Nickel Ferrite Nanoparticles for In Vivo Multimodal Magnetic Resonance and Magnetic Particle Imaging

. 2025 Jul 25 ; 8 (29) : 14867-14881. [epub] 20250716

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40740606

Magnetic nanoparticles have been at the center of biomedical research for decades, primarily for their applications in magnetic resonance imaging (MRI) and magnetic particle imaging (MPI). Superparamagnetic particles, typically based on iron oxide crystals, are effective in both modalities, although each requires distinct magnetic properties for optimal performance. We investigated the performance of nanoparticles based on a nickel-substituted ferrite core and compared them to standard maghemite iron oxide nanoparticles. We synthesized γ-Fe2O3 and Ni x Fe2-x O3 nanoparticles and coated them with a statistical copolymer poly-(N,N-dimethylacrylamide-co-acrylic acid). In vitro testing included X-ray diffraction (XRD), Mössbauer spectroscopy, magnetometry, magnetic resonance relaxometry, magnetic particle spectroscopy, and imaging. In vivo testing involved monitoring of nanoparticle biodistribution using MPI and MRI after intracardial application in a murine model. Mössbauer spectra suggest that the Ni-substituted nanoparticles consist of a stoichiometric NiFe2O4 ferrite and a poorly crystalline antiferromagnetic iron-(III) oxide-hydroxide phase. Amorphous-like impurities in Ni x Fe2-x O3 nanoparticles were probably responsible for lower saturation magnetization than that of γ-Fe2O3 nanoparticles, as was proved by magnetometry, which led to lower r 2 relaxivity. However, MPI revealed a higher signal in the spectrum and superior imaging performance of Ni x Fe2-x O3 compared to γ-Fe2O3 particles, likely due to shorter Néél and Brownian relaxation times. Both types of nanoparticles showed similar performance in bimodal MRI/MPI imaging in vivo. They were detected in the liver immediately after application and appeared in the spleen within 24 h. Long-term localization in the lymph nodes was also observed. Substituting an iron with a nickel ion in the core altered the magnetic properties, leading to lower saturation magnetization and an increased signal in the magnetic particle spectra, which enhanced their performance in MPI. This study demonstrates that γ-Fe2O3 and Ni x Fe2-x O3 nanoparticles are both suitable for combined MRI/MPI imaging; magnetic particle imaging provides a highly specific signal for anatomical magnetic resonance images.

Zobrazit více v PubMed

Stueber D. D., Villanova J., Aponte I., Xiao Z., Colvin V. L.. Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends. Pharmaceutics. 2021;13(7):943. doi: 10.3390/pharmaceutics13070943. PubMed DOI PMC

Daldrup-Link H. E.. Ten Things You Might Not Know about Iron Oxide Nanoparticles. Radiology. 2017;284(3):616–629. doi: 10.1148/radiol.2017162759. PubMed DOI PMC

Wang Y. X.. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011;1(1):35–40. doi: 10.3978/j.issn.2223-4292.2011.08.03. PubMed DOI PMC

Wang Y. X.. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J. Gastroenterol. 2015;21(47):13400. doi: 10.3748/wjg.v21.i47.13400. PubMed DOI PMC

Harvell-Smith S., Tung L. D., Thanh N. T. K.. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. Nanoscale. 2022;14(10):3658–3697. doi: 10.1039/D1NR05670K. PubMed DOI

Caspani S., Magalhaes R., Araujo J. P., Sousa C. T.. Magnetic Nanomaterials as Contrast Agents for MRI. Materials. 2020;13(11):2586. doi: 10.3390/ma13112586. PubMed DOI PMC

Gleich B., Weizenecker J.. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435(7046):1214–1217. doi: 10.1038/nature03808. PubMed DOI

Croft L. R., Goodwill P. W., Conolly S. M.. Relaxation in x-space magnetic particle imaging. IEEE Trans Med. Imaging. 2012;31(12):2335–2342. doi: 10.1109/TMI.2012.2217979. PubMed DOI PMC

Deissler R. J., Wu Y., Martens M. A.. Dependence of Brownian and Neel relaxation times on magnetic field strength. Med. Phys. 2014;41(1):012301. doi: 10.1118/1.4837216. PubMed DOI

Gheisari M., Mozaffari M., Acet M., Amighian J.. Preparation and investigation of magnetic properties of wustite nanoparticles. J. Magn Magn Mater. 2008;320(21):2618–2621. doi: 10.1016/j.jmmm.2008.05.028. DOI

Ponomar V. P.. Synthesis and magnetic properties of magnetite prepared by chemical reduction from hematite of various particle sizes. J. Alloys Compd. 2018;741:28–34. doi: 10.1016/j.jallcom.2018.01.023. DOI

Tadic M., Panjan M., Damnjanovic V., Milosevic I.. Magnetic properties of hematite (α-FeO) nanoparticles prepared by hydrothermal synthesis method. Appl. Surf. Sci. 2014;320:183–187. doi: 10.1016/j.apsusc.2014.08.193. DOI

Malina O., Tucek J., Jakubec P., Kaslík J., Medrík I., Tokoro H., Yoshikiyo M., Namai A., Ohkoshi S., Zboril R.. Magnetic ground state of nanosized β-Fe2O3 and its remarkable electronic features. Rsc Adv. 2015;5(61):49719–49727. doi: 10.1039/C5RA07484C. DOI

Jeong J. R., Lee S. J., Kim J. D., Shin S. C.. Magnetic properties of γ-Fe2O3 nanoparticles made by coprecipitation method. Phys. Status Solidi B. 2004;241(7):1593–1596. doi: 10.1002/pssb.200304549. DOI

Kohout J., Brázda P., Záveta K., Kubániová D., Kmjec T., Kubícková L., Klementová M., Santavá E., Lancok A.. The magnetic transition in ε-Fe2O3 nanoparticles: Magnetic properties and hyperfine interactions from Mossbauer spectroscopy. J. Appl. Phys. 2015;117(17):17D505. doi: 10.1063/1.4907610. DOI

Nguyen M. D., Deng L. Z., Lee J. M., Resendez K. M., Fuller M., Hoijang S., Robles-Hernandez F., Chu C. W., Litvinov D., Hadjiev V. G., Xu S. J., Phan M. H., Lee T. R.. Magnetic Tunability via Control of Crystallinity and Size in Polycrystalline Iron Oxide Nanoparticles. Small. 2024;20(43):2402940. doi: 10.1002/smll.202402940. PubMed DOI

Nguyen M. D., Tran H. V., Xu S. J., Lee T. R.. Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. Appl. Sci-Basel. 2021;11(23):11301. doi: 10.3390/app112311301. PubMed DOI PMC

Shokrollahi H.. A review of the magnetic properties, synthesis methods and applications of maghemite. J. Magn Magn Mater. 2017;426:74–81. doi: 10.1016/j.jmmm.2016.11.033. DOI

Herynek V., Babic M., Kaman O., Charvátová H., Veselá M., Buchholz O., Vosmanská M., Kubániová D., Kohout J., Hofmann U. G., Sefc L.. Maghemite nanoparticles coated by methacrylamide-based polymer for magnetic particle imaging. J. Nanopart. Res. 2021;23(2):52. doi: 10.1007/s11051-021-05164-x. DOI

Desai I., Nadagouda M. N., Elovitz M., Mills M., Boulanger B.. Synthesis and characterization of magnetic manganese ferrites. Mater. Sci. Energy Technol. 2019;2(2):150–160. doi: 10.1016/j.mset.2019.01.009. PubMed DOI PMC

Amirabadizadeh A., Farsi H., Dehghani M., Arabi H.. Effect of Substitutions of Zn for Mn on Size and Magnetic Properties of Mn-Zn Ferrite Nanoparticles. J. Supercond Nov Magn. 2012;25(8):2763–2765. doi: 10.1007/s10948-011-1259-5. DOI

Thakur P., Chahar D., Taneja S., Bhalla N., Thakur A.. A review on MnZn ferrites: Synthesis, characterization and applications. Ceram. Int. 2020;46(10):15740–15763. doi: 10.1016/j.ceramint.2020.03.287. PubMed DOI PMC

Cheraghali S., Dini G., Caligiuri I., Back M., Rizzolio F.. PEG-Coated MnZn Ferrite Nanoparticles with Hierarchical Structure as MRI Contrast Agent. Nanomaterials-Basel. 2023;13(3):452. doi: 10.3390/nano13030452. PubMed DOI PMC

Sobhani T., Shahbazi-Gahrouei D., Rostami M., Zahraei M., Farzadniya A.. Assessment of Manganese-Zinc Ferrite Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent for the Detection of 4T1 Breast Cancer Cells. J. Med. Signals Sens. 2019;9(4):245–251. doi: 10.4103/jmss.JMSS_59_18. PubMed DOI PMC

Zahraei M., Monshi A., Shahbazi-Gahrouei D., Amirnasr M., Behdadfar B., Rostami M.. Synthesis and Characterization of Chitosan Coated Manganese Zinc Ferrite Nanoparticles as MRI Contrast Agents. J. Nanostruct. 2015;5(2):77–86. doi: 10.7508/jns.2015.02.001. DOI

Veverka P., Kubícková L., Jirák Z., Herynek V., Veverka M., Kaman O.. Temperature and field dependences of transverse relaxivity of Co-Zn ferrite nanoparticles coated with silica: The role of magnetic properties and different regimes. Mater. Chem. Phys. 2021;260:124178. doi: 10.1016/j.matchemphys.2020.124178. DOI

Kaman O., Kubániová D., Kubícková L., Herynek V., Veverka P., Jirák Z., Pashchenko M., Kmjec T., Veverka M., Storkán M., Hofmann U. G., Kohout J.. Magnetic particle spectroscopy and magnetic particle imaging of zinc and cobalt ferrite nanoparticles: Distinct relaxation mechanisms. J. Alloys Compd. 2024;978:173022. doi: 10.1016/j.jallcom.2023.173022. DOI

Bhardwaj A., Parekh K.. Auto tunable hyperthermic response of temperature sensitive magnetic fluid in agarose gel containing Mn1_xZnxFe2O4 nanoparticles. J. Alloys Compd. 2024;978:173407. doi: 10.1016/j.jallcom.2023.173407. DOI

Manohar A., Vijayakanth V., Chintagumpala K., Manivasagan P., Jang E. S., Kim K. H.. Zn- doped MnFe2O4 nanoparticles for magnetic hyperthermia and their cytotoxicity study in normal and cancer cell lines. Colloid Surface A. 2023;675:132037. doi: 10.1016/j.colsurfa.2023.132037. DOI

Rajsiglova L., Babic M., Krausova K., Lukac P., Kalkusova K., Taborska P., Sojka L., Bartunkova J., Stakheev D., Vannucci L., Smrz D.. Immunogenic properties of nickel-doped maghemite nanoparticles and the implication for cancer immunotherapy. J. Immunotoxicol. 2024;21(1):2416988. doi: 10.1080/1547691X.2024.2416988. PubMed DOI

Babic M., Horák D., Jendelová P., Glogarová K., Herynek V., Trchová M., Likavcanová K., Lesny P., Pollert E., Hájek M., Syková E.. Poly­(-dimethylacrylamide)-Coated Maghemite Nanoparticles for Stem Cell Labeling. Bioconjugate Chem. 2009;20(2):283–294. doi: 10.1021/bc800373x. PubMed DOI

Schneider C. A., Rasband W. S., Eliceiri K. W.. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Zhang H., Zeng D. C., Liu Z. W.. The law of approach to saturation in ferromagnets originating from the magnetocrystalline anisotropy. J. Magn Magn Mater. 2010;322(16):2375–2380. doi: 10.1016/j.jmmm.2010.02.040. DOI

Poryvai A., Smahel M., Svecová M., Nemati A., Shadpour S., Ulbrich P., Ogolla T., Liu J., Novotná V., Veverka M., Vejpravová J., Hegmann T., Kohout M.. Chiral, Magnetic, and Photosensitive Liquid Crystalline Nanocomposites Based on Multifunctional Nanoparticles and Achiral Liquid Crystals. ACS Nano. 2022;16(8):11833–11841. doi: 10.1021/acsnano.1c10594. PubMed DOI

Zák T., Jirásková Y.. CONFIT: Mossbauer spectra fitting program. Surf. Interface Anal. 2006;38(4):710–714. doi: 10.1002/sia.2285. DOI

Klencsár Z.. MossWinn-methodological advances in the field of Mossbauer data analysis. Hyperfine Interact. 2013;217(1–3):117–126. doi: 10.1007/s10751-012-0732-2. DOI

Rodríguez-Carvajal J.. Recent Developments of the Program FULLPROF, in Commission on Powder Diffraction (IUCr) Newsletter. 2001;26:12–19.

Duša M., Franke J., Šefc L., Herynek V.. VOMMPI - a tool for merging of MPI multi-patch data. Int. J. Magn. Part. Image. 2023;9(1):2303079. doi: 10.18416/IJMPI.2023.2303079. DOI

Kuba M., Gallo J., Pluhácek T., Hobza M., Milde D.. Content of distinct metals in periprosthetic tissues and pseudosynovial joint fluid in patients with total joint arthroplasty. J. Biomed Mater. Res. B. 2019;107(2):454–462. doi: 10.1002/jbm.b.34137. PubMed DOI

Pollert E., Knizek K., Marysko M., Záveta K., Lancok A., Bohácek J., Horák D., Babic M.. Magnetic poly­(glycidyl methacrylate) microspheres containing maghemite prepared by emulsion polymerization. J. Magn Magn Mater. 2006;306(2):241–247. doi: 10.1016/j.jmmm.2006.03.069. DOI

Babic M., Horak D., Trchova M., Jendelova P., Glogarova K., Lesny P., Herynek V., Hajek M., Sykova E.. Poly­(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem. 2008;19(3):740–750. doi: 10.1021/bc700410z. PubMed DOI

Horák D., Babic M., Jendelová P., Herynek V., Trchová M., Pientka Z., Pollert E., Hájek M., Syková E.. D-Mannose-modified iron oxide nanoparticles for stem cell labeling. Bioconjugate Chem. 2007;18(3):635–644. doi: 10.1021/bc060186c. PubMed DOI

Tronc E., Prene P., Jolivet J. P., Dormann J. L., Greneche J. M.. Spin canting in γ-Fe-2O3 nanoparticles. Hyperfine Interact. 1998;112(1–4):97–100. doi: 10.1023/A:1011092712136. DOI

Veverka P., Pashchenko M., Kubícková L., Kulicková J., Jirák Z., Havelek R., Královec K., Kohout J., Kaman O.. Rod-like particles of silica-coated maghemite: Synthesis via akaganeite, characterization and biological properties. J. Magn Magn Mater. 2019;476:149–156. doi: 10.1016/j.jmmm.2018.12.037. DOI

Kubániová D., Kubíčková L., Kmječ T., Závěta K., Nižňanský D., Brázda P., Klementová M., Kohout J.. Hematite: Morin temperature of nanoparticles with different size. J. Magn Magn Mater. 2019;475:611–619. doi: 10.1016/j.jmmm.2018.11.126. DOI

Schwaminger S. P., Bauer D., Fraga-García P., Wagner F. E., Berensmeier S.. Oxidation of magnetite nanoparticles: impact on surface and crystal properties. CrystEngComm. 2017;19(2):246–255. doi: 10.1039/C6CE02421A. DOI

Kubícková L., Koktan J., Korínková T., Klementová M., Kmjec T., Kohout J., Weidenkaff A., Kaman O.. Zn-substituted iron oxide nanoparticles from thermal decomposition and their thermally treated derivatives for magnetic solid-phase extraction. J. Magn Magn Mater. 2020;498(3):166083. doi: 10.1016/j.jmmm.2019.166083. DOI

Pollard R. J., Cardile C. M., Lewis D. G., Brown L. J.. Characterization of Feooh Polymorphs and Ferrihydrite Using Low-Temperature, Applied-Field. Mossbauer-Spectroscopy. Clay Miner. 1992;27(1):57–71. doi: 10.1180/claymin.1992.027.1.06. DOI

Chkoundali S., Ammar S., Jouini N., Fiévet F., Molinié P., Danot M., Villain F., Grenèche J. M.. Nickel ferrite nanoparticles: elaboration in polyol medium via hydrolysis, and magnetic properties. J. Phys-Condens Mat. 2004;16(24):4357–4372. doi: 10.1088/0953-8984/16/24/017. DOI

Nejati K., Zabihi R.. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem. Cent. J. 2012;6:23. doi: 10.1186/1752-153X-6-23. PubMed DOI PMC

Nathani H., Misra R. D. K.. Surface effects on the magnetic behavior of nanocrystalline nickel ferrites and nickel ferrite-polymer nanocomposites. Mat Sci. Eng. B-Solid. 2004;113(3):228–235. doi: 10.1016/S0921-5107(04)00427-1. DOI

Urquizo I. A. F., García T. C. H., Loredo S. L., Galindo J. T. E., Casillas P. E. G., Barron J. C. S., González C. C.. Effect of Aminosilane Nanoparticle Coating on Structural and Magnetic Properties and Cell Viability in Human Cancer Cell Lines. Part. Part. Syst. Charact. 2022;39(10):2200106. doi: 10.1002/ppsc.202200106. DOI

Priyadharshini P., Shobika P. A., Monisha P., Gomathi S. S., Pushpanathan K.. Nickel ferrite magnetic nanoparticles: evidence for superparamagnetism in smaller size particles. J. Aust Ceram Soc. 2022;58(5):1455–1480. doi: 10.1007/s41779-022-00784-5. DOI

Sivakumar P., Ramesh R., Ramanand A., Ponnusamy S., Muthamizhchelvan C.. Synthesis and characterization of nickel ferrite magnetic nanoparticles. Mater. Res. Bull. 2011;46(12):2208–2211. doi: 10.1016/j.materresbull.2011.09.009. DOI

Gandhi S. N., Brown M. A., Wong J. G., Aguirre D. A., Sirlin C. B.. MR contrast agents for liver imaging: what, when, how. Radiographics. 2006;26(6):1621–1636. doi: 10.1148/rg.266065014. PubMed DOI

Ferrucci J. T., Stark D. D.. Iron oxide-enhanced MR imaging of the liver and spleen: review of the first 5 years. AJR Am. J. Roentgenol. 1990;155(5):943–950. doi: 10.2214/ajr.155.5.2120963. PubMed DOI

Charvatova H., Plichta Z., Hromadkova J., Herynek V., Babic M.. Hydrophilic Copolymers with Hydroxamic Acid Groups as a Protective Biocompatible Coating of Maghemite Nanoparticles: Synthesis, Physico-Chemical Characterization and MRI Biodistribution Study. Pharmaceutics. 2023;15(7):1982. doi: 10.3390/pharmaceutics15071982. PubMed DOI PMC

Nair A. B., Jacob S.. A simple practice guide for dose conversion between animals and human. J. Basic Clin Pharm. 2016;7(2):27–31. doi: 10.4103/0976-0105.177703. PubMed DOI PMC

Ahlborg M., Kaethner C., Knopp T., Szwargulski P., Buzug T. M.. Using data redundancy gained by patch overlaps to reduce truncation artifacts in magnetic particle imaging. Phys. Med. Biol. 2016;61(12):4583–4598. doi: 10.1088/0031-9155/61/12/4583. PubMed DOI

Grüttner M., Sattel T. F., Graeser M., Wojtczyk H., Bringout G., Tenner W., Buzug T. M.. Enlarging the Field of View in Magnetic Particle Imaging - A Comparison. Springer Proc. Phys. 2012;140:249–253. doi: 10.1007/978-3-642-24133-8_40. DOI

Zdun L., Boberg M., Brandt C.. Fast and artifact reducing joint multi-patch MPI reconstruction. Int. J. Magn. Part. Image. 2022;8(1):2203042. doi: 10.18416/IJMPI.2022.2203042. DOI

Oleksa V., Macková H., Engstová H., Patsula V., Shapoval O., Velychkivska N., Jezek P., Horák D.. Poly­(N,N-dimethylacrylamide)-coated upconverting NaYF4:Yb,Er@NaYF4:Nd core-shell nanoparticles for fluorescent labeling of carcinoma cells. Sci. Rep. 2021;11(1):21373. doi: 10.1038/s41598-021-00845-y. PubMed DOI PMC

Algi M. P., Okay O.. Highly stretchable self-healing poly­(N, N-dimethylacrylamide) hydrogels. Eur. Polym. J. 2014;59:113–121. doi: 10.1016/j.eurpolymj.2014.07.022. DOI

Perasoli F. B., Silva L. S., Figueiredo B., Pinto I. C., Amaro L. J., Bastos J. C. A., Carneiro S. P., Araujo V. P., Beato F. R., Barboza A. P., Teixeira L. F., Gallagher M. P., Bradley M., Venkateswaran S., dos Santos O. D. H.. Poly­(methylmethacrylate-co-dimethyl acrylamide)-silver nanocomposite prevents biofilm formation in medical devices. Nanomedicine. 2024;19(14):1285–1296. doi: 10.1080/17435889.2024.2345044. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...