Toxicity of Large and Small Surface-Engineered Upconverting Nanoparticles for In Vitro and In Vivo Bioapplications
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
OPJAK CZ.02.01.01/00/22_008/0004562
Ministry of sports and education
No. 21-04420S
Czech Science Foundation
PubMed
38791332
PubMed Central
PMC11121289
DOI
10.3390/ijms25105294
PII: ijms25105294
Knihovny.cz E-zdroje
- Klíčová slova
- biological applications, toxicity, upconverting nanoparticles,
- MeSH
- krysa rodu Rattus MeSH
- mezenchymální kmenové buňky * metabolismus účinky léků cytologie MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nanočástice chemie MeSH
- oxidační stres účinky léků MeSH
- polyethylenglykoly chemie MeSH
- velikost částic MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- polyethylenglykoly MeSH
In this study, spherical or hexagonal NaYF4:Yb,Er nanoparticles (UCNPs) with sizes of 25 nm (S-UCNPs) and 120 nm (L-UCNPs) were synthesized by high-temperature coprecipitation and subsequently modified with three kinds of polymers. These included poly(ethylene glycol) (PEG) and poly(N,N-dimethylacrylamide-co-2-aminoethylacrylamide) [P(DMA-AEA)] terminated with an alendronate anchoring group, and poly(methyl vinyl ether-co-maleic acid) (PMVEMA). The internalization of nanoparticles by rat mesenchymal stem cells (rMSCs) and C6 cancer cells (rat glial tumor cell line) was visualized by electron microscopy and the cytotoxicity of the UCNPs and their leaches was measured by the real-time proliferation assay. The comet assay was used to determine the oxidative damage of the UCNPs. An in vivo study on mice determined the elimination route and potential accumulation of UCNPs in the body. The results showed that the L- and S-UCNPs were internalized into cells in the lumen of endosomes. The proliferation assay revealed that the L-UCNPs were less toxic than S-UCNPs. The viability of rMSCs incubated with particles decreased in the order S-UCNP@Ale-(PDMA-AEA) > S-UCNP@Ale-PEG > S-UCNPs > S-UCNP@PMVEMA. Similar results were obtained in C6 cells. The oxidative damage measured by the comet assay showed that neat L-UCNPs caused more oxidative damage to rMSCs than all coated UCNPs while no difference was observed in C6 cells. An in vivo study indicated that L-UCNPs were eliminated from the body via the hepatobiliary route; L-UCNP@Ale-PEG particles were almost eliminated from the liver 96 h after intravenous application. Pilot fluorescence imaging confirmed the limited in vivo detection capabilities of the nanoparticles.
Zobrazit více v PubMed
Park C.W., Park D.J. Development of Er3+, Yb3+ Co-Doped Y2O3 NPs According to Yb3+ Concentration by LP-PLA Method: Potential Further Biosensor. Biosensors. 2021;11:150. doi: 10.3390/bios11050150. PubMed DOI PMC
Loo J.F.C., Chien Y.H., Yin F., Kong S.K., Ho H.P., Yong K.T. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coordin. Chem. Rev. 2019;400:213042. doi: 10.1016/J.Ccr.2019.213042. DOI
Auzel F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004;104:139–173. doi: 10.1021/cr020357g. PubMed DOI
Qin X., Xu J.H., Wu Y.M., Liu X.G. Energy-Transfer Editing in Lanthanide-Activated Upconversion Nanocrystals: A Toolbox for Emerging Applications. ACS Cent. Sci. 2019;5:29–42. doi: 10.1021/acscentsci.8b00827. PubMed DOI PMC
All A.H., Zeng X., Teh D.B.L., Yi Z.G., Prasad A., Ishizuka T., Thakor N., Hiromu Y., Liu X.G. Expanding the Toolbox of Upconversion Nanoparticles for In Vivo Optogenetics and Neuromodulation. Adv. Mater. 2019;31:1803474. doi: 10.1002/Adma.201803474. PubMed DOI
Chen G.Y., Qju H.L., Prasad P.N., Chen X.Y. Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chem. Rev. 2014;114:5161–5214. doi: 10.1021/cr400425h. PubMed DOI PMC
Zhang Z.M., Shikha S., Liu J.L., Zhang J., Mei Q.S., Zhang Y. Upconversion Nanoprobes: Recent Advances in Sensing Applications. Anal. Chem. 2019;91:548–568. doi: 10.1021/acs.analchem.8b04049. PubMed DOI
Duan C.C., Liang L.E., Li L., Zhang R., Xu Z.P. Recent progress in upconversion luminescence nanomaterials for biomedical applications. J. Mater. Chem. B. 2018;6:192–209. doi: 10.1039/c7tb02527k. PubMed DOI
Maynard A.D., Warheit D.B., Philbert M.A. The New Toxicology of Sophisticated Materials: Nanotoxicology and Beyond. Toxicol. Sci. 2011;120:S109–S129. doi: 10.1093/toxsci/kfq372. PubMed DOI PMC
Nampi P.P., Vakurov A., Saha S., Jose G., Millner P.A. Surface modified hexagonal upconversion nanoparticles for the development of competitive assay for biodetection. Biomater. Adv. 2022;136:212763. doi: 10.1016/J.Bioadv.2022.212763. PubMed DOI
Lahtinen S., Lyytikäinen A., Päkkilä H., Hömppi E., Perälä N., Lastusaari M., Soukka T. Disintegration of Hexagonal NaYF4:Yb3+,Er3+ Upconverting Nanoparticles in Aqueous Media: The Role of Fluoride in Solubility Equilibrium. J. Phys. Chem. C. 2017;121:656–665. doi: 10.1021/acs.jpcc.6b09301. DOI
Lisjak D., Plohl O., Ponikvar-Svet M., Majaron B. Dissolution of upconverting fluoride nanoparticles in aqueous suspensions. RSC Adv. 2015;5:27393–27397. doi: 10.1039/c5ra00902b. DOI
Lisjak D., Plohl O., Vidmar J., Majaron B., Ponikvar-Svet M. Dissolution Mechanism of Upconverting AYF:Yb,Tm (A = Na or K) Nanoparticles in Aqueous Media. Langmuir. 2016;32:8222–8229. doi: 10.1021/acs.langmuir.6b02675. PubMed DOI
Plohl O., Kralj S., Majaron B., Fröhlich E., Ponikvar-Svet M., Makovec D., Lisjak D. Amphiphilic coatings for the protection of upconverting nanoparticles against dissolution in aqueous media. Dalton Trans. 2017;46:6975–6984. doi: 10.1039/c7dt00529f. PubMed DOI
Dukhno O., Przybilla F., Muhr V., Buchner M., Hirsch T., Mély Y. Time-dependent luminescence loss for individual upconversion nanoparticles upon dilution in aqueous solution. Nanoscale. 2018;10:15904–15910. doi: 10.1039/c8nr03892a. PubMed DOI
Ding Y.C., Tian Y.T., Zeng Z.Y., Shuai P., Lan H.Y., Zhu X.S., Zhong Y., Wu L.H., Fan X.N. YCl3 Promotes Neuronal Cell Death by Inducing Apoptotic Pathways in Rats. BioMed Res. Int. 2017;2017:2183658. doi: 10.1155/2017/2183658. PubMed DOI PMC
Qian H.S., Zhang Y. Synthesis of Hexagonal-Phase Core-Shell NaYF4 Nanocrystals with Tunable Upconversion Fluorescence. Langmuir. 2008;24:12123–12125. doi: 10.1021/la802343f. PubMed DOI
Boyer J.C., Cuccia L.A., Capobianco J.A. Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 2007;7:847–852. doi: 10.1021/nl070235+. PubMed DOI
Zhang F., Wan Y., Yu T., Zhang F.Q., Shi Y.F., Xie S.H., Li Y.G., Xu L., Tu B., Zhao D.Y. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew. Chem. Int. Ed. 2007;46:7976–7979. doi: 10.1002/anie.200702519. PubMed DOI
Wang H.Q., Tilley R.D., Nann T. Size and shape evolution of upconverting nanoparticles using microwave assisted synthesis. Crystengcomm. 2010;12:1993–1996. doi: 10.1039/b927225a. DOI
Shan S.N., Wang X.Y., Jia N.Q. Synthesis of NaYF4:Yb3+, Er3+ upconversion nanoparticles in normal microemulsions. Nanoscale Res. Lett. 2011;6:539. doi: 10.1186/1556-276x-6-539. PubMed DOI PMC
Chen G.Y., Ohulchanskyy T.Y., Liu S., Law W.C., Wu F., Swihart M.T., Ågren H., Prasad P.N. Core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano. 2012;6:2969–2977. doi: 10.1021/nn2042362. PubMed DOI PMC
Bastos V., Oskoei P., Andresen E., Saleh M.I., Rühle B., Resch-Genger U., Oliveira H. Stability, dissolution, and cytotoxicity of NaYF4-upconversion nanoparticles with different coatings. Sci. Rep. 2022;12:3770. doi: 10.1038/S41598-022-07630-5. PubMed DOI PMC
Wang X.T., Yang Y.B., Liu C., Guo H.L., Chen Z.F., Xia J.Y., Liao Y.G., Tang C.Y., Law W.C. Photo- and pH-responsive drug delivery nanocomposite based on -nitrobenzyl functionalized upconversion nanoparticles. Polymer. 2021;229:123961. doi: 10.1016/j.polymer.2021.123961. DOI
Sun L.N., Wei R.Y., Feng J., Zhang H.J. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coordin. Chem. Rev. 2018;364:10–32. doi: 10.1016/j.ccr.2018.03.007. DOI
Andresen E., Resch-Genger U., Schäferling M. Surface Modifications for Photon-Upconversion-Based Energy-Transfer Nanoprobes. Langmuir. 2019;35:5093–5113. doi: 10.1021/acs.langmuir.9b00238. PubMed DOI
Zhang X.Y., Guo Z., Zhang X., Gong L.J., Dong X.H., Fu Y.Y., Wang Q., Gu Z.J. Mass production of poly(ethylene glycol) monooleate-modified core-shell structured upconversion nanoparticles for bio-imaging and photodynamic therapy. Sci. Rep. 2019;9:5212. doi: 10.1038/S41598-019-41482-W. PubMed DOI PMC
Cui S.S., Chen H.Y., Zhu H.Y., Tian J.M., Chi X.M., Qian Z.Y., Achilefu S., Gu Y.Q. Amphiphilic chitosan modified upconversion nanoparticles for photodynamic therapy induced by near-infrared light. J. Mater. Chem. 2012;22:4861–4873. doi: 10.1039/c2jm16112e. DOI
Xue Z.L., Zeng S.J., Hao J.H. Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-II emissive lanthanide nanoprobes beyond 1500 nm. Biomaterials. 2018;171:153–163. doi: 10.1016/j.biomaterials.2018.04.037. PubMed DOI
Näreoja T., Deguchi T., Christ S., Peltomaa R., Prabhakar N., Fazeli E., Perälä N., Rosenholm J.M., Arppe R., Soukka T., et al. Ratiometric Sensing and Imaging of Intracellular pH Using Polyethylenimine-Coated Photon Upconversion Nanoprobes. Anal. Chem. 2017;89:1501–1508. doi: 10.1021/acs.analchem.6b03223. PubMed DOI
Johnson N.J.J., Sangeetha N.M., Boyer J.C., van Veggel F.C.J.M. Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4:Yb3+/Er3+ nanoparticles. Nanoscale. 2010;2:771–777. doi: 10.1039/b9nr00379g. PubMed DOI
Zhao J.W., Yang H., Li J.L., Wang Y.J., Wang X. Fabrication of pH-responsive PLGA(UCNPs/DOX) nanocapsules with upconversion luminescence for drug delivery. Sci. Rep. 2017;7:18014. doi: 10.1038/S41598-017-16948-4. PubMed DOI PMC
Wilhelm S., Kaiser M., Würth C., Heiland J., Carrillo-Carrion C., Muhr V., Wolfbeis O.S., Parak W.J., Resch-Genger U., Hirsch T. Water dispersible upconverting nanoparticles: Effects of surface modification on their luminescence and colloidal stability. Nanoscale. 2015;7:1403–1410. doi: 10.1039/c4nr05954a. PubMed DOI
Duong H.T.T., Chen Y.H., Tawfik S.A., Wen S.H., Parviz M., Shimoni O., Jin D.Y. Systematic investigation of functional ligands for colloidal stable upconversion nanoparticles. RSC Adv. 2018;8:4842–4849. doi: 10.1039/c7ra13765f. PubMed DOI PMC
Sedlmeier A., Gorris H.H. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem. Soc. Rev. 2015;44:1526–1560. doi: 10.1039/c4cs00186a. PubMed DOI
Kumar V., Sharma N., Maitra S.S. In vitro and in vivo toxicity assessment of nanoparticles. Int. Nano Lett. 2017;7:243–256. doi: 10.1007/s40089-017-0221-3. DOI
Fadeel B., Garcia-Bennett A.E. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 2010;62:362–374. doi: 10.1016/j.addr.2009.11.008. PubMed DOI
Iversen T.G., Skotland T., Sandvig K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today. 2011;6:176–185. doi: 10.1016/j.nantod.2011.02.003. DOI
Nahorniak M., Oleksa V., Vasylyshyn T., Pop-Georgievski O., Rydvalová E., Filipová M., Horák D. Cytotoxicity Evaluation of Photosensitizer-Conjugated Hexagonal Upconverting Nanoparticles. Nanomaterials. 2023;13:1535. doi: 10.3390/nano13091535. PubMed DOI PMC
Nahorniak M., Patsula V., Mareková D., Matous P., Shapoval O., Oleksa V., Vosmanská M., Urdziková L.M., Jendelová P., Herynek V., et al. Chemical and Colloidal Stability of Polymer-Coated NaYF4:Yb,Er Nanoparticles in Aqueous Media and Viability of Cells: The Effect of a Protective Coating. Int. J. Mol. Sci. 2023;24:2724. doi: 10.3390/Ijms24032724. PubMed DOI PMC
Patsula V., Mareková D., Jendelová P., Nahorniak M., Shapoval O., Matous P., Oleksa V., Konefal R., Vosmanská M., Machová-Urdziková L., et al. Polymer-coated hexagonal upconverting nanoparticles: Chemical stability and cytotoxicity. Front. Chem. 2023;11:1207984. doi: 10.3389/Fchem.2023.1207984. PubMed DOI PMC
Lowe S., O’Brien-Simpson N.M., Connal L.A. Antibiofouling polymer interfaces: Poly(ethylene glycol) and other promising candidates. Polym. Chem. 2015;6:198–212. doi: 10.1039/c4py01356e. DOI
Oleksa V., Macková H., Engstová H., Patsula V., Shapoval O., Velychkivska N., Jezek P., Horák D. Poly(N,N-dimethylacrylamide)-coated upconverting NaYF4:Yb,Er@NaYF4:Nd core-shell nanoparticles for fluorescent labeling of carcinoma cells. Sci. Rep. 2021;11:21373. doi: 10.1038/s41598-021-00845-y. PubMed DOI PMC
Andresen E., Würth C., Prinz C., Michaelis M., Resch-Genger U. Time-resolved luminescence spectroscopy for monitoring the stability and dissolution behaviour of upconverting nanocrystals with different surface coatings. Nanoscale. 2020;12:12589–12601. doi: 10.1039/d0nr02931a. PubMed DOI
Saleh M.I., Rühle B., Wang S., Radnik J., You Y., Resch-Genger U. Assessing the protective effects of different surface coatings on NaYF4:Yb3+, Er3+ upconverting nanoparticles in buffer and DMEM. Sci. Rep. 2020;10:19318. doi: 10.1038/s41598-020-76116-z. PubMed DOI PMC
Jin J.F., Gu Y.J., Man C.W.Y., Cheng J.P., Xu Z.H., Zhang Y., Wang H.S., Lee V.H.Y., Cheng S.H., Wong W.T. Polymer-Coated NaYF4:Yb3+, Er3+ Upconversion Nanoparticles for Charge-Dependent Cellular Imaging. ACS Nano. 2011;5:7838–7847. doi: 10.1021/nn201896m. PubMed DOI
Zhang D., Wei L., Zhong M.L., Xiao L.H., Li H.W., Wang J.F. The morphology and surface charge-dependent cellular uptake efficiency of upconversion nanostructures revealed by single-particle optical microscopy. Chem. Sci. 2018;9:5260. doi: 10.1039/d2sc90037h. Correction in Chem. Sci. 2022, 13, 3610. PubMed DOI PMC
Zhang Z., Rahmat J.N., Mahendran R., Zhang Y. Controllable Assembly of Upconversion Nanoparticles Enhanced Tumor Cell Penetration and Killing Efficiency. Adv. Sci. 2020;7:2001831. doi: 10.1002/advs.202001831. PubMed DOI PMC
Jalil R.A., Zhang Y. Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials. 2008;29:4122–4128. doi: 10.1016/j.biomaterials.2008.07.012. PubMed DOI
Chatteriee D.K., Rufalhah A.J., Zhang Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials. 2008;29:937–943. doi: 10.1016/j.biomaterials.2007.10.051. PubMed DOI
Das G.K., Stark D.T., Kennedy I.M. Potential Toxicity of Up-Converting Nanoparticles Encapsulated with a Bilayer Formed by Ligand Attraction. Langmuir. 2014;30:8167–8176. doi: 10.1021/la501595f. PubMed DOI PMC
Malvindi M.A., De Matteis V., Galeone A., Brunetti V., Anyfantis G.C., Athanassiou A., Cingolani R., Pompa P.P. Toxicity Assessment of Silica Coated Iron Oxide Nanoparticles and Biocompatibility Improvement by Surface Engineering. PLoS ONE. 2014;9:e85835. doi: 10.1371/journal.pone.0085835. PubMed DOI PMC
Meindl C., Kueznik T., Bösch M., Roblegg E., Fröhlich E. Intracellular calcium levels as screening tool for nanoparticle toxicity. J. Appl. Toxicol. 2015;35:1150–1159. doi: 10.1002/jat.3160. PubMed DOI PMC
Jagannathan L., Cuddapah S., Costa M. Oxidative stress under ambient and physiological oxygen tension in tissue culture. Curr. Pharmacol. Rep. 2016;2:64–72. doi: 10.1007/s40495-016-0050-5. PubMed DOI PMC
Poon W., Zhang Y.N., Ouyang B., Kingston B.R., Wu J.L.Y., Wilhelm S., Chan W.C.W. Elimination Pathways of Nanoparticles. ACS Nano. 2019;13:5785–5798. doi: 10.1021/acsnano.9b01383. PubMed DOI
Zhang X.W., Wang H., Ma Z.G., Wu B.J. Effects of pharmaceutical PEGylation on drug metabolism and its clinical concerns. Expert. Opin. Drug Met. 2014;10:1691–1702. doi: 10.1517/17425255.2014.967679. PubMed DOI
Zhou M.Z., Ge X.Q., Ke D.M., Tang H., Zhang J.Z., Calvaresi M., Gao B., Sun L.N., Su Q.Q., Wang H.F. The Bioavailability, Biodistribution, and Toxic Effects of Silica-Coated Upconversion Nanoparticles. Front. Chem. 2019;7:218. doi: 10.3389/fchem.2019.00218. PubMed DOI PMC
Jendelova P., Herynek V., DeCroos J., Glogarova K., Andersson B., Hajek M., Sykova E. Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles. Magn. Reson. Med. 2003;50:767–776. doi: 10.1002/mrm.10585. PubMed DOI
Novotna B., Pelclova D., Rossnerova A., Zdimal V., Ondracek J., Lischkova L., Vlckova S., Fenclova Z., Klusackova P., Zavodna T., et al. The genotoxic effects in the leukocytes of workers handling nanocomposite materials. Mutagenesis. 2020;35:331–340. doi: 10.1093/mutage/geaa016. PubMed DOI
Novotna B., Topinka J., Solansky I., Chvatalova I., Lnenickova Z., Sram R.J. Impact of air pollution and genotype variability on DNA damage in Prague policemen. Toxicol. Lett. 2007;172:37–47. doi: 10.1016/j.toxlet.2007.05.013. PubMed DOI