Poly(N,N-dimethylacrylamide)-coated upconverting NaYF4:Yb,Er@NaYF4:Nd core-shell nanoparticles for fluorescent labeling of carcinoma cells

. 2021 Nov 01 ; 11 (1) : 21373. [epub] 20211101

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34725396

Grantová podpora
19-00676S Grantová Agentura České Republiky

Odkazy

PubMed 34725396
PubMed Central PMC8560758
DOI 10.1038/s41598-021-00845-y
PII: 10.1038/s41598-021-00845-y
Knihovny.cz E-zdroje

Upconverting luminescent lanthanide-doped nanoparticles (UCNP) belong to promising new materials that absorb infrared light able to penetrate in the deep tissue level, while emitting photons in the visible or ultraviolet region, which makes them favorable for bioimaging and cell labeling. Here, we have prepared upconverting NaYF4:Yb,Er@NaYF4:Nd core-shell nanoparticles, which were coated with copolymers of N,N-dimethylacrylamide (DMA) and 2-(acryloylamino)-2-methylpropane-1-sulfonic acid (AMPS) or tert-butyl [2-(acryloylamino)ethyl]carbamate (AEC-Boc) with negative or positive charges, respectively. The copolymers were synthesized by a reversible addition-fragmentation chain transfer (RAFT) polymerization, reaching Mn ~ 11 kDa and containing ~ 5 mol% of reactive groups. All copolymers contained bisphosphonate end-groups to be firmly anchored on the surface of NaYF4:Yb,Er@NaYF4:Nd core-shell nanoparticles. To compare properties of polymer coatings, poly(ethylene glycol)-coated and neat UCNP were used as a control. UCNP with various charges were then studied as labels of carcinoma cells, including human hepatocellular carcinoma HepG2, human cervical cancer HeLa, and rat insulinoma INS-1E cells. All the particles proved to be biocompatible (nontoxic); depending on their ξ-potential, the ability to penetrate the cells differed. This ability together with the upconversion luminescence are basic prerequisites for application of particles in photodynamic therapy (PDT) of various tumors, where emission of nanoparticles in visible light range at ~ 650 nm excites photosensitizer.

Zobrazit více v PubMed

Rich TC, Pinnow DA. Exploring the ultimate efficiency in infrared-to-visible converting phosphors activated with Er and sensitized with Yb. J. Appl. Phys. 1972;43:2357–2365. doi: 10.1063/1.1661503. DOI

Sommerdijk JL. Influence of the host lattice on the infrared-excited blue luminescence of Yb3+, Tm3+-doped compounds. J. Lumin. 1973;8:126–130. doi: 10.1016/0022-2313(73)90098-7. DOI

Martin N, Boutinaud P, Mahiou R, Cousseins JC, Bouderbala M. Preparation of fluorides at 80° C in the NaF-(Y, Yb, Pr)F3 system. J. Mater. Chem. 1999;9:125–128. doi: 10.1039/A804472D. DOI

Heer S, Kömpe K, Güdel HU, Haase M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 2004;16:2102–2105. doi: 10.1002/adma.200400772. DOI

Yi G, et al. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb Er infrared-to-visible up-conversion phosphors. Nano Lett. 2004;4:2191–2196. doi: 10.1021/nl048680h. DOI

Zeng JH, Su J, Li ZH, Yan RX, Li YD. Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb, Er3+ phosphors of controlled size and morphology. Adv. Mater. 2005;17:2119–2123. doi: 10.1002/adma.200402046. DOI

Wang X, Zhuang J, Peng Q, Li Y. A general strategy for nanocrystal synthesis. Nature. 2005;437:121–124. doi: 10.1038/nature03968. PubMed DOI

Zhu X, Zhang J, Liu J, Zhang Y. Recent progress of rare-earth doped upconversion nanoparticles: Synthesis, optimization, and applications. Adv. Sci. 2019;6:1901358. doi: 10.1002/advs.201901358. PubMed DOI PMC

Rabouw FT, et al. Quenching pathways in NaYF4:Er3+, Yb3+ upconversion nanocrystals. ACS Nano. 2018;12:4812–4823. doi: 10.1021/acsnano.8b01545. PubMed DOI PMC

Huang H, et al. Lanthanide-doped core@multishell nanoarchitectures: Multimodal excitable upconverting/downshifting luminescence and high-level anti-counterfeiting. Small. 2020;6:2000708. doi: 10.1002/smll.202000708. PubMed DOI

Huang H, et al. Perceiving linear-velocity by multiphoton upconversion. ACS Appl. Mater. Interfaces. 2019;11:46379–46385. doi: 10.1021/acsami.9b17507. PubMed DOI

Han S, Deng R, Xie X, Liu X. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem. Int. Ed. 2014;53:11702–11715. doi: 10.1002/anie.201403408. PubMed DOI

Pilch A, et al. Shaping luminescent properties of Yb3+ and Ho3+ co-doped upconverting core–shell β-NaYF4 nanoparticles by dopant distribution and spacing. Small. 2017;13:1701635. doi: 10.1002/smll.201701635. PubMed DOI

Ma C, et al. Optimal sensitizer concentration in single upconversion nanocrystals. Nano Lett. 2017;17:2858–2864. doi: 10.1021/acs.nanolett.6b05331. PubMed DOI

Boyer JC, Vetrone F, Cuccia LA, Capobianco JA. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 2006;128:7444–7445. doi: 10.1021/ja061848b. PubMed DOI

Wang Z, Tao F, Yao L, Cai W, Li X. Selected synthesis of cubic and hexagonal NaYF4 crystals via a complex-assisted hydrothermal route. J. Cryst. Growth. 2006;290:296–300. doi: 10.1016/j.jcrysgro.2006.01.012. DOI

Wen S, et al. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018;9:1–12. doi: 10.1038/s41467-018-04813-5. PubMed DOI PMC

Vetrone F, et al. Intracellular imaging of HeLa cells by non-functionalized NaYF4:Er3+, Yb3+ upconverting nanoparticles. Nanoscale. 2010;2:495–498. doi: 10.1039/B9NR00236G. PubMed DOI

Ma Y, et al. Labeling and long-term tracking of bone marrow mesenchymal stem cells in vitro using NaYF4:Yb3+, Er3+ upconversion nanoparticles. Acta Biomater. 2016;42:199–208. doi: 10.1016/j.actbio.2016.07.030. PubMed DOI

Prorok K, et al. Near-infrared excited luminescence and in vitro imaging of HeLa cells by using Mn2+ enhanced Tb3+ and Yb3+ cooperative upconversion in NaYF4 nanocrystals. Nanoscale Adv. 2019;1:3463–3473. doi: 10.1039/C9NA00336C. PubMed DOI PMC

Li T, Xue C, Wang P, Li Y, Wu L. Photon penetration depth in human brain for light stimulation and treatment: A realistic Monte Carlo simulation study. J. Innov. Opt. Health Sci. 2017;10:1743002. doi: 10.1142/S1793545817430027. DOI

Dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS ONE. 2011;6:e24438. doi: 10.1371/journal.pone.0024438. PubMed DOI PMC

Martin ME, Rice KG. Peptide-guided gene delivery. AAPS J. 2007;9:E18–E29. doi: 10.1208/aapsj0901003. PubMed DOI PMC

Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: From basic research to clinics. Trends Pharmacol. Sci. 2017;38:406–424. doi: 10.1016/j.tips.2017.01.003. PubMed DOI

Bae YM, et al. Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells. Biomaterials. 2012;33:9080–9086. doi: 10.1016/j.biomaterials.2012.08.039. PubMed DOI

Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 2012;7:5577–5591. doi: 10.2147/IJN.S36111. PubMed DOI PMC

He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31:3657–3666. doi: 10.1016/j.biomaterials.2010.01.065. PubMed DOI

Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28:4600–4607. doi: 10.1016/j.biomaterials.2007.07.029. PubMed DOI PMC

Asati A, Santra S, Kaittanis C, Perez JM. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano. 2010;4:5321–5331. doi: 10.1021/nn100816s. PubMed DOI PMC

Matahum JS, Su C, Wang W, Lou S, Ger T. Effect of surface charge on the uptake of magnetic nanoparticles in mouse fibroblast cells. IEEE Magn. Lett. 2017;8:1–5. doi: 10.1109/LMAG.2016.2629458. DOI

Jeon S, et al. Surface charge-dependent cellular uptake of polystyrene nanoparticles. Nanomaterials. 2018;8:1028. doi: 10.3390/nano8121028. PubMed DOI PMC

Singh D, et al. Development and characterization of a long-acting nanoformulated abacavir prodrug. Nanomedicine. 2016;11:1913–1927. doi: 10.2217/nnm-2016-0164. PubMed DOI PMC

Reschel T, Koňák Č, Oupický D, Seymour LW, Ulbrich K. Physical properties and in vitro transfection efficiency of gene delivery vectors based on complexes of DNA with synthetic polycations. J. Control. Release. 2002;81:201–217. doi: 10.1016/S0168-3659(02)00045-7. PubMed DOI

Kostiv U, et al. A simple neridronate-based surface coating strategy for upconversion nanoparticles: Highly colloidally stable 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale. 2017;9:16680–16688. doi: 10.1039/C7NR05456D. PubMed DOI

Lobaz V, et al. In situ in vivo radiolabeling of polymer-coated hydroxyapatite nanoparticles to track their biodistribution in mice. Colloids Surf. B. 2019;179:143–152. doi: 10.1016/j.colsurfb.2019.03.057. PubMed DOI

Oleksa V, et al. Doxorubicin-conjugated iron oxide nanoparticles: Surface engineering and biomedical investigation. ChemPlusChem. 2020;85:1156–1163. doi: 10.1002/cplu.202000360. PubMed DOI

Kostiv U, et al. RGDS- and TAT-conjugated upconversion NaYF4:Yb3+/Er3+@SiO2 nanoparticles: In vitro human epithelioid cervix carcinoma cellular uptake, imaging and targeting. ACS Appl. Mater. Interfaces. 2016;8:20422–20431. doi: 10.1021/acsami.6b07291. PubMed DOI

Kostiv U, et al. Monodisperse core-shell NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-GGGRGDSGGGY-NH2 nanoparticles excitable at 808 and 980 nm: Design, surface engineering, and application in life sciences. Front. Chem. 2020;8:497. doi: 10.3389/fchem.2020.00497. PubMed DOI PMC

Kostiv U, et al. Versatile bioconjugation strategies of PEG-modified upconversion nanoparticles for bioanalytical applications. Biomacromol. 2020;21:4502–4513. doi: 10.1021/acs.biomac.0c00459. PubMed DOI

Kirimlioğlu GY, Menceloğlu Y, Yazan Y. In vitro/in vivo evaluation of gamma-aminobutyric acid-loaded N,N-dimethylacrylamide-based pegylated polymeric nanoparticles for brain delivery to treat epilepsy. J. Microencapsul. 2016;33:625–635. doi: 10.1080/02652048.2016.1234515. PubMed DOI

Stenzel MH. RAFT polymerization: An avenue to functional polymeric micelles for drug delivery. Chem. Commun. 2008;30:3486–3503. doi: 10.1039/B805464A. PubMed DOI

Fairbanks BD, Gunatillake PA, Meagher L. Biomedical applications of polymers derived by reversible addition: Fragmentation chain-transfer (RAFT) Adv. Drug Deliv. Rev. 2015;91:141–152. doi: 10.1016/j.addr.2015.05.016. PubMed DOI

Fox ME, Szoka FC, Fréchet JMJ. Soluble polymer carriers for the treatment of cancer: The importance of molecular architecture. Acc. Chem. Res. 2009;42:1141–1151. doi: 10.1021/ar900035f. PubMed DOI PMC

Studenovský M, et al. Polymer carriers for anticancer drugs targeted to EGF receptor. Macromol. Biosci. 2012;12:1714–1720. doi: 10.1002/mabi.201200270. PubMed DOI

Dobosz A, et al. Interactions of N-heteroalkylaminomethylenebisphosphonic acids with Cd(II) ions: Electrochemical and spectroscopic investigations. Inorg. Chim. Acta. 2015;435:82–93. doi: 10.1016/j.ica.2015.05.034. DOI

Deacon GB, Forsyth CM, Greenhill NB, Junk PC, Wang J. Coordination polymers of increasing complexity derived from alkali metal cations and (4-amino-1-hydroxybutylidine)-1,1-bisphosphonic acid (alendronic acid): The competitive influences of coordination and supramolecular interactions. Cryst. Growth Des. 2015;15:4646–4662. doi: 10.1021/acs.cgd.5b00917. DOI

Gholivand K, Farrokhi AR. Supramolecular hydrogen-bonded frameworks from a new bisphosphonic acid and transition metal ions. Z. Anorg. Allg. Chem. 2011;637:263–268. doi: 10.1002/zaac.201000280. DOI

Kaboudin B, et al. Hydroxy-bisphosphinic acids: Synthesis and complexation properties with transition metals and lanthanide ions in aqueous solution. J. Iran. Chem. Soc. 2016;13:747–752. doi: 10.1007/s13738-015-0787-5. DOI

Shapoval O, et al. Colloidally stable P(DMA-AGME)-Ale-coated Gd(Tb)F3:Tb3+(Gd3+), Yb3+, Nd3+ nanoparticles as a multimodal contrast agent for down- and upconversion luminescence, magnetic resonance imaging, and computed tomography. Nanomaterials. 2021;11:230. doi: 10.3390/nano11010230. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...