Toxicity of Large and Small Surface-Engineered Upconverting Nanoparticles for In Vitro and In Vivo Bioapplications

. 2024 May 13 ; 25 (10) : . [epub] 20240513

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38791332

Grantová podpora
OPJAK CZ.02.01.01/00/22_008/0004562 Ministry of sports and education
No. 21-04420S Czech Science Foundation

In this study, spherical or hexagonal NaYF4:Yb,Er nanoparticles (UCNPs) with sizes of 25 nm (S-UCNPs) and 120 nm (L-UCNPs) were synthesized by high-temperature coprecipitation and subsequently modified with three kinds of polymers. These included poly(ethylene glycol) (PEG) and poly(N,N-dimethylacrylamide-co-2-aminoethylacrylamide) [P(DMA-AEA)] terminated with an alendronate anchoring group, and poly(methyl vinyl ether-co-maleic acid) (PMVEMA). The internalization of nanoparticles by rat mesenchymal stem cells (rMSCs) and C6 cancer cells (rat glial tumor cell line) was visualized by electron microscopy and the cytotoxicity of the UCNPs and their leaches was measured by the real-time proliferation assay. The comet assay was used to determine the oxidative damage of the UCNPs. An in vivo study on mice determined the elimination route and potential accumulation of UCNPs in the body. The results showed that the L- and S-UCNPs were internalized into cells in the lumen of endosomes. The proliferation assay revealed that the L-UCNPs were less toxic than S-UCNPs. The viability of rMSCs incubated with particles decreased in the order S-UCNP@Ale-(PDMA-AEA) > S-UCNP@Ale-PEG > S-UCNPs > S-UCNP@PMVEMA. Similar results were obtained in C6 cells. The oxidative damage measured by the comet assay showed that neat L-UCNPs caused more oxidative damage to rMSCs than all coated UCNPs while no difference was observed in C6 cells. An in vivo study indicated that L-UCNPs were eliminated from the body via the hepatobiliary route; L-UCNP@Ale-PEG particles were almost eliminated from the liver 96 h after intravenous application. Pilot fluorescence imaging confirmed the limited in vivo detection capabilities of the nanoparticles.

Zobrazit více v PubMed

Park C.W., Park D.J. Development of Er3+, Yb3+ Co-Doped Y2O3 NPs According to Yb3+ Concentration by LP-PLA Method: Potential Further Biosensor. Biosensors. 2021;11:150. doi: 10.3390/bios11050150. PubMed DOI PMC

Loo J.F.C., Chien Y.H., Yin F., Kong S.K., Ho H.P., Yong K.T. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coordin. Chem. Rev. 2019;400:213042. doi: 10.1016/J.Ccr.2019.213042. DOI

Auzel F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004;104:139–173. doi: 10.1021/cr020357g. PubMed DOI

Qin X., Xu J.H., Wu Y.M., Liu X.G. Energy-Transfer Editing in Lanthanide-Activated Upconversion Nanocrystals: A Toolbox for Emerging Applications. ACS Cent. Sci. 2019;5:29–42. doi: 10.1021/acscentsci.8b00827. PubMed DOI PMC

All A.H., Zeng X., Teh D.B.L., Yi Z.G., Prasad A., Ishizuka T., Thakor N., Hiromu Y., Liu X.G. Expanding the Toolbox of Upconversion Nanoparticles for In Vivo Optogenetics and Neuromodulation. Adv. Mater. 2019;31:1803474. doi: 10.1002/Adma.201803474. PubMed DOI

Chen G.Y., Qju H.L., Prasad P.N., Chen X.Y. Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chem. Rev. 2014;114:5161–5214. doi: 10.1021/cr400425h. PubMed DOI PMC

Zhang Z.M., Shikha S., Liu J.L., Zhang J., Mei Q.S., Zhang Y. Upconversion Nanoprobes: Recent Advances in Sensing Applications. Anal. Chem. 2019;91:548–568. doi: 10.1021/acs.analchem.8b04049. PubMed DOI

Duan C.C., Liang L.E., Li L., Zhang R., Xu Z.P. Recent progress in upconversion luminescence nanomaterials for biomedical applications. J. Mater. Chem. B. 2018;6:192–209. doi: 10.1039/c7tb02527k. PubMed DOI

Maynard A.D., Warheit D.B., Philbert M.A. The New Toxicology of Sophisticated Materials: Nanotoxicology and Beyond. Toxicol. Sci. 2011;120:S109–S129. doi: 10.1093/toxsci/kfq372. PubMed DOI PMC

Nampi P.P., Vakurov A., Saha S., Jose G., Millner P.A. Surface modified hexagonal upconversion nanoparticles for the development of competitive assay for biodetection. Biomater. Adv. 2022;136:212763. doi: 10.1016/J.Bioadv.2022.212763. PubMed DOI

Lahtinen S., Lyytikäinen A., Päkkilä H., Hömppi E., Perälä N., Lastusaari M., Soukka T. Disintegration of Hexagonal NaYF4:Yb3+,Er3+ Upconverting Nanoparticles in Aqueous Media: The Role of Fluoride in Solubility Equilibrium. J. Phys. Chem. C. 2017;121:656–665. doi: 10.1021/acs.jpcc.6b09301. DOI

Lisjak D., Plohl O., Ponikvar-Svet M., Majaron B. Dissolution of upconverting fluoride nanoparticles in aqueous suspensions. RSC Adv. 2015;5:27393–27397. doi: 10.1039/c5ra00902b. DOI

Lisjak D., Plohl O., Vidmar J., Majaron B., Ponikvar-Svet M. Dissolution Mechanism of Upconverting AYF:Yb,Tm (A = Na or K) Nanoparticles in Aqueous Media. Langmuir. 2016;32:8222–8229. doi: 10.1021/acs.langmuir.6b02675. PubMed DOI

Plohl O., Kralj S., Majaron B., Fröhlich E., Ponikvar-Svet M., Makovec D., Lisjak D. Amphiphilic coatings for the protection of upconverting nanoparticles against dissolution in aqueous media. Dalton Trans. 2017;46:6975–6984. doi: 10.1039/c7dt00529f. PubMed DOI

Dukhno O., Przybilla F., Muhr V., Buchner M., Hirsch T., Mély Y. Time-dependent luminescence loss for individual upconversion nanoparticles upon dilution in aqueous solution. Nanoscale. 2018;10:15904–15910. doi: 10.1039/c8nr03892a. PubMed DOI

Ding Y.C., Tian Y.T., Zeng Z.Y., Shuai P., Lan H.Y., Zhu X.S., Zhong Y., Wu L.H., Fan X.N. YCl3 Promotes Neuronal Cell Death by Inducing Apoptotic Pathways in Rats. BioMed Res. Int. 2017;2017:2183658. doi: 10.1155/2017/2183658. PubMed DOI PMC

Qian H.S., Zhang Y. Synthesis of Hexagonal-Phase Core-Shell NaYF4 Nanocrystals with Tunable Upconversion Fluorescence. Langmuir. 2008;24:12123–12125. doi: 10.1021/la802343f. PubMed DOI

Boyer J.C., Cuccia L.A., Capobianco J.A. Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 2007;7:847–852. doi: 10.1021/nl070235+. PubMed DOI

Zhang F., Wan Y., Yu T., Zhang F.Q., Shi Y.F., Xie S.H., Li Y.G., Xu L., Tu B., Zhao D.Y. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew. Chem. Int. Ed. 2007;46:7976–7979. doi: 10.1002/anie.200702519. PubMed DOI

Wang H.Q., Tilley R.D., Nann T. Size and shape evolution of upconverting nanoparticles using microwave assisted synthesis. Crystengcomm. 2010;12:1993–1996. doi: 10.1039/b927225a. DOI

Shan S.N., Wang X.Y., Jia N.Q. Synthesis of NaYF4:Yb3+, Er3+ upconversion nanoparticles in normal microemulsions. Nanoscale Res. Lett. 2011;6:539. doi: 10.1186/1556-276x-6-539. PubMed DOI PMC

Chen G.Y., Ohulchanskyy T.Y., Liu S., Law W.C., Wu F., Swihart M.T., Ågren H., Prasad P.N. Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano. 2012;6:2969–2977. doi: 10.1021/nn2042362. PubMed DOI PMC

Bastos V., Oskoei P., Andresen E., Saleh M.I., Rühle B., Resch-Genger U., Oliveira H. Stability, dissolution, and cytotoxicity of NaYF4-upconversion nanoparticles with different coatings. Sci. Rep. 2022;12:3770. doi: 10.1038/S41598-022-07630-5. PubMed DOI PMC

Wang X.T., Yang Y.B., Liu C., Guo H.L., Chen Z.F., Xia J.Y., Liao Y.G., Tang C.Y., Law W.C. Photo- and pH-responsive drug delivery nanocomposite based on -nitrobenzyl functionalized upconversion nanoparticles. Polymer. 2021;229:123961. doi: 10.1016/j.polymer.2021.123961. DOI

Sun L.N., Wei R.Y., Feng J., Zhang H.J. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coordin. Chem. Rev. 2018;364:10–32. doi: 10.1016/j.ccr.2018.03.007. DOI

Andresen E., Resch-Genger U., Schäferling M. Surface Modifications for Photon-Upconversion-Based Energy-Transfer Nanoprobes. Langmuir. 2019;35:5093–5113. doi: 10.1021/acs.langmuir.9b00238. PubMed DOI

Zhang X.Y., Guo Z., Zhang X., Gong L.J., Dong X.H., Fu Y.Y., Wang Q., Gu Z.J. Mass production of poly(ethylene glycol) monooleate-modified core-shell structured upconversion nanoparticles for bio-imaging and photodynamic therapy. Sci. Rep. 2019;9:5212. doi: 10.1038/S41598-019-41482-W. PubMed DOI PMC

Cui S.S., Chen H.Y., Zhu H.Y., Tian J.M., Chi X.M., Qian Z.Y., Achilefu S., Gu Y.Q. Amphiphilic chitosan modified upconversion nanoparticles for photodynamic therapy induced by near-infrared light. J. Mater. Chem. 2012;22:4861–4873. doi: 10.1039/c2jm16112e. DOI

Xue Z.L., Zeng S.J., Hao J.H. Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-II emissive lanthanide nanoprobes beyond 1500 nm. Biomaterials. 2018;171:153–163. doi: 10.1016/j.biomaterials.2018.04.037. PubMed DOI

Näreoja T., Deguchi T., Christ S., Peltomaa R., Prabhakar N., Fazeli E., Perälä N., Rosenholm J.M., Arppe R., Soukka T., et al. Ratiometric Sensing and Imaging of Intracellular pH Using Polyethylenimine-Coated Photon Upconversion Nanoprobes. Anal. Chem. 2017;89:1501–1508. doi: 10.1021/acs.analchem.6b03223. PubMed DOI

Johnson N.J.J., Sangeetha N.M., Boyer J.C., van Veggel F.C.J.M. Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4:Yb3+/Er3+ nanoparticles. Nanoscale. 2010;2:771–777. doi: 10.1039/b9nr00379g. PubMed DOI

Zhao J.W., Yang H., Li J.L., Wang Y.J., Wang X. Fabrication of pH-responsive PLGA(UCNPs/DOX) nanocapsules with upconversion luminescence for drug delivery. Sci. Rep. 2017;7:18014. doi: 10.1038/S41598-017-16948-4. PubMed DOI PMC

Wilhelm S., Kaiser M., Würth C., Heiland J., Carrillo-Carrion C., Muhr V., Wolfbeis O.S., Parak W.J., Resch-Genger U., Hirsch T. Water dispersible upconverting nanoparticles: Effects of surface modification on their luminescence and colloidal stability. Nanoscale. 2015;7:1403–1410. doi: 10.1039/c4nr05954a. PubMed DOI

Duong H.T.T., Chen Y.H., Tawfik S.A., Wen S.H., Parviz M., Shimoni O., Jin D.Y. Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles. RSC Adv. 2018;8:4842–4849. doi: 10.1039/c7ra13765f. PubMed DOI PMC

Sedlmeier A., Gorris H.H. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem. Soc. Rev. 2015;44:1526–1560. doi: 10.1039/c4cs00186a. PubMed DOI

Kumar V., Sharma N., Maitra S.S. In vitro and in vivo toxicity assessment of nanoparticles. Int. Nano Lett. 2017;7:243–256. doi: 10.1007/s40089-017-0221-3. DOI

Fadeel B., Garcia-Bennett A.E. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 2010;62:362–374. doi: 10.1016/j.addr.2009.11.008. PubMed DOI

Iversen T.G., Skotland T., Sandvig K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today. 2011;6:176–185. doi: 10.1016/j.nantod.2011.02.003. DOI

Nahorniak M., Oleksa V., Vasylyshyn T., Pop-Georgievski O., Rydvalová E., Filipová M., Horák D. Cytotoxicity Evaluation of Photosensitizer-Conjugated Hexagonal Upconverting Nanoparticles. Nanomaterials. 2023;13:1535. doi: 10.3390/nano13091535. PubMed DOI PMC

Nahorniak M., Patsula V., Mareková D., Matous P., Shapoval O., Oleksa V., Vosmanská M., Urdziková L.M., Jendelová P., Herynek V., et al. Chemical and Colloidal Stability of Polymer-Coated NaYF4:Yb,Er Nanoparticles in Aqueous Media and Viability of Cells: The Effect of a Protective Coating. Int. J. Mol. Sci. 2023;24:2724. doi: 10.3390/Ijms24032724. PubMed DOI PMC

Patsula V., Mareková D., Jendelová P., Nahorniak M., Shapoval O., Matous P., Oleksa V., Konefal R., Vosmanská M., Machová-Urdziková L., et al. Polymer-coated hexagonal upconverting nanoparticles: Chemical stability and cytotoxicity. Front. Chem. 2023;11:1207984. doi: 10.3389/Fchem.2023.1207984. PubMed DOI PMC

Lowe S., O’Brien-Simpson N.M., Connal L.A. Antibiofouling polymer interfaces: Poly(ethylene glycol) and other promising candidates. Polym. Chem. 2015;6:198–212. doi: 10.1039/c4py01356e. DOI

Oleksa V., Macková H., Engstová H., Patsula V., Shapoval O., Velychkivska N., Jezek P., Horák D. Poly(N,N-dimethylacrylamide)-coated upconverting NaYF4:Yb,Er@NaYF4:Nd core-shell nanoparticles for fluorescent labeling of carcinoma cells. Sci. Rep. 2021;11:21373. doi: 10.1038/s41598-021-00845-y. PubMed DOI PMC

Andresen E., Würth C., Prinz C., Michaelis M., Resch-Genger U. Time-resolved luminescence spectroscopy for monitoring the stability and dissolution behaviour of upconverting nanocrystals with different surface coatings. Nanoscale. 2020;12:12589–12601. doi: 10.1039/d0nr02931a. PubMed DOI

Saleh M.I., Rühle B., Wang S., Radnik J., You Y., Resch-Genger U. Assessing the protective effects of different surface coatings on NaYF4:Yb3+, Er3+ upconverting nanoparticles in buffer and DMEM. Sci. Rep. 2020;10:19318. doi: 10.1038/s41598-020-76116-z. PubMed DOI PMC

Jin J.F., Gu Y.J., Man C.W.Y., Cheng J.P., Xu Z.H., Zhang Y., Wang H.S., Lee V.H.Y., Cheng S.H., Wong W.T. Polymer-Coated NaYF4:Yb3+, Er3+ Upconversion Nanoparticles for Charge-Dependent Cellular Imaging. ACS Nano. 2011;5:7838–7847. doi: 10.1021/nn201896m. PubMed DOI

Zhang D., Wei L., Zhong M.L., Xiao L.H., Li H.W., Wang J.F. The morphology and surface charge-dependent cellular uptake efficiency of upconversion nanostructures revealed by single-particle optical microscopy. Chem. Sci. 2018;9:5260. doi: 10.1039/d2sc90037h. Correction in Chem. Sci. 2022, 13, 3610. PubMed DOI PMC

Zhang Z., Rahmat J.N., Mahendran R., Zhang Y. Controllable Assembly of Upconversion Nanoparticles Enhanced Tumor Cell Penetration and Killing Efficiency. Adv. Sci. 2020;7:2001831. doi: 10.1002/advs.202001831. PubMed DOI PMC

Jalil R.A., Zhang Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials. 2008;29:4122–4128. doi: 10.1016/j.biomaterials.2008.07.012. PubMed DOI

Chatteriee D.K., Rufalhah A.J., Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials. 2008;29:937–943. doi: 10.1016/j.biomaterials.2007.10.051. PubMed DOI

Das G.K., Stark D.T., Kennedy I.M. Potential Toxicity of Up-Converting Nanoparticles Encapsulated with a Bilayer Formed by Ligand Attraction. Langmuir. 2014;30:8167–8176. doi: 10.1021/la501595f. PubMed DOI PMC

Malvindi M.A., De Matteis V., Galeone A., Brunetti V., Anyfantis G.C., Athanassiou A., Cingolani R., Pompa P.P. Toxicity Assessment of Silica Coated Iron Oxide Nanoparticles and Biocompatibility Improvement by Surface Engineering. PLoS ONE. 2014;9:e85835. doi: 10.1371/journal.pone.0085835. PubMed DOI PMC

Meindl C., Kueznik T., Bösch M., Roblegg E., Fröhlich E. Intracellular calcium levels as screening tool for nanoparticle toxicity. J. Appl. Toxicol. 2015;35:1150–1159. doi: 10.1002/jat.3160. PubMed DOI PMC

Jagannathan L., Cuddapah S., Costa M. Oxidative stress under ambient and physiological oxygen tension in tissue culture. Curr. Pharmacol. Rep. 2016;2:64–72. doi: 10.1007/s40495-016-0050-5. PubMed DOI PMC

Poon W., Zhang Y.N., Ouyang B., Kingston B.R., Wu J.L.Y., Wilhelm S., Chan W.C.W. Elimination Pathways of Nanoparticles. ACS Nano. 2019;13:5785–5798. doi: 10.1021/acsnano.9b01383. PubMed DOI

Zhang X.W., Wang H., Ma Z.G., Wu B.J. Effects of pharmaceutical PEGylation on drug metabolism and its clinical concerns. Expert. Opin. Drug Met. 2014;10:1691–1702. doi: 10.1517/17425255.2014.967679. PubMed DOI

Zhou M.Z., Ge X.Q., Ke D.M., Tang H., Zhang J.Z., Calvaresi M., Gao B., Sun L.N., Su Q.Q., Wang H.F. The Bioavailability, Biodistribution, and Toxic Effects of Silica-Coated Upconversion Nanoparticles. Front. Chem. 2019;7:218. doi: 10.3389/fchem.2019.00218. PubMed DOI PMC

Jendelova P., Herynek V., DeCroos J., Glogarova K., Andersson B., Hajek M., Sykova E. Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn. Reson. Med. 2003;50:767–776. doi: 10.1002/mrm.10585. PubMed DOI

Novotna B., Pelclova D., Rossnerova A., Zdimal V., Ondracek J., Lischkova L., Vlckova S., Fenclova Z., Klusackova P., Zavodna T., et al. The genotoxic effects in the leukocytes of workers handling nanocomposite materials. Mutagenesis. 2020;35:331–340. doi: 10.1093/mutage/geaa016. PubMed DOI

Novotna B., Topinka J., Solansky I., Chvatalova I., Lnenickova Z., Sram R.J. Impact of air pollution and genotype variability on DNA damage in Prague policemen. Toxicol. Lett. 2007;172:37–47. doi: 10.1016/j.toxlet.2007.05.013. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...