Colloidally Stable P(DMA-AGME)-Ale-Coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ Nanoparticles as a Multimodal Contrast Agent for Down- and Upconversion Luminescence, Magnetic Resonance Imaging, and Computed Tomography
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-00676S
Grantová Agentura České Republiky
LM2018129
Ministerstvo Školství, Mládeže a Tělovýchovy
LTC19032
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33467188
PubMed Central
PMC7830756
DOI
10.3390/nano11010230
PII: nano11010230
Knihovny.cz E-zdroje
- Klíčová slova
- MRI, colloidal stability, computed tomography, down-conversion luminescence, nanoparticles, up-conversion luminescence,
- Publikační typ
- časopisecké články MeSH
Multimodal imaging, integrating several modalities including down- and up-conversion luminescence, T 1- and T 2(T 2*)-weighted MRI, and CT contrasting in one system, is very promising for improved diagnosis of severe medical disorders. To reach the goal, it is necessary to develop suitable nanoparticles that are highly colloidally stable in biologically relevant media. Here, hydrophilic poly(N,N-dimethylacrylamide-N-acryloylglycine methyl ester)-alendronate-[P(DMA-AGME)-Ale]-coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ nanoparticles were synthesized by a coprecipitation method in ethylene glycol (EG) followed by coating with the polymer. The particles were tho-roughly characterized by a dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray energy dispersive spectroscopy (EDAX), selected area electron diffraction (SAED), elemental ana-lysis and fluorescence spectroscopy. Aqueous particle dispersions exhibited excellent colloidal stability in water and physiological buffers. In vitro toxicity assessments suggested no or only mild toxicity of the surface-engineered Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ particles in a wide range of concentrations. Internalization of the particles by several types of cells, including HeLa, HF, HepG2, and INS, was confirmed by a down- and up-conversion confocal microscopy. Newly developed particles thus proved to be an efficient contrast agent for fluorescence imaging, T 1- and T 2(T 2*)-weighted magnetic resonance imaging (MRI), and computed tomography (CT).
Institute of Macromolecular Chemistry Czech Academy of Sciences 162 06 Prague 6 Czech Republic
Institute of Physiology Czech Academy of Sciences 142 20 Praha 4 Czech Republic
Zobrazit více v PubMed
Walter A., Paul-Gilloteaux P., Plochberger B., Sefc L., Verkade P., Mannheim J.G., Slezak P., Unterhuber A., Marchetti-Deschmann M., Ogris M., et al. Correlated multimodal imaging in life sciences: Expanding the biomedical horizon. Front. Phys. 2020;8:1–28. doi: 10.3389/fphy.2020.00047. DOI
Li X., Zhang X.N., Li X.D., Chang J. Multimodality imaging in nanomedicine and nanotheranostics. Cancer Biol. Med. 2016;13:339–348. doi: 10.20892/j.issn.2095-3941.2016.0055. PubMed DOI PMC
Burke B.P., Cawthorne C., Archibald S.J. Multimodal nanoparticle imaging agents: Design and applications. Phil. Trans. R. Soc. A. 2017;375:20170261. doi: 10.1098/rsta.2017.0261. PubMed DOI
Key J., Leary J.F. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int. J. Nanomed. 2014;9:711–726. PubMed PMC
Rodriguez-Liviano S., Nunez N.O., Rivera-Fernández S., de la Fuente J.M., Ocana M. Ionic liquid mediated synthesis and surface modification of multifunctional mesoporous Eu:GdF3 nanoparticles for biomedical applications. Langmuir. 2013;29:3411–3418. doi: 10.1021/la4001076. PubMed DOI
Wang D.-Y., Ma P.-C., Zhang J.-C., Wang Y.-H. Efficient down- and up-conversion luminescence in Er3+–Yb3+ co-doped Y7O6F9 for photovoltaics. ACS Appl. Energy Mater. 2018;1:447–454. doi: 10.1021/acsaem.7b00093. DOI
Qin X., Zhang X., Zhang W., Li C., Zhu C. Facile synthesis of NaYF4:Ln/NaYF4:Eu composite with up-conversion and down-shifting luminescence. J. Photochem. Photobiol. A. 2020;391:112388. doi: 10.1016/j.jphotochem.2020.112388. DOI
Shapoval O., Kaman O., Hromádková J., Vavřík D., Jirák D., Machová D., Parnica J., Horák D. Multimodal PSSMA-functionalized GdF3:Eu3+(Tb3+) nanoparticles for luminescence imaging, MRI, and X-ray computed tomography. ChemPlusChem. 2019;84:1135–1139. doi: 10.1002/cplu.201900352. PubMed DOI
Branca M., Pelletier F., Cottin B., Ciuculescu D., Lin C.C., Serra R., Mattei J.G., Casanove M.J., Tan R., Respaud M., et al. Design of FeBi nanoparticles for imaging applications. Faraday Discuss. 2014;175:97–111. doi: 10.1039/C4FD00105B. PubMed DOI
Liang S.Y., Zhou Q., Wang M., Zhu Y.H., Wu Q.Z., Yang X.L. Water-soluble L-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int. J. Nanomed. 2015;10:2325–2333. PubMed PMC
Carril M., Fernández I., Rodríguez J., García I., Penadés S. Gold-coated iron oxide glyconanoparticles for MRI, CT, and US multimodal imaging. Part. Part. Syst. Char. 2013;31:81–87. doi: 10.1002/ppsc.201300239. DOI
Alric C., Taleb J., Le Duc G., Mandon C., Billotey C., Le Meur-Herland A., Brochard T., Vocanson F., Janier M., Perriat P., et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 2008;130:5908–5915. doi: 10.1021/ja078176p. PubMed DOI
Dong H., Du S.R., Zheng X.-Y., Lyu G.M., Sun L.D., Li L.D., Zhang P.Z., Zhang C., Yan C.H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015;115:10725–10815. doi: 10.1021/acs.chemrev.5b00091. PubMed DOI
Passuello T., Pedroni M., Piccinelli F., Polizzi S., Marzola P., Tambalo S., Conti G., Benati D., Vetrone F., Bettinelli M., et al. PEG-capped, lanthanide doped GdF3 nanoparticles: Luminescent and T2 contrast agents for optical and MRI multimodal imaging. Nanoscale. 2012;4:7682–7689. doi: 10.1039/c2nr31796f. PubMed DOI
Biju S., Gallo J., Banobre-Lopez M., Manshian B., Soenen S., Himmelreich U., Vander Elst L., Parac-Vogt T. A magnetic chameleon: Biocompatible lanthanide nanoparticles with magnetic field dependent properties as contrast agents for MRI and optical imaging in biological window. Chem. Eur. J. 2018;24:7388–7397. doi: 10.1002/chem.201800283. PubMed DOI
Ni D.L., Zhang J.W., Bu W.B., Zhang C., Yao Z., Xing H., Wang J., Duan F., Liu Y., Fan W., et al. PEGylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging. Biomaterials. 2016;76:218–225. doi: 10.1016/j.biomaterials.2015.10.063. PubMed DOI
Donati T., Wilson J., Kölbel T., Clough R.E. Modern diagnostics for type B aortic dissection. Gefasschirurgie. 2015;20:420–427. doi: 10.1007/s00772-015-0078-6. PubMed DOI PMC
Viswanathan S., Kovacs Z., Green K.N., Ratnakar S.J., Sherry A.D. Alternatives to gadolinium-based metal chelates for magnetic resonance imaging. Chem. Rev. 2010;110:2960–3018. doi: 10.1021/cr900284a. PubMed DOI PMC
Zhang L., Yang R., Zou H., Shen X., Zheng J., Wei W. High-efficiency simultaneous three-photon absorption upconversion luminescence of a terbium-doped germanate glass. Jpn. J. Appl. Phys. 2016;55:122402. doi: 10.7567/JJAP.55.122402. DOI
Prorok K., Pawlyta M., Stręk W., Bednarkiewicz A. Energy migration up-conversion of Tb3+ in Yb3+ and Nd3+ codoped active-core/active-shell colloidal nanoparticles. Chem. Mater. 2016;28:2295–2300. doi: 10.1021/acs.chemmater.6b00353. DOI
Subramanian M., Thakur P., Gautam S., Chae K.H., Tanemura M., Hihara T., Vijayalakshmi S., Soga T., Kim S.S., Asokan K. Investigations on the structural, optical and electronic properties of Nd doped ZnO thin films. J. Phys. D. 2009;42:105410. doi: 10.1088/0022-3727/42/10/105410. DOI
Yi Z., Li X., Lu W., Liu H., Zeng S., Hao J. Hybrid lanthanide nanoparticles as a new class of binary contrast agents for in vivo T1/T2 dual-weighted MRI and synergistic tumor diagnosis. J. Mater. Chem. B. 2016;4:2715–2722. doi: 10.1039/C5TB02375K. PubMed DOI
Abdesselem M., Schoeffel M., Maurin I., Ramodiharilafy R., Autret G., Clément O., Tharaux P.L., Boilot J.P., Gacoin T., Bouzigues C., et al. Multifunctional rare-earth vanadate nanoparticles: Luminescent labels, oxidant sensors, and MRI contrast agents. ACS Nano. 2014;8:11126–11137. doi: 10.1021/nn504170x. PubMed DOI
Sharma R.K., Mudring A.-V., Ghosh P. Recent trends in binary and ternary rare-earth fluoride nanophosphors: How structural and physical properties influence optical behavior. J. Lumin. 2017;189:44–63. doi: 10.1016/j.jlumin.2017.03.062. DOI
Feldmann C. Polyol-mediated synthesis of nanoscale functional materials. Adv. Funct. Mater. 2003;13:101–107. doi: 10.1002/adfm.200390014. DOI
Dang T.M.D., Le T.T.T., Fribourg-Blanc E., Dang M.C. Influence of surfactant on the preparation of silver nanoparticles by polyol method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012;3:035004. doi: 10.1088/2043-6262/3/3/035004. DOI
Schubert J., Chanana M. Coating matters: Review on colloidal stability of nanoparticles with biocompatible coatings in biologi-cal media, living cells and organisms. Curr. Med. Chem. 2018;25:4553–4586. doi: 10.2174/0929867325666180601101859. PubMed DOI PMC
Gao J., Ran X., Shi C., Cheng H., Cheng T., Su Y. One-step solvothermal synthesis of highly water-soluble, negatively charged superparamagnetic Fe3O4 colloidal nanocrystal clusters. Nanoscale. 2013;5:7026–7033. doi: 10.1039/c3nr00931a. PubMed DOI
Oleksa V., Macková H., Patsula V., Dydowitzová A., Janoušková O., Horák D. Doxorubicin-conjugated iron oxide nanoparticles: Surface engineering and biomedical investigation. ChemPlusChem. 2020;85:1156–1163. doi: 10.1002/cplu.202000360. PubMed DOI
Kostiv U., Engstová H., Krajnik B., Šlouf M., Proks V., Podhorodecky A., Ježek P., Horák D. Monodisperse core-shell NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-GGGRGDSGGGY-NH2 nanoparticles excitable at 808 and 980 nm: Design, surface engineering, and application in life sciences. Front. Chem. 2020;8:497. doi: 10.3389/fchem.2020.00497. PubMed DOI PMC
Zasonska B.A., Boiko N., Horák D., Klyuchivska O., Macková H., Beneš M., Babič M., Trchová M., Hromádková J., Stoika R. The use of hydrophilic poly(N,N-dimethylacrylamide) for promoting engulfment of magnetic γ-Fe2O3 nanoparticles by mammalian cells. J. Biomed. Nanotechnol. 2013;9:479–491. doi: 10.1166/jbn.2013.1552. PubMed DOI
Gregori M., Bertani D., Cazzaniga E., Orlando A., Mauri M., Bianchi A., Re F., Sesana S., Minniti S., Francolini M., et al. Investigation of functionalized poly(N,N-dimethylacrylamide)-block-polystyrene nanoparticles as novel drug delivery system to overcome the blood–brain barrier in vitro. Macromol. Biosci. 2015;15:1687–1697. doi: 10.1002/mabi.201500172. PubMed DOI
Poul L., Ammar S., Jouini N., Fievet F., Villain F. A synthesis of inorganic compounds (metal, oxide and hydroxide) in polyol medium: A versatile route related to the sol-gel process. J. Sol-Gel. Sci. Tech. 2003;26:261–265. doi: 10.1023/A:1020763402390. DOI
Clayton K.N., Salameh J.W., Wereley S.T., Kinzer-Ursem T.L. Physical characterization of nanoparticle size and surface mo-dification using particle scattering diffusometry. Biomicrofluidics. 2016;10:054107. doi: 10.1063/1.4962992. PubMed DOI PMC
Moore T.L., Rodriguez-Lorenzo L., Hirsch V., Balog S., Urban D., Jud C., Rothen-Rutishauser B., Lattuada M., Petri-Fink A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 2015;44:6287–6305. doi: 10.1039/C4CS00487F. PubMed DOI
Porfire A., Achim M., Tefas L., Sylvester B. Liposomal nanoformulations as current tumor-targeting approach to cancer therapy. In: Catala A., editor. Liposomes. Intech; London, UK: 2018. DOI
Andrews K.W., Dyson D.J., Keown S.R. Interpretation of Electron Diffraction Patterns. Plenum Press; New York, NY, USA: 1967.
Mishra K., Singh S.K., Singh A.K., Rai M., Gupta B.P., Rai S.B. New perspective in garnet phosphor: Low temperature synthesis, nanostructures, and observation of multimodal luminescence. Inorg. Chem. 2014;53:9561–9569. doi: 10.1021/ic500854k. PubMed DOI
Liang H.J., Chen G.Y., Li L., Liu Y., Qin F., Zhang Z.G. Upconversion luminescence in Yb3+/Tb3+-codoped monodisperse NaYF4 nanocrystals. Opt. Commun. 2009;282:3028–3031. doi: 10.1016/j.optcom.2009.04.006. DOI
Zhang W.J., Chen Q.J., Qian Q., Zhang Q.Y., Jiang Z.H. Cooperative energy transfer in Tb3+/Yb3+- and Nd3+/Yb3+/Tb3+-codoped oxyfluoride glasses. Phys. B Condens. Matter. 2010;405:1062–1066. doi: 10.1016/j.physb.2009.11.005. DOI
Debasu M.L., Ananias D., Pinho S.L.C., Geraldes C.F.G.C., Carlos L.D., Rocha J. (Gd,Yb,Tb)PO4 up-conversion nanocrystals for bimodal luminescence–MR imaging. Nanoscale. 2012;4:5154–5162. doi: 10.1039/c2nr31226c. PubMed DOI
Zhang P., He Y., Liu J., Feng J., Sun Z., Lei P., Yuan Q., Zhang H. Core-shell BaYbF5:Tm@BaGdF5:Yb,Tm nanocrystals for in vivo trimodal UCL/CT/MR imaging. RSC Adv. 2016;6:14283–14289. doi: 10.1039/C5RA22991J. DOI
Zheng X., Wang Y., Sun L., Chen N., Li L., Shi S., Malaisamy S., Yan C. TbF3 nanoparticles as dual-mode contrast agents for ultrahigh field magnetic resonance imaging and X-ray computed tomography. Nano Res. 2016;9:1135–1147. doi: 10.1007/s12274-016-1008-y. DOI
High Resolution Powder Electron Diffraction in Scanning Electron Microscopy