Nickel Ferrite Nanoparticles for In Vivo Multimodal Magnetic Resonance and Magnetic Particle Imaging
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40740606
PubMed Central
PMC12308752
DOI
10.1021/acsanm.5c03013
Knihovny.cz E-resources
- Keywords
- magnetic particle imaging, magnetic resonance imaging, nickel ferrite nanoparticles, r2 relaxivity, saturation magnetization,
- Publication type
- Journal Article MeSH
Magnetic nanoparticles have been at the center of biomedical research for decades, primarily for their applications in magnetic resonance imaging (MRI) and magnetic particle imaging (MPI). Superparamagnetic particles, typically based on iron oxide crystals, are effective in both modalities, although each requires distinct magnetic properties for optimal performance. We investigated the performance of nanoparticles based on a nickel-substituted ferrite core and compared them to standard maghemite iron oxide nanoparticles. We synthesized γ-Fe2O3 and Ni x Fe2-x O3 nanoparticles and coated them with a statistical copolymer poly-(N,N-dimethylacrylamide-co-acrylic acid). In vitro testing included X-ray diffraction (XRD), Mössbauer spectroscopy, magnetometry, magnetic resonance relaxometry, magnetic particle spectroscopy, and imaging. In vivo testing involved monitoring of nanoparticle biodistribution using MPI and MRI after intracardial application in a murine model. Mössbauer spectra suggest that the Ni-substituted nanoparticles consist of a stoichiometric NiFe2O4 ferrite and a poorly crystalline antiferromagnetic iron-(III) oxide-hydroxide phase. Amorphous-like impurities in Ni x Fe2-x O3 nanoparticles were probably responsible for lower saturation magnetization than that of γ-Fe2O3 nanoparticles, as was proved by magnetometry, which led to lower r 2 relaxivity. However, MPI revealed a higher signal in the spectrum and superior imaging performance of Ni x Fe2-x O3 compared to γ-Fe2O3 particles, likely due to shorter Néél and Brownian relaxation times. Both types of nanoparticles showed similar performance in bimodal MRI/MPI imaging in vivo. They were detected in the liver immediately after application and appeared in the spleen within 24 h. Long-term localization in the lymph nodes was also observed. Substituting an iron with a nickel ion in the core altered the magnetic properties, leading to lower saturation magnetization and an increased signal in the magnetic particle spectra, which enhanced their performance in MPI. This study demonstrates that γ-Fe2O3 and Ni x Fe2-x O3 nanoparticles are both suitable for combined MRI/MPI imaging; magnetic particle imaging provides a highly specific signal for anatomical magnetic resonance images.
See more in PubMed
Stueber D. D., Villanova J., Aponte I., Xiao Z., Colvin V. L.. Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends. Pharmaceutics. 2021;13(7):943. doi: 10.3390/pharmaceutics13070943. PubMed DOI PMC
Daldrup-Link H. E.. Ten Things You Might Not Know about Iron Oxide Nanoparticles. Radiology. 2017;284(3):616–629. doi: 10.1148/radiol.2017162759. PubMed DOI PMC
Wang Y. X.. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011;1(1):35–40. doi: 10.3978/j.issn.2223-4292.2011.08.03. PubMed DOI PMC
Wang Y. X.. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J. Gastroenterol. 2015;21(47):13400. doi: 10.3748/wjg.v21.i47.13400. PubMed DOI PMC
Harvell-Smith S., Tung L. D., Thanh N. T. K.. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. Nanoscale. 2022;14(10):3658–3697. doi: 10.1039/D1NR05670K. PubMed DOI
Caspani S., Magalhaes R., Araujo J. P., Sousa C. T.. Magnetic Nanomaterials as Contrast Agents for MRI. Materials. 2020;13(11):2586. doi: 10.3390/ma13112586. PubMed DOI PMC
Gleich B., Weizenecker J.. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435(7046):1214–1217. doi: 10.1038/nature03808. PubMed DOI
Croft L. R., Goodwill P. W., Conolly S. M.. Relaxation in x-space magnetic particle imaging. IEEE Trans Med. Imaging. 2012;31(12):2335–2342. doi: 10.1109/TMI.2012.2217979. PubMed DOI PMC
Deissler R. J., Wu Y., Martens M. A.. Dependence of Brownian and Neel relaxation times on magnetic field strength. Med. Phys. 2014;41(1):012301. doi: 10.1118/1.4837216. PubMed DOI
Gheisari M., Mozaffari M., Acet M., Amighian J.. Preparation and investigation of magnetic properties of wustite nanoparticles. J. Magn Magn Mater. 2008;320(21):2618–2621. doi: 10.1016/j.jmmm.2008.05.028. DOI
Ponomar V. P.. Synthesis and magnetic properties of magnetite prepared by chemical reduction from hematite of various particle sizes. J. Alloys Compd. 2018;741:28–34. doi: 10.1016/j.jallcom.2018.01.023. DOI
Tadic M., Panjan M., Damnjanovic V., Milosevic I.. Magnetic properties of hematite (α-FeO) nanoparticles prepared by hydrothermal synthesis method. Appl. Surf. Sci. 2014;320:183–187. doi: 10.1016/j.apsusc.2014.08.193. DOI
Malina O., Tucek J., Jakubec P., Kaslík J., Medrík I., Tokoro H., Yoshikiyo M., Namai A., Ohkoshi S., Zboril R.. Magnetic ground state of nanosized β-Fe2O3 and its remarkable electronic features. Rsc Adv. 2015;5(61):49719–49727. doi: 10.1039/C5RA07484C. DOI
Jeong J. R., Lee S. J., Kim J. D., Shin S. C.. Magnetic properties of γ-Fe2O3 nanoparticles made by coprecipitation method. Phys. Status Solidi B. 2004;241(7):1593–1596. doi: 10.1002/pssb.200304549. DOI
Kohout J., Brázda P., Záveta K., Kubániová D., Kmjec T., Kubícková L., Klementová M., Santavá E., Lancok A.. The magnetic transition in ε-Fe2O3 nanoparticles: Magnetic properties and hyperfine interactions from Mossbauer spectroscopy. J. Appl. Phys. 2015;117(17):17D505. doi: 10.1063/1.4907610. DOI
Nguyen M. D., Deng L. Z., Lee J. M., Resendez K. M., Fuller M., Hoijang S., Robles-Hernandez F., Chu C. W., Litvinov D., Hadjiev V. G., Xu S. J., Phan M. H., Lee T. R.. Magnetic Tunability via Control of Crystallinity and Size in Polycrystalline Iron Oxide Nanoparticles. Small. 2024;20(43):2402940. doi: 10.1002/smll.202402940. PubMed DOI
Nguyen M. D., Tran H. V., Xu S. J., Lee T. R.. Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. Appl. Sci-Basel. 2021;11(23):11301. doi: 10.3390/app112311301. PubMed DOI PMC
Shokrollahi H.. A review of the magnetic properties, synthesis methods and applications of maghemite. J. Magn Magn Mater. 2017;426:74–81. doi: 10.1016/j.jmmm.2016.11.033. DOI
Herynek V., Babic M., Kaman O., Charvátová H., Veselá M., Buchholz O., Vosmanská M., Kubániová D., Kohout J., Hofmann U. G., Sefc L.. Maghemite nanoparticles coated by methacrylamide-based polymer for magnetic particle imaging. J. Nanopart. Res. 2021;23(2):52. doi: 10.1007/s11051-021-05164-x. DOI
Desai I., Nadagouda M. N., Elovitz M., Mills M., Boulanger B.. Synthesis and characterization of magnetic manganese ferrites. Mater. Sci. Energy Technol. 2019;2(2):150–160. doi: 10.1016/j.mset.2019.01.009. PubMed DOI PMC
Amirabadizadeh A., Farsi H., Dehghani M., Arabi H.. Effect of Substitutions of Zn for Mn on Size and Magnetic Properties of Mn-Zn Ferrite Nanoparticles. J. Supercond Nov Magn. 2012;25(8):2763–2765. doi: 10.1007/s10948-011-1259-5. DOI
Thakur P., Chahar D., Taneja S., Bhalla N., Thakur A.. A review on MnZn ferrites: Synthesis, characterization and applications. Ceram. Int. 2020;46(10):15740–15763. doi: 10.1016/j.ceramint.2020.03.287. PubMed DOI PMC
Cheraghali S., Dini G., Caligiuri I., Back M., Rizzolio F.. PEG-Coated MnZn Ferrite Nanoparticles with Hierarchical Structure as MRI Contrast Agent. Nanomaterials-Basel. 2023;13(3):452. doi: 10.3390/nano13030452. PubMed DOI PMC
Sobhani T., Shahbazi-Gahrouei D., Rostami M., Zahraei M., Farzadniya A.. Assessment of Manganese-Zinc Ferrite Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent for the Detection of 4T1 Breast Cancer Cells. J. Med. Signals Sens. 2019;9(4):245–251. doi: 10.4103/jmss.JMSS_59_18. PubMed DOI PMC
Zahraei M., Monshi A., Shahbazi-Gahrouei D., Amirnasr M., Behdadfar B., Rostami M.. Synthesis and Characterization of Chitosan Coated Manganese Zinc Ferrite Nanoparticles as MRI Contrast Agents. J. Nanostruct. 2015;5(2):77–86. doi: 10.7508/jns.2015.02.001. DOI
Veverka P., Kubícková L., Jirák Z., Herynek V., Veverka M., Kaman O.. Temperature and field dependences of transverse relaxivity of Co-Zn ferrite nanoparticles coated with silica: The role of magnetic properties and different regimes. Mater. Chem. Phys. 2021;260:124178. doi: 10.1016/j.matchemphys.2020.124178. DOI
Kaman O., Kubániová D., Kubícková L., Herynek V., Veverka P., Jirák Z., Pashchenko M., Kmjec T., Veverka M., Storkán M., Hofmann U. G., Kohout J.. Magnetic particle spectroscopy and magnetic particle imaging of zinc and cobalt ferrite nanoparticles: Distinct relaxation mechanisms. J. Alloys Compd. 2024;978:173022. doi: 10.1016/j.jallcom.2023.173022. DOI
Bhardwaj A., Parekh K.. Auto tunable hyperthermic response of temperature sensitive magnetic fluid in agarose gel containing Mn1_xZnxFe2O4 nanoparticles. J. Alloys Compd. 2024;978:173407. doi: 10.1016/j.jallcom.2023.173407. DOI
Manohar A., Vijayakanth V., Chintagumpala K., Manivasagan P., Jang E. S., Kim K. H.. Zn- doped MnFe2O4 nanoparticles for magnetic hyperthermia and their cytotoxicity study in normal and cancer cell lines. Colloid Surface A. 2023;675:132037. doi: 10.1016/j.colsurfa.2023.132037. DOI
Rajsiglova L., Babic M., Krausova K., Lukac P., Kalkusova K., Taborska P., Sojka L., Bartunkova J., Stakheev D., Vannucci L., Smrz D.. Immunogenic properties of nickel-doped maghemite nanoparticles and the implication for cancer immunotherapy. J. Immunotoxicol. 2024;21(1):2416988. doi: 10.1080/1547691X.2024.2416988. PubMed DOI
Babic M., Horák D., Jendelová P., Glogarová K., Herynek V., Trchová M., Likavcanová K., Lesny P., Pollert E., Hájek M., Syková E.. Poly(-dimethylacrylamide)-Coated Maghemite Nanoparticles for Stem Cell Labeling. Bioconjugate Chem. 2009;20(2):283–294. doi: 10.1021/bc800373x. PubMed DOI
Schneider C. A., Rasband W. S., Eliceiri K. W.. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Zhang H., Zeng D. C., Liu Z. W.. The law of approach to saturation in ferromagnets originating from the magnetocrystalline anisotropy. J. Magn Magn Mater. 2010;322(16):2375–2380. doi: 10.1016/j.jmmm.2010.02.040. DOI
Poryvai A., Smahel M., Svecová M., Nemati A., Shadpour S., Ulbrich P., Ogolla T., Liu J., Novotná V., Veverka M., Vejpravová J., Hegmann T., Kohout M.. Chiral, Magnetic, and Photosensitive Liquid Crystalline Nanocomposites Based on Multifunctional Nanoparticles and Achiral Liquid Crystals. ACS Nano. 2022;16(8):11833–11841. doi: 10.1021/acsnano.1c10594. PubMed DOI
Zák T., Jirásková Y.. CONFIT: Mossbauer spectra fitting program. Surf. Interface Anal. 2006;38(4):710–714. doi: 10.1002/sia.2285. DOI
Klencsár Z.. MossWinn-methodological advances in the field of Mossbauer data analysis. Hyperfine Interact. 2013;217(1–3):117–126. doi: 10.1007/s10751-012-0732-2. DOI
Rodríguez-Carvajal J.. Recent Developments of the Program FULLPROF, in Commission on Powder Diffraction (IUCr) Newsletter. 2001;26:12–19.
Duša M., Franke J., Šefc L., Herynek V.. VOMMPI - a tool for merging of MPI multi-patch data. Int. J. Magn. Part. Image. 2023;9(1):2303079. doi: 10.18416/IJMPI.2023.2303079. DOI
Kuba M., Gallo J., Pluhácek T., Hobza M., Milde D.. Content of distinct metals in periprosthetic tissues and pseudosynovial joint fluid in patients with total joint arthroplasty. J. Biomed Mater. Res. B. 2019;107(2):454–462. doi: 10.1002/jbm.b.34137. PubMed DOI
Pollert E., Knizek K., Marysko M., Záveta K., Lancok A., Bohácek J., Horák D., Babic M.. Magnetic poly(glycidyl methacrylate) microspheres containing maghemite prepared by emulsion polymerization. J. Magn Magn Mater. 2006;306(2):241–247. doi: 10.1016/j.jmmm.2006.03.069. DOI
Babic M., Horak D., Trchova M., Jendelova P., Glogarova K., Lesny P., Herynek V., Hajek M., Sykova E.. Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem. 2008;19(3):740–750. doi: 10.1021/bc700410z. PubMed DOI
Horák D., Babic M., Jendelová P., Herynek V., Trchová M., Pientka Z., Pollert E., Hájek M., Syková E.. D-Mannose-modified iron oxide nanoparticles for stem cell labeling. Bioconjugate Chem. 2007;18(3):635–644. doi: 10.1021/bc060186c. PubMed DOI
Tronc E., Prene P., Jolivet J. P., Dormann J. L., Greneche J. M.. Spin canting in γ-Fe-2O3 nanoparticles. Hyperfine Interact. 1998;112(1–4):97–100. doi: 10.1023/A:1011092712136. DOI
Veverka P., Pashchenko M., Kubícková L., Kulicková J., Jirák Z., Havelek R., Královec K., Kohout J., Kaman O.. Rod-like particles of silica-coated maghemite: Synthesis via akaganeite, characterization and biological properties. J. Magn Magn Mater. 2019;476:149–156. doi: 10.1016/j.jmmm.2018.12.037. DOI
Kubániová D., Kubíčková L., Kmječ T., Závěta K., Nižňanský D., Brázda P., Klementová M., Kohout J.. Hematite: Morin temperature of nanoparticles with different size. J. Magn Magn Mater. 2019;475:611–619. doi: 10.1016/j.jmmm.2018.11.126. DOI
Schwaminger S. P., Bauer D., Fraga-García P., Wagner F. E., Berensmeier S.. Oxidation of magnetite nanoparticles: impact on surface and crystal properties. CrystEngComm. 2017;19(2):246–255. doi: 10.1039/C6CE02421A. DOI
Kubícková L., Koktan J., Korínková T., Klementová M., Kmjec T., Kohout J., Weidenkaff A., Kaman O.. Zn-substituted iron oxide nanoparticles from thermal decomposition and their thermally treated derivatives for magnetic solid-phase extraction. J. Magn Magn Mater. 2020;498(3):166083. doi: 10.1016/j.jmmm.2019.166083. DOI
Pollard R. J., Cardile C. M., Lewis D. G., Brown L. J.. Characterization of Feooh Polymorphs and Ferrihydrite Using Low-Temperature, Applied-Field. Mossbauer-Spectroscopy. Clay Miner. 1992;27(1):57–71. doi: 10.1180/claymin.1992.027.1.06. DOI
Chkoundali S., Ammar S., Jouini N., Fiévet F., Molinié P., Danot M., Villain F., Grenèche J. M.. Nickel ferrite nanoparticles: elaboration in polyol medium via hydrolysis, and magnetic properties. J. Phys-Condens Mat. 2004;16(24):4357–4372. doi: 10.1088/0953-8984/16/24/017. DOI
Nejati K., Zabihi R.. Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method. Chem. Cent. J. 2012;6:23. doi: 10.1186/1752-153X-6-23. PubMed DOI PMC
Nathani H., Misra R. D. K.. Surface effects on the magnetic behavior of nanocrystalline nickel ferrites and nickel ferrite-polymer nanocomposites. Mat Sci. Eng. B-Solid. 2004;113(3):228–235. doi: 10.1016/S0921-5107(04)00427-1. DOI
Urquizo I. A. F., García T. C. H., Loredo S. L., Galindo J. T. E., Casillas P. E. G., Barron J. C. S., González C. C.. Effect of Aminosilane Nanoparticle Coating on Structural and Magnetic Properties and Cell Viability in Human Cancer Cell Lines. Part. Part. Syst. Charact. 2022;39(10):2200106. doi: 10.1002/ppsc.202200106. DOI
Priyadharshini P., Shobika P. A., Monisha P., Gomathi S. S., Pushpanathan K.. Nickel ferrite magnetic nanoparticles: evidence for superparamagnetism in smaller size particles. J. Aust Ceram Soc. 2022;58(5):1455–1480. doi: 10.1007/s41779-022-00784-5. DOI
Sivakumar P., Ramesh R., Ramanand A., Ponnusamy S., Muthamizhchelvan C.. Synthesis and characterization of nickel ferrite magnetic nanoparticles. Mater. Res. Bull. 2011;46(12):2208–2211. doi: 10.1016/j.materresbull.2011.09.009. DOI
Gandhi S. N., Brown M. A., Wong J. G., Aguirre D. A., Sirlin C. B.. MR contrast agents for liver imaging: what, when, how. Radiographics. 2006;26(6):1621–1636. doi: 10.1148/rg.266065014. PubMed DOI
Ferrucci J. T., Stark D. D.. Iron oxide-enhanced MR imaging of the liver and spleen: review of the first 5 years. AJR Am. J. Roentgenol. 1990;155(5):943–950. doi: 10.2214/ajr.155.5.2120963. PubMed DOI
Charvatova H., Plichta Z., Hromadkova J., Herynek V., Babic M.. Hydrophilic Copolymers with Hydroxamic Acid Groups as a Protective Biocompatible Coating of Maghemite Nanoparticles: Synthesis, Physico-Chemical Characterization and MRI Biodistribution Study. Pharmaceutics. 2023;15(7):1982. doi: 10.3390/pharmaceutics15071982. PubMed DOI PMC
Nair A. B., Jacob S.. A simple practice guide for dose conversion between animals and human. J. Basic Clin Pharm. 2016;7(2):27–31. doi: 10.4103/0976-0105.177703. PubMed DOI PMC
Ahlborg M., Kaethner C., Knopp T., Szwargulski P., Buzug T. M.. Using data redundancy gained by patch overlaps to reduce truncation artifacts in magnetic particle imaging. Phys. Med. Biol. 2016;61(12):4583–4598. doi: 10.1088/0031-9155/61/12/4583. PubMed DOI
Grüttner M., Sattel T. F., Graeser M., Wojtczyk H., Bringout G., Tenner W., Buzug T. M.. Enlarging the Field of View in Magnetic Particle Imaging - A Comparison. Springer Proc. Phys. 2012;140:249–253. doi: 10.1007/978-3-642-24133-8_40. DOI
Zdun L., Boberg M., Brandt C.. Fast and artifact reducing joint multi-patch MPI reconstruction. Int. J. Magn. Part. Image. 2022;8(1):2203042. doi: 10.18416/IJMPI.2022.2203042. DOI
Oleksa V., Macková H., Engstová H., Patsula V., Shapoval O., Velychkivska N., Jezek P., Horák D.. Poly(N,N-dimethylacrylamide)-coated upconverting NaYF4:Yb,Er@NaYF4:Nd core-shell nanoparticles for fluorescent labeling of carcinoma cells. Sci. Rep. 2021;11(1):21373. doi: 10.1038/s41598-021-00845-y. PubMed DOI PMC
Algi M. P., Okay O.. Highly stretchable self-healing poly(N, N-dimethylacrylamide) hydrogels. Eur. Polym. J. 2014;59:113–121. doi: 10.1016/j.eurpolymj.2014.07.022. DOI
Perasoli F. B., Silva L. S., Figueiredo B., Pinto I. C., Amaro L. J., Bastos J. C. A., Carneiro S. P., Araujo V. P., Beato F. R., Barboza A. P., Teixeira L. F., Gallagher M. P., Bradley M., Venkateswaran S., dos Santos O. D. H.. Poly(methylmethacrylate-co-dimethyl acrylamide)-silver nanocomposite prevents biofilm formation in medical devices. Nanomedicine. 2024;19(14):1285–1296. doi: 10.1080/17435889.2024.2345044. PubMed DOI PMC