Hydrophilic Copolymers with Hydroxamic Acid Groups as a Protective Biocompatible Coating of Maghemite Nanoparticles: Synthesis, Physico-Chemical Characterization and MRI Biodistribution Study

. 2023 Jul 19 ; 15 (7) : . [epub] 20230719

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37514168

Grantová podpora
Programme EXCELES, ID Project No. LX22NPO5102 European Union
Large RI Project LM2023050 Czech-BioImaging Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_013/0001775 European Regional Development Fund

Odkazy

PubMed 37514168
PubMed Central PMC10384990
DOI 10.3390/pharmaceutics15071982
PII: pharmaceutics15071982
Knihovny.cz E-zdroje

Superparamagnetic iron oxide nanoparticles (SPION) with a "non-fouling" surface represent a versatile group of biocompatible nanomaterials valuable for medical diagnostics, including oncology. In our study we present a synthesis of novel maghemite (γ-Fe2O3) nanoparticles with positive and negative overall surface charge and their coating by copolymer P(HPMA-co-HAO) prepared by RAFT (reversible addition-fragmentation chain-transfer) copolymerization of N-(2-hydroxypropyl)methacrylamide (HPMA) with N-[2-(hydroxyamino)-2-oxo-ethyl]-2-methyl-prop-2-enamide (HAO). Coating was realized via hydroxamic acid groups of the HAO comonomer units with a strong affinity to maghemite. Dynamic light scattering (DLS) demonstrated high colloidal stability of the coated particles in a wide pH range, high ionic strength, and the presence of phosphate buffer (PBS) and serum albumin (BSE). Transmission electron microscopy (TEM) images show a narrow size distribution and spheroid shape. Alternative coatings were prepared by copolymerization of HPMA with methyl 2-(2-methylprop-2-enoylamino)acetate (MMA) and further post-polymerization modification with hydroxamic acid groups, carboxylic acid and primary-amino functionalities. Nevertheless, their colloidal stability was worse in comparison with P(HPMA-co-HAO). Additionally, P(HPMA-co-HAO)-coated nanoparticles were subjected to a bio-distribution study in mice. They were cleared from the blood stream by the liver relatively slowly, and their half-life in the liver depended on their charge; nevertheless, both cationic and anionic particles revealed a much shorter metabolic clearance rate than that of commercially available ferucarbotran.

Zobrazit více v PubMed

Shabatina T.I., Vernaya O.I., Shabatin V.P., Melnikov M.Y. Magnetic Nanoparticles for Biomedical Purposes: Modern Trends and Prospects. Magnetochemistry. 2020;6:30. doi: 10.3390/magnetochemistry6030030. DOI

Nelson N., Port J., Pandey M. Use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) via Multiple Imaging Modalities and Modifications to Reduce Cytotoxicity: An Educational Review. J. Nanotheranostics. 2020;1:105–135. doi: 10.3390/jnt1010008. DOI

Shubayev V.I., Pisanic T.R., Jin S. Magnetic Nanoparticles for Theragnostics. Adv. Drug Deliv. Rev. 2009;61:467–477. doi: 10.1016/j.addr.2009.03.007. PubMed DOI PMC

Uskoković V., Tang S., Wu V.M. Targeted Magnetic Separation of Biomolecules and Cells Using Earthicle-Based Ferrofluids. Nanoscale. 2019;11:11236–11253. doi: 10.1039/C9NR01579E. PubMed DOI

Liu S., Yu B., Wang S., Shen Y., Cong H. Preparation, Surface Functionalization and Application of Fe3O4 Magnetic Nanoparticles. Adv. Colloid Interface Sci. 2020;281:102165. doi: 10.1016/j.cis.2020.102165. PubMed DOI

Guo S., Dong S. Biomolecule-Nanoparticle Hybrids for Electrochemical Biosensors. TrAC Trends Anal. Chem. 2009;28:96–109. doi: 10.1016/j.trac.2008.10.014. DOI

Bilgic A., Cimen A. A Highly Sensitive and Selective ON-OFF Fluorescent Sensor Based on Functionalized Magnetite Nanoparticles for Detection of Cr(VI) Metal Ions in the Aqueous Medium. J. Mol. Liq. 2020;312:113398. doi: 10.1016/j.molliq.2020.113398. DOI

Xue T., Wang S., Ou G., Li Y., Ruan H., Li Z., Ma Y., Zou R., Qiu J., Shen Z., et al. Detection of Circulating Tumor Cells Based on Improved SERS-Active Magnetic Nanoparticles. Anal. Methods. 2019;11:2918–2928. doi: 10.1039/C9AY00646J. DOI

Jordan A., Scholz R., Maier-Hauff K., Johannsen M., Wust P., Nadobny J., Schirra H., Schmidt H., Deger S., Loening S., et al. Presentation of a New Magnetic Field Therapy System for the Treatment of Human Solid Tumors with Magnetic Fluid Hyperthermia. J. Magn. Magn. Mater. 2001;225:118–126. doi: 10.1016/S0304-8853(00)01239-7. DOI

Piazza R.D., Viali W.R., dos Santos C.C., Nunes E.S., Marques R.F.C., Morais P.C., da Silva S.W., Coaquira J.A.H., Jafelicci M. PEGlatyon-SPION Surface Functionalization with Folic Acid for Magnetic Hyperthermia Applications. Mater. Res. Express. 2020;7:015078. doi: 10.1088/2053-1591/ab6700. DOI

Gharibkandi N.A., Żuk M., Muftuler F.Z.B., Wawrowicz K., Żelechowska-Matysiak K., Bilewicz A. 198Au-Coated Superparamagnetic Iron Oxide Nanoparticles for Dual Magnetic Hyperthermia and Radionuclide Therapy of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2023;24:5282. doi: 10.3390/ijms24065282. PubMed DOI PMC

Zhi D., Yang T., Yang J., Fu S., Zhang S. Targeting Strategies for Superparamagnetic Iron Oxide Nanoparticles in Cancer Therapy. Acta Biomater. 2020;102:13–34. doi: 10.1016/j.actbio.2019.11.027. PubMed DOI

Liu Y., Zhao J., Jiang J., Chen F., Fang X. Doxorubicin Delivered Using Nanoparticles Camouflaged with Mesenchymal Stem Cell Membranes to Treat Colon Cancer. Int. J. Nanomed. 2020;15:2873–2884. doi: 10.2147/IJN.S242787. PubMed DOI PMC

Zhang H., Deng L., Liu H., Mai S., Cheng Z., Shi G., Zeng H., Wu Z. Enhanced Fluorescence/Magnetic Resonance Dual Imaging and Gene Therapy of Liver Cancer Using Cationized Amylose Nanoprobe. Mater. Today Bio. 2022;13:100220. doi: 10.1016/j.mtbio.2022.100220. PubMed DOI PMC

Huang R.-Y., Liu Z.-H., Weng W.-H., Chang C.-W. Magnetic Nanocomplexes for Gene Delivery Applications. J. Mater. Chem. B. 2021;9:4267–4286. doi: 10.1039/D0TB02713H. PubMed DOI

Antonelli A., Magnani M. SPIO Nanoparticles and Magnetic Erythrocytes as Contrast Agents for Biomedical and Diagnostic Applications. J. Magn. Magn. Mater. 2022;541:168520. doi: 10.1016/j.jmmm.2021.168520. DOI

Chen C., Ge J., Gao Y., Chen L., Cui J., Zeng J., Gao M. Ultrasmall Superparamagnetic Iron Oxide Nanoparticles: A next Generation Contrast Agent for Magnetic Resonance Imaging. WIREs Nanomed. Nanobiotechnol. 2022;14:e1740. doi: 10.1002/wnan.1740. PubMed DOI

Bulte J.W.M. Superparamagnetic Iron Oxides as MPI Tracers: A Primer and Review of Early Applications. Adv. Drug Deliv. Rev. 2019;138:293–301. doi: 10.1016/j.addr.2018.12.007. PubMed DOI PMC

Canese R., Vurro F., Marzola P. Iron Oxide Nanoparticles as Theranostic Agents in Cancer Immunotherapy. Nanomaterials. 2021;11:1950. doi: 10.3390/nano11081950. PubMed DOI PMC

Antonelli A., Szwargulski P., Scarpa E., Thieben F., Cordula G., Ambrosi G., Guidi L., Ludewig P., Knopp T., Magnani M. Development of Long Circulating Magnetic Particle Imaging Tracers: Use of Novel Magnetic Nanoparticles and Entrapment into Human Erythrocytes. Nanomedicine. 2020;15:739–753. doi: 10.2217/nnm-2019-0449. PubMed DOI

Tay Z.W., Savliwala S., Hensley D.W., Fung K.L.B., Colson C., Fellows B.D., Zhou X., Huynh Q., Lu Y., Zheng B., et al. Superferromagnetic Nanoparticles Enable Order-of-Magnitude Resolution & Sensitivity Gain in Magnetic Particle Imaging. Small Methods. 2021;5:2100796. doi: 10.1002/smtd.202100796. PubMed DOI PMC

Avasthi A., Caro C., Pozo-Torres E., Leal M.P., García-Martín M.L. Magnetic Nanoparticles as MRI Contrast Agents. Top. Curr. Chem. 2020;378:40. doi: 10.1007/s41061-020-00302-w. PubMed DOI PMC

Laurent S., Elst L.V., Muller R.N. Comparative Study of the Physicochemical Properties of Six Clinical Low Molecular Weight Gadolinium Contrast Agents. Contrast Media Mol. Imaging. 2006;1:128–137. doi: 10.1002/cmmi.100. PubMed DOI

Ramalho J., Ramalho M., Jay M., Burke L.M., Semelka R.C. Gadolinium Toxicity and Treatment. Magn. Reson. Imaging. 2016;34:1394–1398. doi: 10.1016/j.mri.2016.09.005. PubMed DOI

Rogosnitzky M., Branch S. Gadolinium-Based Contrast Agent Toxicity: A Review of Known and Proposed Mechanisms. BioMetals. 2016;29:365–376. doi: 10.1007/s10534-016-9931-7. PubMed DOI PMC

Buhaescu I., Izzedine H. Gadolinium-Induced Nephrotoxicity. Int. J. Clin. Pract. 2008;62:1113–1118. doi: 10.1111/j.1742-1241.2007.01582.x. PubMed DOI

Liu Y., Li Y., Huang J., Zhang Y., Ruan Z., Hu T. Science of the Total Environment An Advanced Sol—Gel Strategy for Enhancing Interfacial Reactivity of Iron Oxide Nanoparticles on Rosin Biochar Substrate to Remove Cr (VI) Sci. Total Environ. 2019;690:438–446. doi: 10.1016/j.scitotenv.2019.07.021. PubMed DOI

Soleymani M., Velashjerdi M., Shaterabadi Z., Barati A. One-Pot Preparation of Hyaluronic Acid-coated Iron Oxide Nanoparticles for Magnetic Hyperthermia Therapy and Targeting CD44-Overexpressing Cancer Cells. Carbohydr. Polym. 2020;237:116130. doi: 10.1016/j.carbpol.2020.116130. PubMed DOI

Salazar-Alvarez G., Muhammed M., Zagorodni A.A. Novel Flow Injection Synthesis of Iron Oxide Nanoparticles with Narrow Size Distribution. Chem. Eng. Sci. 2006;61:4625–4633. doi: 10.1016/j.ces.2006.02.032. DOI

Cabrera L., Gutierrez S., Menendez N., Morales M.P., Herrasti P. Magnetite Nanoparticles: Electrochemical Synthesis and Characterization. Electrochim. Acta. 2008;53:3436–3441. doi: 10.1016/j.electacta.2007.12.006. DOI

Aghazadeh M., Karimzadeh I., Doroudi T., Ganjali M.R., Kolivand P.H., Gharailou D. Facile Electrosynthesis and Characterization of Superparamagnetic Nanoparticles Coated with Cysteine, Glycine and Glutamine. Appl. Phys. A. 2017;123:529. doi: 10.1007/s00339-017-1145-5. DOI

Ansari S.R., Hempel N.-J., Asad S., Svedlindh P., Bergström C.A.S., Löbmann K., Teleki A. Hyperthermia-Induced In Situ Drug Amorphization by Superparamagnetic Nanoparticles in Oral Dosage Forms. ACS Appl. Mater. Interfaces. 2022;14:21978–21988. doi: 10.1021/acsami.2c03556. PubMed DOI PMC

Fuentes-García J.A., Carvalho Alavarse A., Moreno Maldonado A.C., Toro-Córdova A., Ibarra M.R., Goya G.F. Simple Sonochemical Method to Optimize the Heating Efficiency of Magnetic Nanoparticles for Magnetic Fluid Hyperthermia. ACS Omega. 2020;5:26357–26364. doi: 10.1021/acsomega.0c02212. PubMed DOI PMC

Dheyab M.A., Aziz A.A., Jameel M.S., Noqta O.A., Khaniabadi P.M., Mehrdel B. Excellent Relaxivity and X-Ray Attenuation Combo Properties of Fe3O4@Au CSNPs Produced via Rapid Sonochemical Synthesis for MRI and CT Imaging. Mater. Today Commun. 2020;25:101368. doi: 10.1016/j.mtcomm.2020.101368. DOI

Chamorro E., Tenorio M.J., Calvo L., Torralvo M.J., Sáez-Puche R., Cabañas A. One-Step Sustainable Preparation of Superparamagnetic Iron Oxide Nanoparticles Supported on Mesoporous SiO2. J. Supercrit. Fluids. 2020;159:104775. doi: 10.1016/j.supflu.2020.104775. DOI

Abu Bakar M., Tan W.L., Abu Bakar N.H.H. A Simple Synthesis of Size-Reduce Magnetite Nano-Crystals via Aqueous to Toluene Phase-Transfer Method. J. Magn. Magn. Mater. 2007;314:1–6. doi: 10.1016/j.jmmm.2007.01.018. DOI

El-Gendy N.S., Nassar H.N. Biosynthesized Magnetite Nanoparticles as an Environmental Opulence and Sustainable Wastewater Treatment. Sci. Total Environ. 2021;774:145610. doi: 10.1016/j.scitotenv.2021.145610. PubMed DOI

Kianpour S., Ebrahiminezhad A., Deyhimi M., Negahdaripour M., Raee M.J., Mohkam M., Rezaee H., Irajie C., Berenjian A., Ghasemi Y. Structural Characterization of Polysaccharide-Coated Iron Oxide Nanoparticles Produced by Staphylococcus warneri, Isolated from a Thermal Spring. J. Basic Microbiol. 2019;59:569–578. doi: 10.1002/jobm.201800684. PubMed DOI

Fokina V., Wilke M., Dulle M., Ehlert S., Förster S. Size Control of Iron Oxide Nanoparticles Synthesized by Thermal Decomposition Methods. J. Phys. Chem. C. 2022;126:21356–21367. doi: 10.1021/acs.jpcc.2c05380. DOI

Mieloch A.A., Żurawek M., Giersig M., Rozwadowska N., Rybka J.D. Bioevaluation of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) Functionalized with Dihexadecyl Phosphate (DHP) Sci. Rep. 2020;10:2725. doi: 10.1038/s41598-020-59478-2. PubMed DOI PMC

Babič M., Horák D., Trchová M., Jendelová P., Glogarová K., Lesný P., Herynek V., Hájek M., Syková E. Poly(L-Lysine)-Modified Iron Oxide Nanoparticles for Stem Cell Labeling. Bioconjug. Chem. 2008;19:740–750. doi: 10.1021/bc700410z. PubMed DOI

Sodipo B.K., Noqta O.A., Aziz A.A., Katsikini M., Pinakidou F., Paloura E.C. Influence of Capping Agents on Fraction of Fe Atoms Occupying Octahedral Site and Magnetic Property of Magnetite (Fe3O4) Nanoparticles by One-Pot Co-Precipitation Method. J. Alloys Compd. 2023;938:168558. doi: 10.1016/j.jallcom.2022.168558. DOI

LaGrow A.P., Besenhard M.O., Hodzic A., Sergides A., Bogart L.K., Gavriilidis A., Thanh N.T.K. Unravelling the Growth Mechanism of the Co-Precipitation of Iron Oxide Nanoparticles with the Aid of Synchrotron X-ray Diffraction in Solution. Nanoscale. 2019;11:6620–6628. doi: 10.1039/C9NR00531E. PubMed DOI

Novotna B., Jendelova P., Kapcalova M., Rossner P., Turnovcova K., Bagryantseva Y., Babic M., Horak D., Sykova E. Oxidative Damage to Biological Macromolecules in Human Bone Marrow Mesenchymal Stromal Cells Labeled with Various Types of Iron Oxide Nanoparticles. Toxicol. Lett. 2012;210:53–63. doi: 10.1016/j.toxlet.2012.01.008. PubMed DOI

Arbab A.S., Bashaw L.A., Miller B.R., Jordan E.K., Lewis B.K., Kalish H., Frank J.A. Characterization of Biophysical and Metabolic Properties of Cells Labeled with Superparamagnetic Iron Oxide Nanoparticles and Transfection Agent for Cellular MR Imaging. Radiology. 2003;229:838–846. doi: 10.1148/radiol.2293021215. PubMed DOI

Gershon H., Ghirlando R., Guttman S.B., Minsky A. Mode of Formation and Structural Features of DNA-Cationic Liposome Complexes Used for Transfection. Biochemistry. 1993;32:7143–7151. doi: 10.1021/bi00079a011. PubMed DOI

Babič M., Horák D., Jendelová P., Glogarová K., Herynek V., Trchová M., Likavčanová K., Lesný P., Pollert E., Hájek M., et al. Poly(N,N-dimethylacrylamide)-Coated Maghemite Nanoparticles for Stem Cell Labeling. Bioconjug. Chem. 2009;20:283–294. doi: 10.1021/bc800373x. PubMed DOI

Mukhopadhyay A., Joshi N., Chattopadhyay K., De G. A Facile Synthesis of PEG-Coated Magnetite (Fe3O4) Nanoparticles and Their Prevention of the Reduction of Cytochrome C. ACS Appl. Mater. Interfaces. 2012;4:142–149. doi: 10.1021/am201166m. PubMed DOI

Valdiglesias V., Fernández-Bertólez N., Kiliç G., Costa C., Costa S., Fraga S., Bessa M.J., Pásaro E., Teixeira J.P., Laffon B. Are Iron Oxide Nanoparticles Safe? Current Knowledge and Future Perspectives. J. Trace Elem. Med. Biol. 2016;38:53–63. doi: 10.1016/j.jtemb.2016.03.017. PubMed DOI

Reddy L.H., Arias J.L., Nicolas J., Couvreur P. Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chem. Rev. 2012;112:5818–5878. doi: 10.1021/cr300068p. PubMed DOI

Cotin G., Blanco-Andujar C., Perton F., Asín L., de la Fuente J.M., Reichardt W., Schaffner D., Ngyen D.-V., Mertz D., Kiefer C., et al. Unveiling the Role of Surface, Size, Shape and Defects of Iron Oxide Nanoparticles for Theranostic Applications. Nanoscale. 2021;13:14552–14571. doi: 10.1039/D1NR03335B. PubMed DOI

Aisida S.O., Akpa P.A., Ahmad I., Zhao T., Maaza M., Ezema F.I. Bio-Inspired Encapsulation and Functionalization of Iron Oxide Nanoparticles for Biomedical Applications. Eur. Polym. J. 2020;122:109371. doi: 10.1016/j.eurpolymj.2019.109371. DOI

Naha P.C., Liu Y., Hwang G., Huang Y., Gubara S., Jonnakuti V., Simon-Soro A., Kim D., Gao L., Koo H., et al. Dextran-Coated Iron Oxide Nanoparticles as Biomimetic Catalysts for Localized and PH-Activated Biofilm Disruption. ACS Nano. 2019;13:4960–4971. doi: 10.1021/acsnano.8b08702. PubMed DOI PMC

Chircov C., Ștefan R.-E., Dolete G., Andrei A., Holban A.M., Oprea O.-C., Vasile B.S., Neacșu I.A., Tihăuan B. Dextran-Coated Iron Oxide Nanoparticles Loaded with Curcumin for Antimicrobial Therapies. Pharmaceutics. 2022;14:1057. doi: 10.3390/pharmaceutics14051057. PubMed DOI PMC

Badawy M.M.M., Abdel-Hamid G.R., Mohamed H.E. Antitumor Activity of Chitosan-Coated Iron Oxide Nanocomposite Against Hepatocellular Carcinoma in Animal Models. Biol. Trace Elem. Res. 2023;201:1274–1285. doi: 10.1007/s12011-022-03221-7. PubMed DOI PMC

Yu S., Xu X., Feng J., Liu M., Hu K. Chitosan and Chitosan Coating Nanoparticles for the Treatment of Brain Disease. Int. J. Pharm. 2019;560:282–293. doi: 10.1016/j.ijpharm.2019.02.012. PubMed DOI

Lazaro-Carrillo A., Filice M., Guillén M.J., Amaro R., Viñambres M., Tabero A., Paredes K.O., Villanueva A., Calvo P., del Puerto Morales M., et al. Tailor-Made PEG Coated Iron Oxide Nanoparticles as Contrast Agents for Long Lasting Magnetic Resonance Molecular Imaging of Solid Cancers. Mater. Sci. Eng. C. 2020;107:110262. doi: 10.1016/j.msec.2019.110262. PubMed DOI

Salehipour M., Rezaei S., Mosafer J., Pakdin-Parizi Z., Motaharian A., Mogharabi-Manzari M. Recent Advances in Polymer-Coated Iron Oxide Nanoparticles as Magnetic Resonance Imaging Contrast Agents. J. Nanopart. Res. 2021;23:48. doi: 10.1007/s11051-021-05156-x. DOI

Pongrac I.M., Dobrivojević M., Ahmed L.B., Babič M., Šlouf M., Horák D., Gajović S. Improved Biocompatibility and Efficient Labeling of Neural Stem Cells with Poly(L-Lysine)-Coated Maghemite Nanoparticles. Beilstein J. Nanotechnol. 2016;7:926–936. doi: 10.3762/bjnano.7.84. PubMed DOI PMC

Plichta Z., Kozak Y., Panchuk R., Sokolova V., Epple M., Kobylinska L., Jendelová P., Horák D. Cytotoxicity of Doxorubicin-Conjugated Poly[N-(2-Hydroxypropyl)Methacrylamide]-Modified γ-Fe2O3 Nanoparticles towards Human Tumor Cells. Beilstein J. Nanotechnol. 2018;9:2533–2545. doi: 10.3762/bjnano.9.236. PubMed DOI PMC

Gupta S.P. Hydroxamic Acids a Unique Family of Chemicals with Multiple Biological Activities. Springer Science & Business Media; Meerut, India: 2013.

Al Shaer D., Al Musaimi O., de la Torre B.G., Albericio F. Hydroxamate Siderophores: Natural Occurrence, Chemical Synthesis, Iron Binding Affinity and Use as Trojan Horses against Pathogens. Eur. J. Med. Chem. 2020;208:112791. doi: 10.1016/j.ejmech.2020.112791. PubMed DOI

Winston A., Varaprasad D.V.P.R. Polymeric Iron Chelators. WO 86/00891. 1986

Timofeeva A.M., Galyamova M.R., Sedykh S.E. Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture. Plants. 2022;11:3065. doi: 10.3390/plants11223065. PubMed DOI PMC

Ghosh S.K., Bera T., Chakrabarty A.M. Microbial Siderophore—A Boon to Agricultural Sciences. Biol. Control. 2020;144:104214. doi: 10.1016/j.biocontrol.2020.104214. DOI

Herynek V., Babič M., Kaman O., Charvátová H., Veselá M., Buchholz O., Vosmanská M., Kubániová D., Kohout J., Hofmann U.G., et al. Maghemite Nanoparticles Coated by Methacrylamide-Based Polymer for Magnetic Particle Imaging. J. Nanopart. Res. 2021;23:52. doi: 10.1007/s11051-021-05164-x. DOI

Chytil P., Etrych T., Kříž J., Šubr V., Ulbrich K. N-(2-Hydroxypropyl)Methacrylamide-Based Polymer Conjugates with PH-Controlled Activation of Doxorubicin for Cell-Specific or Passive Tumour Targeting. Synthesis by RAFT Polymerisation and Physicochemical Characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI

Reimer P., Balzer T. Ferucarbotran (Resovist): A New Clinically Approved RES-Specific Contrast Agent for Contrast-Enhanced MRI of the Liver: Properties, Clinical Development, and Applications. Eur. Radiol. 2003;13:1266–1276. doi: 10.1007/s00330-002-1721-7. PubMed DOI

Ulbrich K., Šubr V., Strohalm J., Plocová D., Jelínková M., Říhová B. Polymeric Drugs Based on Conjugates of Synthetic and Natural Macromolecules. J. Control. Release. 2000;64:63–79. doi: 10.1016/S0168-3659(99)00141-8. PubMed DOI

Rasband W.S. ImageJ National institutes of Health, Bethesda, Maryland, USA. [(accessed on 10 June 2023)]; Available online: http://imagej.nih.gov/ij.

Gilbert R.G., Hess M., Jenkins A.D., Jones R.G., Kratochvíl P., Stepto R.F.T. Dispersity in Polymer Science (IUPAC Recommendations 2009) Pure Appl. Chem. 2009;81:351–353. doi: 10.1351/PAC-REC-08-05-02. DOI

Nair A., Jacob S. A Simple Practice Guide for Dose Conversion between Animals and Human. J. Basic Clin. Pharm. 2016;7:27. doi: 10.4103/0976-0105.177703. PubMed DOI PMC

FDA. U.S.F. D.A. Feraheme/Ferumoxytol FDA Label—AMAG Pharmaceuticals. [(accessed on 18 February 2018)];2018 :1–17. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022180s009lbl.pdf.

Horák D., Babič M., Jendelová P., Herynek V., Trchová M., Pientka Z., Pollert E., Hájek M., Syková E. D-Mannose-Modified Iron Oxide Nanoparticles for Stem Cell Labeling. Bioconjug. Chem. 2007;18:635–644. doi: 10.1021/bc060186c. PubMed DOI

Lucas I.T., Durand-Vidal S., Dubois E., Chevalet J., Turq P. Surface Charge Density of Maghemite Nanoparticles: Role of Electrostatics in the Proton Exchange. J. Phys. Chem. C. 2007;111:18568–18576. doi: 10.1021/jp0743119. DOI

Luengo Y., Nardecchia S., Morales M.P., Serrano M.C. Different Cell Responses Induced by Exposure to Maghemite Nanoparticles. Nanoscale. 2013;5:11428. doi: 10.1039/c3nr02148c. PubMed DOI

Calatayud M.P., Sanz B., Raffa V., Riggio C., Ibarra M.R., Goya G.F. The Effect of Surface Charge of Functionalized Fe3O4 Nanoparticles on Protein Adsorption and Cell Uptake. Biomaterials. 2014;35:6389–6399. doi: 10.1016/j.biomaterials.2014.04.009. PubMed DOI

Oddsson Á., Patrakka J., Tryggvason K. Reference Module in Biomedical Sciences. Elsevier; Amsterdam, The Netherlands: 2014. Glomerular Filtration Barrier; pp. 1–11.

Ruggiero A., Villa C.H., Bander E., Rey D.A., Bergkvist M., Batt C.A., Manova-Todorova K., Deen W.M., Scheinberg D.A., McDevitt M.R. Paradoxical Glomerular Filtration of Carbon Nanotubes. Proc. Natl. Acad. Sci. USA. 2010;107:12369–12374. doi: 10.1073/pnas.0913667107. PubMed DOI PMC

Mayadunne R.T.A., Rizzardo E., Chiefari J., Krstina J., Moad G., Postma A., Thang S.H. Living Polymers by the Use of Trithiocarbonates as Reversible Addition−Fragmentation Chain Transfer (RAFT) Agents: ABA Triblock Copolymers by Radical Polymerization in Two Steps. Macromolecules. 2000;33:243–245. doi: 10.1021/ma991451a. DOI

Spitzer J.J. Colloidal Interactions: Contact Limiting Laws, Double-Layer Dissociation, and “Non-DLVO” (Derjaguin–Landau–Verwey–Overbeek) Forces. Colloid Polym. Sci. 2003;281:589–592. doi: 10.1007/s00396-002-0836-3. DOI

Spitzer J.J. Maxwellian Double Layer Forces: From Infinity to Contact. Langmuir. 2003;19:7099–7111. doi: 10.1021/la034028a. DOI

Spitzer J.J. Theory of Dissociative Electrical Double Layers: The Limit of Close Separations and “Hydration” Forces. Langmuir. 1992;8:1659–1662. doi: 10.1021/la00042a027. DOI

Debayle M., Balloul E., Dembele F., Xu X., Hanafi M., Ribot F., Monzel C., Coppey M., Fragola A., Dahan M., et al. Zwitterionic Polymer Ligands: An Ideal Surface Coating to Totally Suppress Protein-Nanoparticle Corona Formation? Biomaterials. 2019;219:119357. doi: 10.1016/j.biomaterials.2019.119357. PubMed DOI

Gandhi S.N., Brown M.A., Wong J.G., Aguirre D.A., Sirlin C.B. MR Contrast Agents for Liver Imaging: What, When, How. RadioGraphics. 2006;26:1621–1636. doi: 10.1148/rg.266065014. PubMed DOI

Ferrucci J.T., Stark D.D. Iron Oxide-Enhanced MR Imaging of the Liver and Spleen: Review of the First 5 Years. Am. J. Roentgenol. 1990;155:943–950. doi: 10.2214/ajr.155.5.2120963. PubMed DOI

Keselman P., Yu E.Y., Zhou X.Y., Goodwill P.W., Chandrasekharan P., Ferguson R.M., Khandhar A.P., Kemp S.J., Krishnan K.M., Zheng B., et al. Tracking Short-Term Biodistribution and Long-Term Clearance of SPIO Tracers in Magnetic Particle Imaging. Phys. Med. Biol. 2017;62:3440–3453. doi: 10.1088/1361-6560/aa5f48. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...