Hydrophilic Copolymers with Hydroxamic Acid Groups as a Protective Biocompatible Coating of Maghemite Nanoparticles: Synthesis, Physico-Chemical Characterization and MRI Biodistribution Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Programme EXCELES, ID Project No. LX22NPO5102
European Union
Large RI Project LM2023050 Czech-BioImaging
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_013/0001775
European Regional Development Fund
PubMed
37514168
PubMed Central
PMC10384990
DOI
10.3390/pharmaceutics15071982
PII: pharmaceutics15071982
Knihovny.cz E-zdroje
- Klíčová slova
- MRI, contrast agents, hydroxamic acid, maghemite, non-fouling surface, polymer coating, superparamagnetic iron oxide nanoparticles,
- Publikační typ
- časopisecké články MeSH
Superparamagnetic iron oxide nanoparticles (SPION) with a "non-fouling" surface represent a versatile group of biocompatible nanomaterials valuable for medical diagnostics, including oncology. In our study we present a synthesis of novel maghemite (γ-Fe2O3) nanoparticles with positive and negative overall surface charge and their coating by copolymer P(HPMA-co-HAO) prepared by RAFT (reversible addition-fragmentation chain-transfer) copolymerization of N-(2-hydroxypropyl)methacrylamide (HPMA) with N-[2-(hydroxyamino)-2-oxo-ethyl]-2-methyl-prop-2-enamide (HAO). Coating was realized via hydroxamic acid groups of the HAO comonomer units with a strong affinity to maghemite. Dynamic light scattering (DLS) demonstrated high colloidal stability of the coated particles in a wide pH range, high ionic strength, and the presence of phosphate buffer (PBS) and serum albumin (BSE). Transmission electron microscopy (TEM) images show a narrow size distribution and spheroid shape. Alternative coatings were prepared by copolymerization of HPMA with methyl 2-(2-methylprop-2-enoylamino)acetate (MMA) and further post-polymerization modification with hydroxamic acid groups, carboxylic acid and primary-amino functionalities. Nevertheless, their colloidal stability was worse in comparison with P(HPMA-co-HAO). Additionally, P(HPMA-co-HAO)-coated nanoparticles were subjected to a bio-distribution study in mice. They were cleared from the blood stream by the liver relatively slowly, and their half-life in the liver depended on their charge; nevertheless, both cationic and anionic particles revealed a much shorter metabolic clearance rate than that of commercially available ferucarbotran.
Zobrazit více v PubMed
Shabatina T.I., Vernaya O.I., Shabatin V.P., Melnikov M.Y. Magnetic Nanoparticles for Biomedical Purposes: Modern Trends and Prospects. Magnetochemistry. 2020;6:30. doi: 10.3390/magnetochemistry6030030. DOI
Nelson N., Port J., Pandey M. Use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) via Multiple Imaging Modalities and Modifications to Reduce Cytotoxicity: An Educational Review. J. Nanotheranostics. 2020;1:105–135. doi: 10.3390/jnt1010008. DOI
Shubayev V.I., Pisanic T.R., Jin S. Magnetic Nanoparticles for Theragnostics. Adv. Drug Deliv. Rev. 2009;61:467–477. doi: 10.1016/j.addr.2009.03.007. PubMed DOI PMC
Uskoković V., Tang S., Wu V.M. Targeted Magnetic Separation of Biomolecules and Cells Using Earthicle-Based Ferrofluids. Nanoscale. 2019;11:11236–11253. doi: 10.1039/C9NR01579E. PubMed DOI
Liu S., Yu B., Wang S., Shen Y., Cong H. Preparation, Surface Functionalization and Application of Fe3O4 Magnetic Nanoparticles. Adv. Colloid Interface Sci. 2020;281:102165. doi: 10.1016/j.cis.2020.102165. PubMed DOI
Guo S., Dong S. Biomolecule-Nanoparticle Hybrids for Electrochemical Biosensors. TrAC Trends Anal. Chem. 2009;28:96–109. doi: 10.1016/j.trac.2008.10.014. DOI
Bilgic A., Cimen A. A Highly Sensitive and Selective ON-OFF Fluorescent Sensor Based on Functionalized Magnetite Nanoparticles for Detection of Cr(VI) Metal Ions in the Aqueous Medium. J. Mol. Liq. 2020;312:113398. doi: 10.1016/j.molliq.2020.113398. DOI
Xue T., Wang S., Ou G., Li Y., Ruan H., Li Z., Ma Y., Zou R., Qiu J., Shen Z., et al. Detection of Circulating Tumor Cells Based on Improved SERS-Active Magnetic Nanoparticles. Anal. Methods. 2019;11:2918–2928. doi: 10.1039/C9AY00646J. DOI
Jordan A., Scholz R., Maier-Hauff K., Johannsen M., Wust P., Nadobny J., Schirra H., Schmidt H., Deger S., Loening S., et al. Presentation of a New Magnetic Field Therapy System for the Treatment of Human Solid Tumors with Magnetic Fluid Hyperthermia. J. Magn. Magn. Mater. 2001;225:118–126. doi: 10.1016/S0304-8853(00)01239-7. DOI
Piazza R.D., Viali W.R., dos Santos C.C., Nunes E.S., Marques R.F.C., Morais P.C., da Silva S.W., Coaquira J.A.H., Jafelicci M. PEGlatyon-SPION Surface Functionalization with Folic Acid for Magnetic Hyperthermia Applications. Mater. Res. Express. 2020;7:015078. doi: 10.1088/2053-1591/ab6700. DOI
Gharibkandi N.A., Żuk M., Muftuler F.Z.B., Wawrowicz K., Żelechowska-Matysiak K., Bilewicz A. 198Au-Coated Superparamagnetic Iron Oxide Nanoparticles for Dual Magnetic Hyperthermia and Radionuclide Therapy of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2023;24:5282. doi: 10.3390/ijms24065282. PubMed DOI PMC
Zhi D., Yang T., Yang J., Fu S., Zhang S. Targeting Strategies for Superparamagnetic Iron Oxide Nanoparticles in Cancer Therapy. Acta Biomater. 2020;102:13–34. doi: 10.1016/j.actbio.2019.11.027. PubMed DOI
Liu Y., Zhao J., Jiang J., Chen F., Fang X. Doxorubicin Delivered Using Nanoparticles Camouflaged with Mesenchymal Stem Cell Membranes to Treat Colon Cancer. Int. J. Nanomed. 2020;15:2873–2884. doi: 10.2147/IJN.S242787. PubMed DOI PMC
Zhang H., Deng L., Liu H., Mai S., Cheng Z., Shi G., Zeng H., Wu Z. Enhanced Fluorescence/Magnetic Resonance Dual Imaging and Gene Therapy of Liver Cancer Using Cationized Amylose Nanoprobe. Mater. Today Bio. 2022;13:100220. doi: 10.1016/j.mtbio.2022.100220. PubMed DOI PMC
Huang R.-Y., Liu Z.-H., Weng W.-H., Chang C.-W. Magnetic Nanocomplexes for Gene Delivery Applications. J. Mater. Chem. B. 2021;9:4267–4286. doi: 10.1039/D0TB02713H. PubMed DOI
Antonelli A., Magnani M. SPIO Nanoparticles and Magnetic Erythrocytes as Contrast Agents for Biomedical and Diagnostic Applications. J. Magn. Magn. Mater. 2022;541:168520. doi: 10.1016/j.jmmm.2021.168520. DOI
Chen C., Ge J., Gao Y., Chen L., Cui J., Zeng J., Gao M. Ultrasmall Superparamagnetic Iron Oxide Nanoparticles: A next Generation Contrast Agent for Magnetic Resonance Imaging. WIREs Nanomed. Nanobiotechnol. 2022;14:e1740. doi: 10.1002/wnan.1740. PubMed DOI
Bulte J.W.M. Superparamagnetic Iron Oxides as MPI Tracers: A Primer and Review of Early Applications. Adv. Drug Deliv. Rev. 2019;138:293–301. doi: 10.1016/j.addr.2018.12.007. PubMed DOI PMC
Canese R., Vurro F., Marzola P. Iron Oxide Nanoparticles as Theranostic Agents in Cancer Immunotherapy. Nanomaterials. 2021;11:1950. doi: 10.3390/nano11081950. PubMed DOI PMC
Antonelli A., Szwargulski P., Scarpa E., Thieben F., Cordula G., Ambrosi G., Guidi L., Ludewig P., Knopp T., Magnani M. Development of Long Circulating Magnetic Particle Imaging Tracers: Use of Novel Magnetic Nanoparticles and Entrapment into Human Erythrocytes. Nanomedicine. 2020;15:739–753. doi: 10.2217/nnm-2019-0449. PubMed DOI
Tay Z.W., Savliwala S., Hensley D.W., Fung K.L.B., Colson C., Fellows B.D., Zhou X., Huynh Q., Lu Y., Zheng B., et al. Superferromagnetic Nanoparticles Enable Order-of-Magnitude Resolution & Sensitivity Gain in Magnetic Particle Imaging. Small Methods. 2021;5:2100796. doi: 10.1002/smtd.202100796. PubMed DOI PMC
Avasthi A., Caro C., Pozo-Torres E., Leal M.P., García-Martín M.L. Magnetic Nanoparticles as MRI Contrast Agents. Top. Curr. Chem. 2020;378:40. doi: 10.1007/s41061-020-00302-w. PubMed DOI PMC
Laurent S., Elst L.V., Muller R.N. Comparative Study of the Physicochemical Properties of Six Clinical Low Molecular Weight Gadolinium Contrast Agents. Contrast Media Mol. Imaging. 2006;1:128–137. doi: 10.1002/cmmi.100. PubMed DOI
Ramalho J., Ramalho M., Jay M., Burke L.M., Semelka R.C. Gadolinium Toxicity and Treatment. Magn. Reson. Imaging. 2016;34:1394–1398. doi: 10.1016/j.mri.2016.09.005. PubMed DOI
Rogosnitzky M., Branch S. Gadolinium-Based Contrast Agent Toxicity: A Review of Known and Proposed Mechanisms. BioMetals. 2016;29:365–376. doi: 10.1007/s10534-016-9931-7. PubMed DOI PMC
Buhaescu I., Izzedine H. Gadolinium-Induced Nephrotoxicity. Int. J. Clin. Pract. 2008;62:1113–1118. doi: 10.1111/j.1742-1241.2007.01582.x. PubMed DOI
Liu Y., Li Y., Huang J., Zhang Y., Ruan Z., Hu T. Science of the Total Environment An Advanced Sol—Gel Strategy for Enhancing Interfacial Reactivity of Iron Oxide Nanoparticles on Rosin Biochar Substrate to Remove Cr (VI) Sci. Total Environ. 2019;690:438–446. doi: 10.1016/j.scitotenv.2019.07.021. PubMed DOI
Soleymani M., Velashjerdi M., Shaterabadi Z., Barati A. One-Pot Preparation of Hyaluronic Acid-coated Iron Oxide Nanoparticles for Magnetic Hyperthermia Therapy and Targeting CD44-Overexpressing Cancer Cells. Carbohydr. Polym. 2020;237:116130. doi: 10.1016/j.carbpol.2020.116130. PubMed DOI
Salazar-Alvarez G., Muhammed M., Zagorodni A.A. Novel Flow Injection Synthesis of Iron Oxide Nanoparticles with Narrow Size Distribution. Chem. Eng. Sci. 2006;61:4625–4633. doi: 10.1016/j.ces.2006.02.032. DOI
Cabrera L., Gutierrez S., Menendez N., Morales M.P., Herrasti P. Magnetite Nanoparticles: Electrochemical Synthesis and Characterization. Electrochim. Acta. 2008;53:3436–3441. doi: 10.1016/j.electacta.2007.12.006. DOI
Aghazadeh M., Karimzadeh I., Doroudi T., Ganjali M.R., Kolivand P.H., Gharailou D. Facile Electrosynthesis and Characterization of Superparamagnetic Nanoparticles Coated with Cysteine, Glycine and Glutamine. Appl. Phys. A. 2017;123:529. doi: 10.1007/s00339-017-1145-5. DOI
Ansari S.R., Hempel N.-J., Asad S., Svedlindh P., Bergström C.A.S., Löbmann K., Teleki A. Hyperthermia-Induced In Situ Drug Amorphization by Superparamagnetic Nanoparticles in Oral Dosage Forms. ACS Appl. Mater. Interfaces. 2022;14:21978–21988. doi: 10.1021/acsami.2c03556. PubMed DOI PMC
Fuentes-García J.A., Carvalho Alavarse A., Moreno Maldonado A.C., Toro-Córdova A., Ibarra M.R., Goya G.F. Simple Sonochemical Method to Optimize the Heating Efficiency of Magnetic Nanoparticles for Magnetic Fluid Hyperthermia. ACS Omega. 2020;5:26357–26364. doi: 10.1021/acsomega.0c02212. PubMed DOI PMC
Dheyab M.A., Aziz A.A., Jameel M.S., Noqta O.A., Khaniabadi P.M., Mehrdel B. Excellent Relaxivity and X-Ray Attenuation Combo Properties of Fe3O4@Au CSNPs Produced via Rapid Sonochemical Synthesis for MRI and CT Imaging. Mater. Today Commun. 2020;25:101368. doi: 10.1016/j.mtcomm.2020.101368. DOI
Chamorro E., Tenorio M.J., Calvo L., Torralvo M.J., Sáez-Puche R., Cabañas A. One-Step Sustainable Preparation of Superparamagnetic Iron Oxide Nanoparticles Supported on Mesoporous SiO2. J. Supercrit. Fluids. 2020;159:104775. doi: 10.1016/j.supflu.2020.104775. DOI
Abu Bakar M., Tan W.L., Abu Bakar N.H.H. A Simple Synthesis of Size-Reduce Magnetite Nano-Crystals via Aqueous to Toluene Phase-Transfer Method. J. Magn. Magn. Mater. 2007;314:1–6. doi: 10.1016/j.jmmm.2007.01.018. DOI
El-Gendy N.S., Nassar H.N. Biosynthesized Magnetite Nanoparticles as an Environmental Opulence and Sustainable Wastewater Treatment. Sci. Total Environ. 2021;774:145610. doi: 10.1016/j.scitotenv.2021.145610. PubMed DOI
Kianpour S., Ebrahiminezhad A., Deyhimi M., Negahdaripour M., Raee M.J., Mohkam M., Rezaee H., Irajie C., Berenjian A., Ghasemi Y. Structural Characterization of Polysaccharide-Coated Iron Oxide Nanoparticles Produced by Staphylococcus warneri, Isolated from a Thermal Spring. J. Basic Microbiol. 2019;59:569–578. doi: 10.1002/jobm.201800684. PubMed DOI
Fokina V., Wilke M., Dulle M., Ehlert S., Förster S. Size Control of Iron Oxide Nanoparticles Synthesized by Thermal Decomposition Methods. J. Phys. Chem. C. 2022;126:21356–21367. doi: 10.1021/acs.jpcc.2c05380. DOI
Mieloch A.A., Żurawek M., Giersig M., Rozwadowska N., Rybka J.D. Bioevaluation of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) Functionalized with Dihexadecyl Phosphate (DHP) Sci. Rep. 2020;10:2725. doi: 10.1038/s41598-020-59478-2. PubMed DOI PMC
Babič M., Horák D., Trchová M., Jendelová P., Glogarová K., Lesný P., Herynek V., Hájek M., Syková E. Poly(L-Lysine)-Modified Iron Oxide Nanoparticles for Stem Cell Labeling. Bioconjug. Chem. 2008;19:740–750. doi: 10.1021/bc700410z. PubMed DOI
Sodipo B.K., Noqta O.A., Aziz A.A., Katsikini M., Pinakidou F., Paloura E.C. Influence of Capping Agents on Fraction of Fe Atoms Occupying Octahedral Site and Magnetic Property of Magnetite (Fe3O4) Nanoparticles by One-Pot Co-Precipitation Method. J. Alloys Compd. 2023;938:168558. doi: 10.1016/j.jallcom.2022.168558. DOI
LaGrow A.P., Besenhard M.O., Hodzic A., Sergides A., Bogart L.K., Gavriilidis A., Thanh N.T.K. Unravelling the Growth Mechanism of the Co-Precipitation of Iron Oxide Nanoparticles with the Aid of Synchrotron X-ray Diffraction in Solution. Nanoscale. 2019;11:6620–6628. doi: 10.1039/C9NR00531E. PubMed DOI
Novotna B., Jendelova P., Kapcalova M., Rossner P., Turnovcova K., Bagryantseva Y., Babic M., Horak D., Sykova E. Oxidative Damage to Biological Macromolecules in Human Bone Marrow Mesenchymal Stromal Cells Labeled with Various Types of Iron Oxide Nanoparticles. Toxicol. Lett. 2012;210:53–63. doi: 10.1016/j.toxlet.2012.01.008. PubMed DOI
Arbab A.S., Bashaw L.A., Miller B.R., Jordan E.K., Lewis B.K., Kalish H., Frank J.A. Characterization of Biophysical and Metabolic Properties of Cells Labeled with Superparamagnetic Iron Oxide Nanoparticles and Transfection Agent for Cellular MR Imaging. Radiology. 2003;229:838–846. doi: 10.1148/radiol.2293021215. PubMed DOI
Gershon H., Ghirlando R., Guttman S.B., Minsky A. Mode of Formation and Structural Features of DNA-Cationic Liposome Complexes Used for Transfection. Biochemistry. 1993;32:7143–7151. doi: 10.1021/bi00079a011. PubMed DOI
Babič M., Horák D., Jendelová P., Glogarová K., Herynek V., Trchová M., Likavčanová K., Lesný P., Pollert E., Hájek M., et al. Poly(N,N-dimethylacrylamide)-Coated Maghemite Nanoparticles for Stem Cell Labeling. Bioconjug. Chem. 2009;20:283–294. doi: 10.1021/bc800373x. PubMed DOI
Mukhopadhyay A., Joshi N., Chattopadhyay K., De G. A Facile Synthesis of PEG-Coated Magnetite (Fe3O4) Nanoparticles and Their Prevention of the Reduction of Cytochrome C. ACS Appl. Mater. Interfaces. 2012;4:142–149. doi: 10.1021/am201166m. PubMed DOI
Valdiglesias V., Fernández-Bertólez N., Kiliç G., Costa C., Costa S., Fraga S., Bessa M.J., Pásaro E., Teixeira J.P., Laffon B. Are Iron Oxide Nanoparticles Safe? Current Knowledge and Future Perspectives. J. Trace Elem. Med. Biol. 2016;38:53–63. doi: 10.1016/j.jtemb.2016.03.017. PubMed DOI
Reddy L.H., Arias J.L., Nicolas J., Couvreur P. Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chem. Rev. 2012;112:5818–5878. doi: 10.1021/cr300068p. PubMed DOI
Cotin G., Blanco-Andujar C., Perton F., Asín L., de la Fuente J.M., Reichardt W., Schaffner D., Ngyen D.-V., Mertz D., Kiefer C., et al. Unveiling the Role of Surface, Size, Shape and Defects of Iron Oxide Nanoparticles for Theranostic Applications. Nanoscale. 2021;13:14552–14571. doi: 10.1039/D1NR03335B. PubMed DOI
Aisida S.O., Akpa P.A., Ahmad I., Zhao T., Maaza M., Ezema F.I. Bio-Inspired Encapsulation and Functionalization of Iron Oxide Nanoparticles for Biomedical Applications. Eur. Polym. J. 2020;122:109371. doi: 10.1016/j.eurpolymj.2019.109371. DOI
Naha P.C., Liu Y., Hwang G., Huang Y., Gubara S., Jonnakuti V., Simon-Soro A., Kim D., Gao L., Koo H., et al. Dextran-Coated Iron Oxide Nanoparticles as Biomimetic Catalysts for Localized and PH-Activated Biofilm Disruption. ACS Nano. 2019;13:4960–4971. doi: 10.1021/acsnano.8b08702. PubMed DOI PMC
Chircov C., Ștefan R.-E., Dolete G., Andrei A., Holban A.M., Oprea O.-C., Vasile B.S., Neacșu I.A., Tihăuan B. Dextran-Coated Iron Oxide Nanoparticles Loaded with Curcumin for Antimicrobial Therapies. Pharmaceutics. 2022;14:1057. doi: 10.3390/pharmaceutics14051057. PubMed DOI PMC
Badawy M.M.M., Abdel-Hamid G.R., Mohamed H.E. Antitumor Activity of Chitosan-Coated Iron Oxide Nanocomposite Against Hepatocellular Carcinoma in Animal Models. Biol. Trace Elem. Res. 2023;201:1274–1285. doi: 10.1007/s12011-022-03221-7. PubMed DOI PMC
Yu S., Xu X., Feng J., Liu M., Hu K. Chitosan and Chitosan Coating Nanoparticles for the Treatment of Brain Disease. Int. J. Pharm. 2019;560:282–293. doi: 10.1016/j.ijpharm.2019.02.012. PubMed DOI
Lazaro-Carrillo A., Filice M., Guillén M.J., Amaro R., Viñambres M., Tabero A., Paredes K.O., Villanueva A., Calvo P., del Puerto Morales M., et al. Tailor-Made PEG Coated Iron Oxide Nanoparticles as Contrast Agents for Long Lasting Magnetic Resonance Molecular Imaging of Solid Cancers. Mater. Sci. Eng. C. 2020;107:110262. doi: 10.1016/j.msec.2019.110262. PubMed DOI
Salehipour M., Rezaei S., Mosafer J., Pakdin-Parizi Z., Motaharian A., Mogharabi-Manzari M. Recent Advances in Polymer-Coated Iron Oxide Nanoparticles as Magnetic Resonance Imaging Contrast Agents. J. Nanopart. Res. 2021;23:48. doi: 10.1007/s11051-021-05156-x. DOI
Pongrac I.M., Dobrivojević M., Ahmed L.B., Babič M., Šlouf M., Horák D., Gajović S. Improved Biocompatibility and Efficient Labeling of Neural Stem Cells with Poly(L-Lysine)-Coated Maghemite Nanoparticles. Beilstein J. Nanotechnol. 2016;7:926–936. doi: 10.3762/bjnano.7.84. PubMed DOI PMC
Plichta Z., Kozak Y., Panchuk R., Sokolova V., Epple M., Kobylinska L., Jendelová P., Horák D. Cytotoxicity of Doxorubicin-Conjugated Poly[N-(2-Hydroxypropyl)Methacrylamide]-Modified γ-Fe2O3 Nanoparticles towards Human Tumor Cells. Beilstein J. Nanotechnol. 2018;9:2533–2545. doi: 10.3762/bjnano.9.236. PubMed DOI PMC
Gupta S.P. Hydroxamic Acids a Unique Family of Chemicals with Multiple Biological Activities. Springer Science & Business Media; Meerut, India: 2013.
Al Shaer D., Al Musaimi O., de la Torre B.G., Albericio F. Hydroxamate Siderophores: Natural Occurrence, Chemical Synthesis, Iron Binding Affinity and Use as Trojan Horses against Pathogens. Eur. J. Med. Chem. 2020;208:112791. doi: 10.1016/j.ejmech.2020.112791. PubMed DOI
Winston A., Varaprasad D.V.P.R. Polymeric Iron Chelators. WO 86/00891. 1986
Timofeeva A.M., Galyamova M.R., Sedykh S.E. Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture. Plants. 2022;11:3065. doi: 10.3390/plants11223065. PubMed DOI PMC
Ghosh S.K., Bera T., Chakrabarty A.M. Microbial Siderophore—A Boon to Agricultural Sciences. Biol. Control. 2020;144:104214. doi: 10.1016/j.biocontrol.2020.104214. DOI
Herynek V., Babič M., Kaman O., Charvátová H., Veselá M., Buchholz O., Vosmanská M., Kubániová D., Kohout J., Hofmann U.G., et al. Maghemite Nanoparticles Coated by Methacrylamide-Based Polymer for Magnetic Particle Imaging. J. Nanopart. Res. 2021;23:52. doi: 10.1007/s11051-021-05164-x. DOI
Chytil P., Etrych T., Kříž J., Šubr V., Ulbrich K. N-(2-Hydroxypropyl)Methacrylamide-Based Polymer Conjugates with PH-Controlled Activation of Doxorubicin for Cell-Specific or Passive Tumour Targeting. Synthesis by RAFT Polymerisation and Physicochemical Characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI
Reimer P., Balzer T. Ferucarbotran (Resovist): A New Clinically Approved RES-Specific Contrast Agent for Contrast-Enhanced MRI of the Liver: Properties, Clinical Development, and Applications. Eur. Radiol. 2003;13:1266–1276. doi: 10.1007/s00330-002-1721-7. PubMed DOI
Ulbrich K., Šubr V., Strohalm J., Plocová D., Jelínková M., Říhová B. Polymeric Drugs Based on Conjugates of Synthetic and Natural Macromolecules. J. Control. Release. 2000;64:63–79. doi: 10.1016/S0168-3659(99)00141-8. PubMed DOI
Rasband W.S. ImageJ National institutes of Health, Bethesda, Maryland, USA. [(accessed on 10 June 2023)]; Available online: http://imagej.nih.gov/ij.
Gilbert R.G., Hess M., Jenkins A.D., Jones R.G., Kratochvíl P., Stepto R.F.T. Dispersity in Polymer Science (IUPAC Recommendations 2009) Pure Appl. Chem. 2009;81:351–353. doi: 10.1351/PAC-REC-08-05-02. DOI
Nair A., Jacob S. A Simple Practice Guide for Dose Conversion between Animals and Human. J. Basic Clin. Pharm. 2016;7:27. doi: 10.4103/0976-0105.177703. PubMed DOI PMC
FDA. U.S.F. D.A. Feraheme/Ferumoxytol FDA Label—AMAG Pharmaceuticals. [(accessed on 18 February 2018)];2018 :1–17. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022180s009lbl.pdf.
Horák D., Babič M., Jendelová P., Herynek V., Trchová M., Pientka Z., Pollert E., Hájek M., Syková E. D-Mannose-Modified Iron Oxide Nanoparticles for Stem Cell Labeling. Bioconjug. Chem. 2007;18:635–644. doi: 10.1021/bc060186c. PubMed DOI
Lucas I.T., Durand-Vidal S., Dubois E., Chevalet J., Turq P. Surface Charge Density of Maghemite Nanoparticles: Role of Electrostatics in the Proton Exchange. J. Phys. Chem. C. 2007;111:18568–18576. doi: 10.1021/jp0743119. DOI
Luengo Y., Nardecchia S., Morales M.P., Serrano M.C. Different Cell Responses Induced by Exposure to Maghemite Nanoparticles. Nanoscale. 2013;5:11428. doi: 10.1039/c3nr02148c. PubMed DOI
Calatayud M.P., Sanz B., Raffa V., Riggio C., Ibarra M.R., Goya G.F. The Effect of Surface Charge of Functionalized Fe3O4 Nanoparticles on Protein Adsorption and Cell Uptake. Biomaterials. 2014;35:6389–6399. doi: 10.1016/j.biomaterials.2014.04.009. PubMed DOI
Oddsson Á., Patrakka J., Tryggvason K. Reference Module in Biomedical Sciences. Elsevier; Amsterdam, The Netherlands: 2014. Glomerular Filtration Barrier; pp. 1–11.
Ruggiero A., Villa C.H., Bander E., Rey D.A., Bergkvist M., Batt C.A., Manova-Todorova K., Deen W.M., Scheinberg D.A., McDevitt M.R. Paradoxical Glomerular Filtration of Carbon Nanotubes. Proc. Natl. Acad. Sci. USA. 2010;107:12369–12374. doi: 10.1073/pnas.0913667107. PubMed DOI PMC
Mayadunne R.T.A., Rizzardo E., Chiefari J., Krstina J., Moad G., Postma A., Thang S.H. Living Polymers by the Use of Trithiocarbonates as Reversible Addition−Fragmentation Chain Transfer (RAFT) Agents: ABA Triblock Copolymers by Radical Polymerization in Two Steps. Macromolecules. 2000;33:243–245. doi: 10.1021/ma991451a. DOI
Spitzer J.J. Colloidal Interactions: Contact Limiting Laws, Double-Layer Dissociation, and “Non-DLVO” (Derjaguin–Landau–Verwey–Overbeek) Forces. Colloid Polym. Sci. 2003;281:589–592. doi: 10.1007/s00396-002-0836-3. DOI
Spitzer J.J. Maxwellian Double Layer Forces: From Infinity to Contact. Langmuir. 2003;19:7099–7111. doi: 10.1021/la034028a. DOI
Spitzer J.J. Theory of Dissociative Electrical Double Layers: The Limit of Close Separations and “Hydration” Forces. Langmuir. 1992;8:1659–1662. doi: 10.1021/la00042a027. DOI
Debayle M., Balloul E., Dembele F., Xu X., Hanafi M., Ribot F., Monzel C., Coppey M., Fragola A., Dahan M., et al. Zwitterionic Polymer Ligands: An Ideal Surface Coating to Totally Suppress Protein-Nanoparticle Corona Formation? Biomaterials. 2019;219:119357. doi: 10.1016/j.biomaterials.2019.119357. PubMed DOI
Gandhi S.N., Brown M.A., Wong J.G., Aguirre D.A., Sirlin C.B. MR Contrast Agents for Liver Imaging: What, When, How. RadioGraphics. 2006;26:1621–1636. doi: 10.1148/rg.266065014. PubMed DOI
Ferrucci J.T., Stark D.D. Iron Oxide-Enhanced MR Imaging of the Liver and Spleen: Review of the First 5 Years. Am. J. Roentgenol. 1990;155:943–950. doi: 10.2214/ajr.155.5.2120963. PubMed DOI
Keselman P., Yu E.Y., Zhou X.Y., Goodwill P.W., Chandrasekharan P., Ferguson R.M., Khandhar A.P., Kemp S.J., Krishnan K.M., Zheng B., et al. Tracking Short-Term Biodistribution and Long-Term Clearance of SPIO Tracers in Magnetic Particle Imaging. Phys. Med. Biol. 2017;62:3440–3453. doi: 10.1088/1361-6560/aa5f48. PubMed DOI PMC