Colloidally Stable P(DMA-AGME)-Ale-Coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ Nanoparticles as a Multimodal Contrast Agent for Down- and Upconversion Luminescence, Magnetic Resonance Imaging, and Computed Tomography

. 2021 Jan 16 ; 11 (1) : . [epub] 20210116

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33467188

Grantová podpora
19-00676S Grantová Agentura České Republiky
LM2018129 Ministerstvo Školství, Mládeže a Tělovýchovy
LTC19032 Ministerstvo Školství, Mládeže a Tělovýchovy

Multimodal imaging, integrating several modalities including down- and up-conversion luminescence, T 1- and T 2(T 2*)-weighted MRI, and CT contrasting in one system, is very promising for improved diagnosis of severe medical disorders. To reach the goal, it is necessary to develop suitable nanoparticles that are highly colloidally stable in biologically relevant media. Here, hydrophilic poly(N,N-dimethylacrylamide-N-acryloylglycine methyl ester)-alendronate-[P(DMA-AGME)-Ale]-coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ nanoparticles were synthesized by a coprecipitation method in ethylene glycol (EG) followed by coating with the polymer. The particles were tho-roughly characterized by a dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray energy dispersive spectroscopy (EDAX), selected area electron diffraction (SAED), elemental ana-lysis and fluorescence spectroscopy. Aqueous particle dispersions exhibited excellent colloidal stability in water and physiological buffers. In vitro toxicity assessments suggested no or only mild toxicity of the surface-engineered Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ particles in a wide range of concentrations. Internalization of the particles by several types of cells, including HeLa, HF, HepG2, and INS, was confirmed by a down- and up-conversion confocal microscopy. Newly developed particles thus proved to be an efficient contrast agent for fluorescence imaging, T 1- and T 2(T 2*)-weighted magnetic resonance imaging (MRI), and computed tomography (CT).

Zobrazit více v PubMed

Walter A., Paul-Gilloteaux P., Plochberger B., Sefc L., Verkade P., Mannheim J.G., Slezak P., Unterhuber A., Marchetti-Deschmann M., Ogris M., et al. Correlated multimodal imaging in life sciences: Expanding the biomedical horizon. Front. Phys. 2020;8:1–28. doi: 10.3389/fphy.2020.00047. DOI

Li X., Zhang X.N., Li X.D., Chang J. Multimodality imaging in nanomedicine and nanotheranostics. Cancer Biol. Med. 2016;13:339–348. doi: 10.20892/j.issn.2095-3941.2016.0055. PubMed DOI PMC

Burke B.P., Cawthorne C., Archibald S.J. Multimodal nanoparticle imaging agents: Design and applications. Phil. Trans. R. Soc. A. 2017;375:20170261. doi: 10.1098/rsta.2017.0261. PubMed DOI

Key J., Leary J.F. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int. J. Nanomed. 2014;9:711–726. PubMed PMC

Rodriguez-Liviano S., Nunez N.O., Rivera-Fernández S., de la Fuente J.M., Ocana M. Ionic liquid mediated synthesis and surface modification of multifunctional mesoporous Eu:GdF3 nanoparticles for biomedical applications. Langmuir. 2013;29:3411–3418. doi: 10.1021/la4001076. PubMed DOI

Wang D.-Y., Ma P.-C., Zhang J.-C., Wang Y.-H. Efficient down- and up-conversion luminescence in Er3+–Yb3+ co-doped Y7O6F9 for photovoltaics. ACS Appl. Energy Mater. 2018;1:447–454. doi: 10.1021/acsaem.7b00093. DOI

Qin X., Zhang X., Zhang W., Li C., Zhu C. Facile synthesis of NaYF4:Ln/NaYF4:Eu composite with up-conversion and down-shifting luminescence. J. Photochem. Photobiol. A. 2020;391:112388. doi: 10.1016/j.jphotochem.2020.112388. DOI

Shapoval O., Kaman O., Hromádková J., Vavřík D., Jirák D., Machová D., Parnica J., Horák D. Multimodal PSSMA-functionalized GdF3:Eu3+(Tb3+) nanoparticles for luminescence imaging, MRI, and X-ray computed tomography. ChemPlusChem. 2019;84:1135–1139. doi: 10.1002/cplu.201900352. PubMed DOI

Branca M., Pelletier F., Cottin B., Ciuculescu D., Lin C.C., Serra R., Mattei J.G., Casanove M.J., Tan R., Respaud M., et al. Design of FeBi nanoparticles for imaging applications. Faraday Discuss. 2014;175:97–111. doi: 10.1039/C4FD00105B. PubMed DOI

Liang S.Y., Zhou Q., Wang M., Zhu Y.H., Wu Q.Z., Yang X.L. Water-soluble L-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int. J. Nanomed. 2015;10:2325–2333. PubMed PMC

Carril M., Fernández I., Rodríguez J., García I., Penadés S. Gold-coated iron oxide glyconanoparticles for MRI, CT, and US multimodal imaging. Part. Part. Syst. Char. 2013;31:81–87. doi: 10.1002/ppsc.201300239. DOI

Alric C., Taleb J., Le Duc G., Mandon C., Billotey C., Le Meur-Herland A., Brochard T., Vocanson F., Janier M., Perriat P., et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 2008;130:5908–5915. doi: 10.1021/ja078176p. PubMed DOI

Dong H., Du S.R., Zheng X.-Y., Lyu G.M., Sun L.D., Li L.D., Zhang P.Z., Zhang C., Yan C.H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015;115:10725–10815. doi: 10.1021/acs.chemrev.5b00091. PubMed DOI

Passuello T., Pedroni M., Piccinelli F., Polizzi S., Marzola P., Tambalo S., Conti G., Benati D., Vetrone F., Bettinelli M., et al. PEG-capped, lanthanide doped GdF3 nanoparticles: Luminescent and T2 contrast agents for optical and MRI multimodal imaging. Nanoscale. 2012;4:7682–7689. doi: 10.1039/c2nr31796f. PubMed DOI

Biju S., Gallo J., Banobre-Lopez M., Manshian B., Soenen S., Himmelreich U., Vander Elst L., Parac-Vogt T. A magnetic chameleon: Biocompatible lanthanide nanoparticles with magnetic field dependent properties as contrast agents for MRI and optical imaging in biological window. Chem. Eur. J. 2018;24:7388–7397. doi: 10.1002/chem.201800283. PubMed DOI

Ni D.L., Zhang J.W., Bu W.B., Zhang C., Yao Z., Xing H., Wang J., Duan F., Liu Y., Fan W., et al. PEGylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging. Biomaterials. 2016;76:218–225. doi: 10.1016/j.biomaterials.2015.10.063. PubMed DOI

Donati T., Wilson J., Kölbel T., Clough R.E. Modern diagnostics for type B aortic dissection. Gefasschirurgie. 2015;20:420–427. doi: 10.1007/s00772-015-0078-6. PubMed DOI PMC

Viswanathan S., Kovacs Z., Green K.N., Ratnakar S.J., Sherry A.D. Alternatives to gadolinium-based metal chelates for magnetic resonance imaging. Chem. Rev. 2010;110:2960–3018. doi: 10.1021/cr900284a. PubMed DOI PMC

Zhang L., Yang R., Zou H., Shen X., Zheng J., Wei W. High-efficiency simultaneous three-photon absorption upconversion luminescence of a terbium-doped germanate glass. Jpn. J. Appl. Phys. 2016;55:122402. doi: 10.7567/JJAP.55.122402. DOI

Prorok K., Pawlyta M., Stręk W., Bednarkiewicz A. Energy migration up-conversion of Tb3+ in Yb3+ and Nd3+ codoped active-core/active-shell colloidal nanoparticles. Chem. Mater. 2016;28:2295–2300. doi: 10.1021/acs.chemmater.6b00353. DOI

Subramanian M., Thakur P., Gautam S., Chae K.H., Tanemura M., Hihara T., Vijayalakshmi S., Soga T., Kim S.S., Asokan K. Investigations on the structural, optical and electronic properties of Nd doped ZnO thin films. J. Phys. D. 2009;42:105410. doi: 10.1088/0022-3727/42/10/105410. DOI

Yi Z., Li X., Lu W., Liu H., Zeng S., Hao J. Hybrid lanthanide nanoparticles as a new class of binary contrast agents for in vivo T1/T2 dual-weighted MRI and synergistic tumor diagnosis. J. Mater. Chem. B. 2016;4:2715–2722. doi: 10.1039/C5TB02375K. PubMed DOI

Abdesselem M., Schoeffel M., Maurin I., Ramodiharilafy R., Autret G., Clément O., Tharaux P.L., Boilot J.P., Gacoin T., Bouzigues C., et al. Multifunctional rare-earth vanadate nanoparticles: Luminescent labels, oxidant sensors, and MRI contrast agents. ACS Nano. 2014;8:11126–11137. doi: 10.1021/nn504170x. PubMed DOI

Sharma R.K., Mudring A.-V., Ghosh P. Recent trends in binary and ternary rare-earth fluoride nanophosphors: How structural and physical properties influence optical behavior. J. Lumin. 2017;189:44–63. doi: 10.1016/j.jlumin.2017.03.062. DOI

Feldmann C. Polyol-mediated synthesis of nanoscale functional materials. Adv. Funct. Mater. 2003;13:101–107. doi: 10.1002/adfm.200390014. DOI

Dang T.M.D., Le T.T.T., Fribourg-Blanc E., Dang M.C. Influence of surfactant on the preparation of silver nanoparticles by polyol method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012;3:035004. doi: 10.1088/2043-6262/3/3/035004. DOI

Schubert J., Chanana M. Coating matters: Review on colloidal stability of nanoparticles with biocompatible coatings in biologi-cal media, living cells and organisms. Curr. Med. Chem. 2018;25:4553–4586. doi: 10.2174/0929867325666180601101859. PubMed DOI PMC

Gao J., Ran X., Shi C., Cheng H., Cheng T., Su Y. One-step solvothermal synthesis of highly water-soluble, negatively charged superparamagnetic Fe3O4 colloidal nanocrystal clusters. Nanoscale. 2013;5:7026–7033. doi: 10.1039/c3nr00931a. PubMed DOI

Oleksa V., Macková H., Patsula V., Dydowitzová A., Janoušková O., Horák D. Doxorubicin-conjugated iron oxide nanoparticles: Surface engineering and biomedical investigation. ChemPlusChem. 2020;85:1156–1163. doi: 10.1002/cplu.202000360. PubMed DOI

Kostiv U., Engstová H., Krajnik B., Šlouf M., Proks V., Podhorodecky A., Ježek P., Horák D. Monodisperse core-shell NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-GGGRGDSGGGY-NH2 nanoparticles excitable at 808 and 980 nm: Design, surface engineering, and application in life sciences. Front. Chem. 2020;8:497. doi: 10.3389/fchem.2020.00497. PubMed DOI PMC

Zasonska B.A., Boiko N., Horák D., Klyuchivska O., Macková H., Beneš M., Babič M., Trchová M., Hromádková J., Stoika R. The use of hydrophilic poly(N,N-dimethylacrylamide) for promoting engulfment of magnetic γ-Fe2O3 nanoparticles by mammalian cells. J. Biomed. Nanotechnol. 2013;9:479–491. doi: 10.1166/jbn.2013.1552. PubMed DOI

Gregori M., Bertani D., Cazzaniga E., Orlando A., Mauri M., Bianchi A., Re F., Sesana S., Minniti S., Francolini M., et al. Investigation of functionalized poly(N,N-dimethylacrylamide)-block-polystyrene nanoparticles as novel drug delivery system to overcome the blood–brain barrier in vitro. Macromol. Biosci. 2015;15:1687–1697. doi: 10.1002/mabi.201500172. PubMed DOI

Poul L., Ammar S., Jouini N., Fievet F., Villain F. A synthesis of inorganic compounds (metal, oxide and hydroxide) in polyol medium: A versatile route related to the sol-gel process. J. Sol-Gel. Sci. Tech. 2003;26:261–265. doi: 10.1023/A:1020763402390. DOI

Clayton K.N., Salameh J.W., Wereley S.T., Kinzer-Ursem T.L. Physical characterization of nanoparticle size and surface mo-dification using particle scattering diffusometry. Biomicrofluidics. 2016;10:054107. doi: 10.1063/1.4962992. PubMed DOI PMC

Moore T.L., Rodriguez-Lorenzo L., Hirsch V., Balog S., Urban D., Jud C., Rothen-Rutishauser B., Lattuada M., Petri-Fink A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 2015;44:6287–6305. doi: 10.1039/C4CS00487F. PubMed DOI

Porfire A., Achim M., Tefas L., Sylvester B. Liposomal nanoformulations as current tumor-targeting approach to cancer therapy. In: Catala A., editor. Liposomes. Intech; London, UK: 2018. DOI

Andrews K.W., Dyson D.J., Keown S.R. Interpretation of Electron Diffraction Patterns. Plenum Press; New York, NY, USA: 1967.

Mishra K., Singh S.K., Singh A.K., Rai M., Gupta B.P., Rai S.B. New perspective in garnet phosphor: Low temperature synthesis, nanostructures, and observation of multimodal luminescence. Inorg. Chem. 2014;53:9561–9569. doi: 10.1021/ic500854k. PubMed DOI

Liang H.J., Chen G.Y., Li L., Liu Y., Qin F., Zhang Z.G. Upconversion luminescence in Yb3+/Tb3+-codoped monodisperse NaYF4 nanocrystals. Opt. Commun. 2009;282:3028–3031. doi: 10.1016/j.optcom.2009.04.006. DOI

Zhang W.J., Chen Q.J., Qian Q., Zhang Q.Y., Jiang Z.H. Cooperative energy transfer in Tb3+/Yb3+- and Nd3+/Yb3+/Tb3+-codoped oxyfluoride glasses. Phys. B Condens. Matter. 2010;405:1062–1066. doi: 10.1016/j.physb.2009.11.005. DOI

Debasu M.L., Ananias D., Pinho S.L.C., Geraldes C.F.G.C., Carlos L.D., Rocha J. (Gd,Yb,Tb)PO4 up-conversion nanocrystals for bimodal luminescence–MR imaging. Nanoscale. 2012;4:5154–5162. doi: 10.1039/c2nr31226c. PubMed DOI

Zhang P., He Y., Liu J., Feng J., Sun Z., Lei P., Yuan Q., Zhang H. Core-shell BaYbF5:Tm@BaGdF5:Yb,Tm nanocrystals for in vivo trimodal UCL/CT/MR imaging. RSC Adv. 2016;6:14283–14289. doi: 10.1039/C5RA22991J. DOI

Zheng X., Wang Y., Sun L., Chen N., Li L., Shi S., Malaisamy S., Yan C. TbF3 nanoparticles as dual-mode contrast agents for ultrahigh field magnetic resonance imaging and X-ray computed tomography. Nano Res. 2016;9:1135–1147. doi: 10.1007/s12274-016-1008-y. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace