S.R. Interpretation of Electron Diffraction Patterns. Plenum Press; New York, NY, USA: 1967.
Fultz B., Howe J.M. Transmission Electron Microscopy and Diffractometry of Materials. 3rd ed. Springer; Berlin/Heidelberg, Germany: 2007. pp. 353–357.
Sparavigna A.C. Entropy in Image Analysis. Entropy. 2019;21:502. doi: 10.3390/e21050502. PubMed DOI PMC
Jain C., Chugh A., Yadav S. Image Deblurring Using Blind Deconvolution. LAP Lambert Academic Publishing; Saarbrücken, Germany: 2019.
High Resolution Powder Electron Diffraction in Scanning Electron Microscopy