Cytoplasmic Tail of MT1-MMP: A Hub of MT1-MMP Regulation and Function
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
1313320
Grant Agency of the Charles University
LX22NPO5102
National Institute for Cancer Research (Programme EXCELES)
CZ.02.1.01/0.0/0.0/16_019/0000785
Centre for Tumour Ecology-Research of the Cancer Microenvironment Supporting Cancer Growth and Spread
PubMed
36982142
PubMed Central
PMC10049710
DOI
10.3390/ijms24065068
PII: ijms24065068
Knihovny.cz E-zdroje
- Klíčová slova
- MT1-MMP, cell invasion, intracellular trafficking, matrix metalloproteinases, post-translational modifications,
- MeSH
- buněčná adheze MeSH
- matrixová metaloproteinasa 14 * metabolismus MeSH
- pohyb buněk MeSH
- signální transdukce * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- matrixová metaloproteinasa 14 * MeSH
MT1-MMP (MMP-14) is a multifunctional protease that regulates ECM degradation, activation of other proteases, and a variety of cellular processes, including migration and viability in physiological and pathological contexts. Both the localization and signal transduction capabilities of MT1-MMP are dependent on its cytoplasmic domain that constitutes the final 20 C-terminal amino acids, while the rest of the protease is extracellular. In this review, we summarize the ways in which the cytoplasmic tail is involved in regulating and enacting the functions of MT1-MMP. We also provide an overview of known interactors of the MT1-MMP cytoplasmic tail and the functional significance of these interactions, as well as further insight into the mechanisms of cellular adhesion and invasion that are regulated by the cytoplasmic tail.
Zobrazit více v PubMed
Linder S., Wiesner C., Himmel M. Degrading Devices: Invadosomes in Proteolytic Cell Invasion. Annu. Rev. Cell Dev. Biol. 2011;27:185–211. doi: 10.1146/annurev-cellbio-092910-154216. PubMed DOI
Gimona M., Buccione R. Adhesions That Mediate Invasion. Int. J. Biochem. Cell Biol. 2006;38:1875–1892. doi: 10.1016/j.biocel.2006.05.003. PubMed DOI
Lizárraga F., Poincloux R., Romão M., Montagnac G., le Dez G., Bonne I., Rigaill G., Raposo G., Chavrier P. Diaphanous-Related Formins Are Required for Invadopodia Formation and Invasion of Breast Tumor Cells. Cancer Res. 2009;69:2792–2800. doi: 10.1158/0008-5472.CAN-08-3709. PubMed DOI
Tolde O., Rösel D., Veselý P., Folk P., Brábek J. The Structure of Invadopodia in a Complex 3D Environment. Eur. J. Cell Biol. 2010;89:674–680. doi: 10.1016/j.ejcb.2010.04.003. PubMed DOI
Artym V.V., Swatkoski S., Matsumoto K., Campbell C.B., Petrie R.J., Dimitriadis E.K., Li X., Mueller S.C., Bugge T.H., Gucek M., et al. Dense Fibrillar Collagen Is a Potent Inducer of Invadopodia via a Specific Signaling Network. J. Cell Biol. 2015;208:331–350. doi: 10.1083/jcb.201405099. PubMed DOI PMC
Dalecká M., Sabó J., Backová L., Rösel D., Brábek J., Benda A., Tolde O. Invadopodia Structure in 3D Environment Resolved by Near-Infrared Branding Protocol Combining Correlative Confocal and FIB-SEM Microscopy. Int. J. Mol. Sci. 2021;22:7805. doi: 10.3390/ijms22157805. PubMed DOI PMC
Artym V.V., Zhang Y., Seillier-Moiseiwitsch F., Yamada K.M., Mueller S.C. Dynamic Interactions of Cortactin and Membrane Type 1 Matrix Metalloproteinase at Invadopodia: Defining the Stages of Invadopodia Formation and Function. Cancer Res. 2006;66:3034–3043. doi: 10.1158/0008-5472.CAN-05-2177. PubMed DOI
Pedersen N.M., Wenzel E.M., Wang L., Antoine S., Chavrier P., Stenmark H., Raiborg C. Protrudin-Mediated ER-Endosome Contact Sites Promote MT1-MMP Exocytosis and Cell Invasion. J. Cell Biol. 2020;219:e202003063. doi: 10.1083/jcb.202003063. PubMed DOI PMC
Nagase H., Visse R., Murphy G. Structure and Function of Matrix Metalloproteinases and TIMPs. Cardiovasc. Res. 2006;69:562–573. doi: 10.1016/j.cardiores.2005.12.002. PubMed DOI
Marcink T.C., Simoncic J.A., An B., Knapinska A.M., Fulcher Y.G., Akkaladevi N., Fields G.B., van Doren S.R. MT1-MMP Binds Membranes by Opposite Tips of Its β Propeller to Position It for Pericellular Proteolysis. Structure. 2019;27:281–292.e6. doi: 10.1016/j.str.2018.10.008. PubMed DOI PMC
Cao J., Sato H., Takino T., Seiki M. The C-Terminal Region of Membrane Type Matrix Metalloproteinase Is a Functional Transmembrane Domain Required for pro-Gelatinase A Activation. J. Biol. Chem. 1995;270:801–805. doi: 10.1074/jbc.270.2.801. PubMed DOI
Sato H., Takino T., Okada Y., Cao J., Shinagawa A., Yamamoto E., Seiki M. A Matrix Metalloproteinase Expressed on the Surface of Invasive Cancer Cells. Nature. 1994;370:61–65. doi: 10.1038/370061a0. PubMed DOI
Gifford V., Itoh Y. MT1-MMP-Dependent Cell Migration: Proteolytic and Non-Proteolytic Mechanisms. Biochem. Soc. Trans. 2019;47:811–826. doi: 10.1042/BST20180363. PubMed DOI PMC
Knapinska A.M., Fields G.B. The Expanding Role of MT1-MMP in Cancer Progression. Pharmaceuticals. 2019;12:77. doi: 10.3390/ph12020077. PubMed DOI PMC
Itoh Y. Membrane-Type Matrix Metalloproteinases: Their Functions and Regulations. Matrix Biol. 2015;44–46:207–223. doi: 10.1016/j.matbio.2015.03.004. PubMed DOI
Terawaki S., Kitano K., Aoyama M., Mori T., Hakoshima T. MT1-MMP Recognition by ERM Proteins and Its Implication in CD44 Shedding. Genes Cells. 2015;20:847–859. doi: 10.1111/gtc.12276. PubMed DOI
Wu Y.I., Munshi H.G., Sen R., Snipas S.J., Salvesen G.S., Fridman R., Stack M.S. Glycosylation Broadens the Substrate Profile of Membrane Type 1 Matrix Metalloproteinase. J. Biol. Chem. 2004;279:8278–8289. doi: 10.1074/jbc.M311870200. PubMed DOI
Ludwig T., Theissen S.M., Morton M.J., Caplan M.J. The Cytoplasmic Tail Dileucine Motif LL572 Determines the Glycosylation Pattern of Membrane-Type 1 Matrix Metalloproteinase. J. Biol. Chem. 2008;283:35410–35418. doi: 10.1074/jbc.M801816200. PubMed DOI PMC
Roghi C., Jones L., Gratian M., English W.R., Murphy G. Golgi Reassembly Stacking Protein 55 Interacts with Membrane-Type (MT) 1-Matrix Metalloprotease (MMP) and Furin and Plays a Role in the Activation of the MT1-MMP Zymogen. FEBS J. 2010;277:3158–3175. doi: 10.1111/j.1742-4658.2010.07723.x. PubMed DOI
Xiang Y., Zhang X., Nix D.B., Katoh T., Aoki K., Tiemeyer M., Wang Y. Regulation of Protein Glycosylation and Sorting by the Golgi Matrix Proteins GRASP55/65. Nat. Commun. 2013;4:1659. doi: 10.1038/ncomms2669. PubMed DOI PMC
Pothukuchi P., Agliarulo I., Pirozzi M., Rizzo R., Russo D., Turacchio G., Nüchel J., Yang J., Gehin C., Capolupo L., et al. GRASP55 Regulates Intra-Golgi Localization of Glycosylation Enzymes to Control Glycosphingolipid Biosynthesis. EMBO J. 2021;40:e107766. doi: 10.15252/embj.2021107766. PubMed DOI PMC
Stein M.F., Blume K., Heilingloh C.S., Kummer M., Biesinger B., Sticht H., Steinkasserer A. CD83 and GRASP55 Interact in Human Dendritic Cells. Biochem. Biophys. Res. Commun. 2015;459:42–48. doi: 10.1016/j.bbrc.2015.02.057. PubMed DOI
Yana I., Weiss S.J. Regulation of Membrane Type-1 Matrix Metalloproteinase Activity by Proprotein Convertases. Mol. Biol. Cell. 2000;11:2387–2401. doi: 10.1091/mbc.11.7.2387. PubMed DOI PMC
Remacle A.G., Rozanov D.V., Fugere M., Day R., Strongin A.Y. Furin Regulates the Intracellular Activation and the Uptake Rate of Cell Surface-Associated MT1-MMP. Oncogene. 2006;25:5648–5655. doi: 10.1038/sj.onc.1209572. PubMed DOI
Golubkov V.S., Cieplak P., Chekanov A.V., Ratnikov B.I., Aleshin A.E., Golubkova N.V., Postnova T.I., Radichev I.A., Rozanov D.V., Zhu W., et al. Internal Cleavages of the Autoinhibitory Prodomain Are Required for Membrane Type 1 Matrix Metalloproteinase Activation, Although Furin Cleavage Alone Generates Inactive Proteinase. J. Biol. Chem. 2010;285:27726–27736. doi: 10.1074/jbc.M110.135442. PubMed DOI PMC
Cepeda M.A., Pelling J.J., Evered C.L., Leong H.S., Damjanovski S. The Cytoplasmic Domain of MT1-MMP Is Dispensable for Migration Augmentation but Necessary to Mediate Viability of MCF-7 Breast Cancer Cells. Exp. Cell Res. 2017;350:169–183. doi: 10.1016/j.yexcr.2016.11.019. PubMed DOI
Lehti K., Lohi J., Valtanen H., Keski-Oja J. Proteolytic Processing of Membrane-Type-1 Matrix Metalloproteinase Is Associated with Gelatinase A Activation at the Cell Surface. Biochem. J. 1998;334:345–353. doi: 10.1042/bj3340345. PubMed DOI PMC
Stanton H., Gavrilovic J., Atkinson S.J., D’Ortho M.P., Yamada K.M., Zardi L., Murphy G. The Activation of ProMMP-2 (Gelatinase A) by HT1080 Fibrosarcoma Cells Is Promoted by Culture on a Fibronectin Substrate and Is Concomitant with an Increase in Processing of MT1-MMP (MMP-14) to a 45 KDa Form. J. Cell Sci. 1998;111:2789–2798. doi: 10.1242/jcs.111.18.2789. PubMed DOI
Annabi B., Lachambre M., Bousquet-Gagnon N.P., Pagé M., Gingras D., Béliveau R. Localization of Membrane-Type 1 Matrix Metalloproteinase in Caveolae Membrane Domains. Biochem. J. 2001;353:547–553. doi: 10.1042/bj3530547. PubMed DOI PMC
Toth M., Hernandez-Barrantes S., Osenkowski P., Margarida Bernardo M., Gervasi D.C., Shimura Y., Meroueh O., Kotra L.P., Gálvez B.G., Arroyo A.G., et al. Complex Pattern of Membrane Type 1 Matrix Metalloproteinase Shedding. Regulation by Autocatalytic Cells Surface Inactivation of Active Enzyme. J. Biol. Chem. 2002;277:26340–26350. doi: 10.1074/jbc.M200655200. PubMed DOI
Lehti K., Lohi J., Juntunen M.M., Pei D., Keski-Oja J. Oligomerization through Hemopexin and Cytoplasmic Domains Regulates the Activity and Turnover of Membrane-Type 1 Matrix Metalloproteinase. J. Biol. Chem. 2002;277:8440–8448. doi: 10.1074/jbc.M109128200. PubMed DOI
Fehon R.G., McClatchey A.I., Bretscher A. Organizing the Cell Cortex: The Role of ERM Proteins. Nat. Rev. Mol. Cell Biol. 2010;11:276–287. doi: 10.1038/nrm2866. PubMed DOI PMC
Suárez H., López-Martín S., Toribio V., Zamai M., Hernández-Riquer M.V., Genís L., Arroyo A.G., Yáñez-Mó M. Regulation of MT1-MMP Activity through Its Association with ERMs. Cells. 2020;9:348. doi: 10.3390/cells9020348. PubMed DOI PMC
Song I.W., Li W.R., Chen L.Y., Shen L.F., Liu K.M., Yen J.J.Y., Chen Y.J., Chen Y.J., Kraus V.B., Wu J.Y., et al. Palmitoyl Acyltransferase, Zdhhc13, Facilitates Bone Mass Acquisition by Regulating Postnatal Epiphyseal Development and Endochondral Ossification: A Mouse Model. PLoS ONE. 2014;9:e92194. doi: 10.1371/journal.pone.0092194. PubMed DOI PMC
Anilkumar N., Uekita T., Couchman J.R., Nagase H., Seiki M., Itoh Y. Palmitoylation at Cys 574 Is Essential for MT1-MMP to Promote Cell Migration. FASEB J. 2005;19:1326–1328. doi: 10.1096/fj.04-3651fje. PubMed DOI
Moss N.M., Wu Y.I., Liu Y., Munshi H.G., Stack M.S. Modulation of the Membrane Type 1 Matrix Metalloproteinase Cytoplasmic Tail Enhances Tumor Cell Invasion and Proliferation in Three-Dimensional Collagen Matrices. J. Biol. Chem. 2009;284:19791–19799. doi: 10.1074/jbc.M109.020362. PubMed DOI PMC
Williams K.C., Coppolino M.G. Phosphorylation of Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) and Its Vesicle-Associated Membrane Protein 7 (VAMP7)-Dependent Trafficking Facilitate Cell Invasion and Migration. J. Biol. Chem. 2011;286:43405–43416. doi: 10.1074/jbc.M111.297069. PubMed DOI PMC
Rosse C., Lodillinsky C., Fuhrmann L., Nourieh M., Monteiro P., Irondelle M., Lagoutte E., Vacher S., Waharte F., Paul-Gilloteaux P., et al. Control of MT1-MMP Transport by Atypical PKC during Breast-Cancer Progression. Proc. Natl. Acad. Sci. USA. 2014;111:E1872–E1879. doi: 10.1073/pnas.1400749111. PubMed DOI PMC
Moro L., Dolce L., Cabodi S., Bergatto E., Erba E.B., Smeriglio M., Turco E., Retta S.F., Giuffrida M.G., Venturino M., et al. Integrin-Induced Epidermal Growth Factor (EGF) Receptor Activation Requires c-Src and P130Cas and Leads to Phosphorylation of Specific EGF Receptor Tyrosines. J. Biol. Chem. 2002;277:9405–9414. doi: 10.1074/jbc.M109101200. PubMed DOI
Grafinger O.R., Gorshtein G., Stirling T., Brasher M.I., Coppolino M.G. Β1 Integrin-Mediated Signaling Regulates MT1-MMP Phosphorylation to Promote Tumor Cell Invasion. J. Cell Sci. 2020;133:jcs239152. doi: 10.1242/jcs.239152. PubMed DOI
Zhang X.A., Bontrager A.L., Hemler M.E. Transmembrane-4 Superfamily Proteins Associate with Activated Protein Kinase C (PKC) and Link PKC to Specific Beta(1) Integrins. J. Biol. Chem. 2001;276:25005–25013. doi: 10.1074/jbc.M102156200. PubMed DOI
Termini C.M., Gillette J.M. Tetraspanins Function as Regulators of Cellular Signaling. Front. Cell Dev. Biol. 2017;5:34. doi: 10.3389/fcell.2017.00034. PubMed DOI PMC
Tavsan Z., Kayali H.A. Protein Kinase C Regulates the Complex between Cell Membrane Molecules in Ovarian Cancer. Process Biochem. 2020;92:182–189. doi: 10.1016/j.procbio.2020.01.009. DOI
Schröder H.M., Hoffmann S.C., Hecker M., Korff T., Ludwig T. The Tetraspanin Network Modulates MT1-MMP Cell Surface Trafficking. Int. J. Biochem. Cell Biol. 2013;45:1133–1144. doi: 10.1016/j.biocel.2013.02.020. PubMed DOI
Yañez-Mó M., Barreiro O., Gonzalo P., Batista A., Megías D., Genís L., Sachs N., Sala-Valdés M., Alonso M.A., Montoya M.C., et al. MT1-MMP Collagenolytic Activity Is Regulated through Association with Tetraspanin CD151 in Primary Endothelial Cells. Blood. 2008;112:3217–3226. doi: 10.1182/blood-2008-02-139394. PubMed DOI
Nyalendo C., Michaud M., Beaulieu E., Roghi C., Murphy G., Gingras D., Béliveau R. Src-Dependent Phosphorylation of Membrane Type I Matrix Metalloproteinase on Cytoplasmic Tyrosine 573: ROLE IN ENDOTHELIAL AND TUMOR CELL MIGRATION. J. Biol. Chem. 2007;282:15690–15699. doi: 10.1074/jbc.M608045200. PubMed DOI
Moss N.M., Liu Y., Johnson J.J., Debiase P., Jones J., Hudson L.G., Munshi H.G., Stack M.S. Epidermal Growth Factor Receptor-Mediated Membrane Type 1 Matrix Metalloproteinase Endocytosis Regulates the Transition between Invasive versus Expansive Growth of Ovarian Carcinoma Cells in Three-Dimensional Collagen. Mol. Cancer Res. 2009;7:809–820. doi: 10.1158/1541-7786.MCR-08-0571. PubMed DOI PMC
Lagoutte E., Villeneuve C., Lafanechère L., Wells C.M., Jones G.E., Chavrier P., Rossé C. LIMK Regulates Tumor-Cell Invasion and Matrix Degradation Through Tyrosine Phosphorylation of MT1-MMP. Sci. Rep. 2016;6:24925. doi: 10.1038/srep24925. PubMed DOI PMC
Gingras D., Michaud M., di Tomasso G., Béliveau E., Nyalendo C., Béliveau R. Sphingosine-1-Phosphate Induces the Association of Membrane-Type 1 Matrix Metalloproteinase with P130Cas in Endothelial Cells. FEBS Lett. 2008;582:399–404. doi: 10.1016/j.febslet.2007.12.029. PubMed DOI
Komander D., Rape M. The Ubiquitin Code. Annu. Rev. Biochem. 2012;81:203–229. doi: 10.1146/annurev-biochem-060310-170328. PubMed DOI
Eisenach P.A., de Sampaio P.C., Murphy G., Roghi C. Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Ubiquitination at Lys581 Increases Cellular Invasion through Type I Collagen. J. Biol. Chem. 2012;287:11533–11545. doi: 10.1074/jbc.M111.306340. PubMed DOI PMC
Rozanov D.V., Deryugina E.I., Ratnikov B.I., Monosov E.Z., Marchenko G.N., Quigley J.P., Strongin A.Y. Mutation Analysis of Membrane Type-1 Matrix Metalloproteinase (MT1-MMP): The Role of the Cytoplasmic Tail Cys574, the Active Site Glu 240, and Furin Cleavage Motifs in Oligomerization, Processing, and Self-Proteolysis of MT1-MMP Expressed in Breast Carcin. J. Biol. Chem. 2001;276:25705–25714. doi: 10.1074/jbc.M007921200. PubMed DOI
Itoh Y., Ito N., Nagase H., Evans R.D., Bird S.A., Seiki M. Cell Surface Collagenolysis Requires Homodimerization of the Membrane-Bound Collagenase MT1-MMP. Mol. Biol. Cell. 2006;17:5390–5399. doi: 10.1091/mbc.e06-08-0740. PubMed DOI PMC
Itoh Y., Palmisano R., Anilkumar N., Nagase H., Miyawaki A., Seiki M. Dimerization of MT1-MMP during Cellular Invasion Detected by Fluorescence Resonance Energy Transfer. Biochem. J. 2011;440:319–326. doi: 10.1042/BJ20110424. PubMed DOI
Itoh Y., Takamura A., Ito N., Maru Y., Sato H., Suenaga N., Aoki T., Seiki M. Homophilic Complex Formation of MT1-MMP Facilitates ProMMP-2 Activation on the Cell Surface and Promotes Tumor Cell Invasion. EMBO J. 2001;20:4782. doi: 10.1093/emboj/20.17.4782. PubMed DOI PMC
Itoh Y., Ito N., Nagase H., Seiki M. The Second Dimer Interface of MT1-MMP, the Transmembrane Domain, Is Essential for ProMMP-2 Activation on the Cell Surface. J. Biol. Chem. 2008;283:13053. doi: 10.1074/jbc.M709327200. PubMed DOI PMC
Tochowicz A., Goettig P., Evans R., Visse R., Shitomi Y., Palmisano R., Ito N., Richter K., Maskos K., Franke D., et al. The Dimer Interface of the Membrane Type 1 Matrix Metalloproteinase Hemopexin Domain: Crystal Structure and Biological Functions. J. Biol. Chem. 2011;286:7587–7600. doi: 10.1074/jbc.M110.178434. PubMed DOI PMC
Fogarasi M., Dima S. The Catalytic Domain Mediates Homomultimerization of MT1-MMP and the Prodomain Interferes with MT1-MMP Oligomeric Complex Assembly. Biomolecules. 2022;12:1145. doi: 10.3390/biom12081145. PubMed DOI PMC
Uekita T., Itoh Y., Yana I., Ohno H., Seiki M. Cytoplasmic Tail-Dependent Internalization of Membrane-Type 1 Matrix Metalloproteinase Is Important for Its Invasion-Promoting Activity. J. Cell Biol. 2001;155:1345–1356. doi: 10.1083/jcb.200108112. PubMed DOI PMC
Planchon D., Rios Morris E., Genest M., Comunale F., Vacher S., Bièche I., Denisov E.V., Tashireva L.A., Perelmuter V.M., Linder S., et al. MT1-MMP Targeting to Endolysosomes Is Mediated by Upregulation of Flotillins. J. Cell Sci. 2018;131:jcs218925. doi: 10.1242/jcs.218925. PubMed DOI
Remacle A., Murphy G., Roghi C. Membrane Type I-Matrix Metalloproteinase (MT1-MMP) Is Internalised by Two Different Pathways and Is Recycled to the Cell Surface. J. Cell Sci. 2003;116:3905–3916. doi: 10.1242/jcs.00710. PubMed DOI
Yamaguchi H., Takeo Y., Yoshida S., Kouchi Z., Nakamura Y., Fukami K. Lipid Rafts and Caveolin-1 Are Required for Invadopodia Formation and Extracellular Matrix Degradation by Human Breast Cancer Cells. Cancer Res. 2009;69:8594–8602. doi: 10.1158/0008-5472.CAN-09-2305. PubMed DOI
Poincloux R., Lizarraga F., Chavrier P. Matrix Invasion by Tumour Cells: A Focus on MT1-MMP Trafficking to Invadopodia. J. Cell Sci. 2009;122:3015–3024. doi: 10.1242/jcs.034561. PubMed DOI
Wolf K., Friedl P. Functional Imaging of Pericellular Proteolysis in Cancer Cell Invasion. Biochimie. 2005;87:315–320. doi: 10.1016/j.biochi.2004.10.016. PubMed DOI
Jiang A., Lehti K., Wang X., Weiss S.J., Keski-Oja J., Pei D. Regulation of Membrane-Type Matrix Metalloproteinase 1 Activity by Dynamin-Mediated Endocytosis. Proc. Natl. Acad. Sci. USA. 2001;98:13693–13698. doi: 10.1073/pnas.241293698. PubMed DOI PMC
Rozanov D.V., Deryugina E.I., Monosov E.Z., Marchenko N.D., Strongin A.Y. Aberrant, Persistent Inclusion into Lipid Rafts Limits the Tumorigenic Function of Membrane Type-1 Matrix Metalloproteinase in Malignant Cells. Exp. Cell Res. 2004;293:81–95. doi: 10.1016/j.yexcr.2003.10.006. PubMed DOI
Kaksonen M., Roux A. Mechanisms of Clathrin-Mediated Endocytosis. Nat. Rev. Mol. Cell Biol. 2018;19:313–326. doi: 10.1038/nrm.2017.132. PubMed DOI
Matthaeus C., Taraska J.W. Energy and Dynamics of Caveolae Trafficking. Front. Cell Dev. Biol. 2021;8:1842. doi: 10.3389/fcell.2020.614472. PubMed DOI PMC
Cheng J.P.X., Nichols B.J. Caveolae: One Function or Many? Trends Cell Biol. 2016;26:177–189. doi: 10.1016/j.tcb.2015.10.010. PubMed DOI
Atkinson S.J., English J.L., Holway N., Murphy G. Cellular Cholesterol Regulates MT1 MMP Dependent Activation of MMP 2 via MEK-1 in HT1080 Fibrosarcoma Cells. FEBS Lett. 2004;566:65–70. doi: 10.1016/j.febslet.2004.04.040. PubMed DOI
Yang H., Guan L., Li S., Jiang Y., Xiong N., Li L., Wu C., Zeng H., Liu Y. Mechanosensitive Caveolin-1 Activation-Induced PI3K/Akt/MTOR Signaling Pathway Promotes Breast Cancer Motility, Invadopodia Formation and Metastasis In Vivo. Oncotarget. 2016;7:16227–16247. doi: 10.18632/oncotarget.7583. PubMed DOI PMC
Gálvez B.G., Matías-Román S., Yáñez-Mó M., Vicente-Manzanares M., Sánchez-Madrid F., Arroyo A.G. Caveolae Are a Novel Pathway for Membrane-Type 1 Matrix Metalloproteinase Traffic in Human Endothelial Cells. Mol. Biol. Cell. 2004;15:678–687. doi: 10.1091/mbc.e03-07-0516. PubMed DOI PMC
Gingras D., Béliveau R. Emerging Concepts in the Regulation of Membrane-Type 1 Matrix Metalloproteinase Activity. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2010;1803:142–150. doi: 10.1016/j.bbamcr.2009.04.011. PubMed DOI
Couet J., Li S., Okamoto T., Ikezu T., Lisanti M.P. Identification of Peptide and Protein Ligands for the Caveolin-Scaffolding Domain: IMPLICATIONS FOR THE INTERACTION OF CAVEOLIN WITH CAVEOLAE-ASSOCIATED PROTEINS. J. Biol. Chem. 1997;272:6525–6533. doi: 10.1074/jbc.272.10.6525. PubMed DOI
Collins B.M., Davis M.J., Hancock J.F., Parton R.G. Structure-Based Reassessment of the Caveolin Signaling Model: Do Caveolae Regulate Signaling Through Caveolin-Protein Interactions? Dev. Cell. 2012;23:11. doi: 10.1016/j.devcel.2012.06.012. PubMed DOI PMC
Labrecque L., Nyalendo C., Langlois S., Durocher Y., Roghi C., Murphy G., Gingras D., Béliveau R. Src-Mediated Tyrosine Phosphorylation of Caveolin-1 Induces Its Association with Membrane Type 1 Matrix Metalloproteinase. J. Biol. Chem. 2004;279:52132–52140. doi: 10.1074/jbc.M409617200. PubMed DOI
Gauthier-Rouvière C., Bodin S., Comunale F., Planchon D. Flotillin Membrane Domains in Cancer. Cancer Metastasis Rev. 2020;39:361–374. doi: 10.1007/s10555-020-09873-y. PubMed DOI PMC
Wiesner C., el Azzouzi K., Linder S. A Specific Subset of RabGTPases Controls Cell Surface Exposure of MT1-MMP, Extracellular Matrix Degradation and Three-Dimensional Invasion of Macrophages. J. Cell Sci. 2013;126:2820–2833. doi: 10.1242/jcs.122358. PubMed DOI
Frittoli E., Palamidessi A., Marighetti P., Confalonieri S., Bianchi F., Malinverno C., Mazzaro G., Viale G., Martin-Padura G., Garré M., et al. A RAB5/RAB4 Recycling Circuitry Induces a Proteolytic Invasive Program and Promotes Tumor Dissemination. J. Cell Biol. 2014;206:307–328. doi: 10.1083/jcb.201403127. PubMed DOI PMC
Colombero C., Remy D., Antoine-Bally S., Macé A.S., Monteiro P., ElKhatib N., Fournier M., Dahmani A., Montaudon E., Montagnac G., et al. MTOR Repression in Response to Amino Acid Starvation Promotes ECM Degradation Through MT1-MMP Endocytosis Arrest. Adv. Sci. 2021;8:e2101614. doi: 10.1002/advs.202101614. PubMed DOI PMC
Loskutov Y.V., Kozyulina P.Y., Kozyreva V.K., Ice R.J., Jones B.C., Roston T.J., Smolkin M.B., Ivanov A.V., Wysolmerski R.B., Pugacheva E.N. NEDD9/Arf6-Dependent Endocytic Trafficking of Matrix Metalloproteinase 14: A Novel Mechanism for Blocking Mesenchymal Cell Invasion and Metastasis of Breast Cancer. Oncogene. 2015;34:3662–3675. doi: 10.1038/onc.2014.297. PubMed DOI PMC
Chevalier C., Collin G., Descamps S., Touaitahuata H., Simon V., Reymond N., Fernandez L., Milhiet P.E., Georget V., Urbach S., et al. TOM1L1 Drives Membrane Delivery of MT1-MMP to Promote ERBB2-Induced Breast Cancer Cell Invasion. Nat. Commun. 2016;7:10765. doi: 10.1038/ncomms10765. PubMed DOI PMC
Steffen A., le Dez G., Poincloux R., Recchi C., Nassoy P., Rottner K., Galli T., Chavrier P. MT1-MMP-Dependent Invasion Is Regulated by TI-VAMP/VAMP7. Curr. Biol. 2008;18:926–931. doi: 10.1016/j.cub.2008.05.044. PubMed DOI
Williams K.C., McNeilly R.E., Coppolino M.G. SNAP23, Syntaxin4, and Vesicle-Associated Membrane Protein 7 (VAMP7) Mediate Trafficking of Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) during Invadopodium Formation and Tumor Cell Invasion. Mol. Biol. Cell. 2014;25:2061–2070. doi: 10.1091/mbc.e13-10-0582. PubMed DOI PMC
Miyagawa T., Hasegawa K., Aoki Y., Watanabe T., Otagiri Y., Arasaki K., Wakana Y., Asano K., Tanaka M., Yamaguchi H., et al. MT1-MMP Recruits the ER-Golgi SNARE Bet1 for EfficientMT1-MMP Transport to the Plasmamembrane. J. Cell Biol. 2019;218:3355–3371. doi: 10.1083/jcb.201808149. PubMed DOI PMC
Wang X., Ma D., Keski-Oja J., Pei D. Co-Recycling of MT1-MMP and MT3-MMP through the Trans-Golgi Network: Identification of DKV582 as a Recycling Signal. J. Biol. Chem. 2004;279:9331–9336. doi: 10.1074/jbc.M312369200. PubMed DOI
Bravo-Cordero J.J., Marrero-Diaz R., Megías D., Genís L., García-Grande A., García M.A., Arroyo A.G., Montoya M.C. MT1-MMP Proinvasive Activity Is Regulated by a Novel Rab8-Dependent Exocytic Pathway. EMBO J. 2007;26:1499–1510. doi: 10.1038/sj.emboj.7601606. PubMed DOI PMC
Castro-Castro A., Marchesin V., Monteiro P., Lodillinsky C., Rossé C., Chavrier P. Cellular and Molecular Mechanisms of MT1-MMP-Dependent Cancer Cell Invasion. Annu. Rev. Cell Dev. Biol. 2016;32:555–576. doi: 10.1146/annurev-cellbio-111315-125227. PubMed DOI
Marchesin V., Castro-Castro A., Lodillinsky C., Castagnino A., Cyrta J., Bonsang-Kitzis H., Fuhrmann L., Irondelle M., Infante E., Montagnac G., et al. ARF6-JIP3/4 Regulate Endosomal Tubules for MT1-MMP Exocytosis in Cancer Invasion. J. Cell Biol. 2015;211:339–358. doi: 10.1083/jcb.201506002. PubMed DOI PMC
Monteiro P., Rossé C., Castro-Castro A., Irondelle M., Lagoutte E., Paul-Gilloteaux P., Desnos C., Formstecher E., Darchen F., Perrais D., et al. Endosomal WASH and Exocyst Complexes Control Exocytosis of MT1-MMP at Invadopodia. J. Cell Biol. 2013;203:1063–1079. doi: 10.1083/jcb.201306162. PubMed DOI PMC
Sakurai-Yageta M., Recchi C., le Dez G., Sibarita J.B., Daviet L., Camonis J., D’Souza-Schorey C., Chavrier P. The Interaction of IQGAP1 with the Exocyst Complex Is Required for Tumor Cell Invasion Downstream of Cdc42 and RhoA. J. Cell Biol. 2008;181:985–998. doi: 10.1083/jcb.200709076. PubMed DOI PMC
Clancy J.W., Sedgwick A., Rosse C., Muralidharan-Chari V., Raposo G., Method M., Chavrier P., D’Souza-Schorey C. Regulated Delivery of Molecular Cargo to Invasive Tumour-Derived Microvesicles. Nat. Commun. 2015;6:6919. doi: 10.1038/ncomms7919. PubMed DOI PMC
Sneeggen M., Pedersen N.M., Campsteijn C., Haugsten E.M., Stenmark H., Schink K.O. WDFY2 Restrains Matrix Metalloproteinase Secretion and Cell Invasion by Controlling VAMP3-Dependent Recycling. Nat. Commun. 2019;10:2850. doi: 10.1038/s41467-019-10794-w. PubMed DOI PMC
Kean M.J., Williams K.C., Skalski M., Myers D., Burtnik A., Foster D., Coppolino M.G. VAMP3, Syntaxin-13 and SNAP23 Are Involved in Secretion of Matrix Metalloproteinases, Degradation of the Extracellular Matrix and Cell Invasion. J. Cell Sci. 2009;122:4089–4098. doi: 10.1242/jcs.052761. PubMed DOI
Seaman M.N.J. The Retromer Complex: From Genesis to Revelations. Trends Biochem. Sci. 2021;46:608–620. doi: 10.1016/j.tibs.2020.12.009. PubMed DOI
Sharma P., Parveen S., Shah L.V., Mukherjee M., Kalaidzidis Y., Kozielski A.J., Rosato R., Chang J.C., Datta S. SNX27-Retromer Assembly Recycles MT1-MMP to Invadopodia and Promotes Breast Cancer Metastasis. J. Cell Biol. 2020;219:e201812098. doi: 10.1083/jcb.201812098. PubMed DOI PMC
Hutagalung A.H., Novick P.J. Role of Rab GTPases in Membrane Traffic and Cell Physiology. Physiol. Rev. 2011;91:119–149. doi: 10.1152/physrev.00059.2009. PubMed DOI PMC
Harbour M.E., Breusegem S.Y., Seaman M.N.J. Recruitment of the Endosomal WASH Complex Is Mediated by the Extended ‘Tail’ of Fam21 Binding to the Retromer Protein Vps35. Biochem. J. 2012;442:209–220. doi: 10.1042/BJ20111761. PubMed DOI
Rojas R., van Vlijmen T., Mardones G.A., Prabhu Y., Rojas A.L., Mohammed S., Heck A.J.R., Raposo G., van der Sluijs P., Bonifacino J.S. Regulation of Retromer Recruitment to Endosomes by Sequential Action of Rab5 and Rab7. J. Cell Biol. 2008;183:513–526. doi: 10.1083/jcb.200804048. PubMed DOI PMC
Liberti M.V., Locasale J.W. The Warburg Effect: How Does It Benefit Cancer Cells? Trends Biochem. Sci. 2016;41:211–218. doi: 10.1016/j.tibs.2015.12.001. PubMed DOI PMC
Kelly B., O’Neill L.A.J. Metabolic Reprogramming in Macrophages and Dendritic Cells in Innate Immunity. Cell Res. 2015;25:771–784. doi: 10.1038/cr.2015.68. PubMed DOI PMC
Sakamoto T., Seiki M. Cytoplasmic Tail of MT1-MMP Regulates Macrophage Motility Independently from Its Protease Activity. Genes Cells. 2009;14:617–626. doi: 10.1111/j.1365-2443.2009.01293.x. PubMed DOI
Sakamoto T., Niiya D., Seiki M. Targeting the Warburg Effect That Arises in Tumor Cells Expressing Membrane Type-1 Matrix Metalloproteinase. J. Biol. Chem. 2011;286:14691–14704. doi: 10.1074/jbc.M110.188714. PubMed DOI PMC
Annabi B., Lee Y., Turcotte S., Naud E., Desrosiers R.R., Champagne M., Eliopoulos N., Galipeau J., Béliveau R. Hypoxia Promotes Murine Bone-Marrow-Derived Stromal Cell Migration and Tube Formation. Stem Cells. 2003;21:337–347. doi: 10.1634/stemcells.21-3-337. PubMed DOI
Proulx-Bonneau S., Guezguez A., Annabi B. A Concerted HIF-1α/MT1-MMP Signalling Axis Regulates the Expression of the 3BP2 Adaptor Protein in Hypoxic Mesenchymal Stromal Cells. PLoS ONE. 2011;6:e21511. doi: 10.1371/journal.pone.0021511. PubMed DOI PMC
Zhang W., Liu H.T. MAPK Signal Pathways in the Regulation of Cell Proliferation in Mammalian Cells. Cell Res. 2002;12:9–18. doi: 10.1038/sj.cr.7290105. PubMed DOI
Katz M., Amit I., Yarden Y. Regulation of MAPKs by Growth Factors and Receptor Tyrosine Kinases. Biochim. Biophys. Acta BBA-Mol. Cell Res. 2007;1773:1161–1176. doi: 10.1016/j.bbamcr.2007.01.002. PubMed DOI PMC
Soares-Silva M., Diniz F.F., Gomes G.N., Bahia D. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids. Front. Microbiol. 2016;7:183. doi: 10.3389/fmicb.2016.00183. PubMed DOI PMC
Gingras D., Bousquet-Gagnon N., Langlois S., Lachambre M.P., Annabi B., Béliveau R. Activation of the Extracellular Signal-Regulated Protein Kinase (ERK) Cascade by Membrane-Type-1 Matrix Metalloproteinase (MT1-MMP) FEBS Lett. 2001;507:231–236. doi: 10.1016/S0014-5793(01)02985-4. PubMed DOI
Takino T., Miyamori H., Watanabe Y., Yoshioka K., Seiki M., Sato H. Membrane Type 1 Matrix Metalloproteinase Regulates Collagen-Dependent Mitogen-Activated Protein/Extracellular Signal-Related Kinase Activation and Cell Migration. Cancer Res. 2004;64:1044–1049. doi: 10.1158/0008-5472.CAN-03-1843. PubMed DOI
D’Alessio S., Ferrari G., Cinnante K., Scheerer W., Galloway A.C., Roses D.F., Rozanov D.V., Remacle A.G., Oh E.S., Shiryaev S.A., et al. Tissue Inhibitor of Metalloproteinases-2 Binding to Membrane-Type 1 Matrix Metalloproteinase Induces MAPK Activation and Cell Growth by a Non-Proteolytic Mechanism. J. Biol. Chem. 2008;283:87–99. doi: 10.1074/jbc.M705492200. PubMed DOI
Sounni N.E., Rozanov D.V., Remacle A.G., Golubkov V.S., Noel A., Strongin A.Y. Timp-2 Binding with Cellular MT1-MMP Stimulates Invasion-Promoting MEK/ERK Signaling in Cancer Cells. Int. J. Cancer. 2010;126:1067. doi: 10.1002/ijc.24690. PubMed DOI PMC
Takino T., Tsuge H., Ozawa T., Sato H. MT1-MMP Promotes Cell Growth and ERK Activation through c-Src and Paxillin in Three-Dimensional Collagen Matrix. Biochem. Biophys. Res. Commun. 2010;396:1042–1047. doi: 10.1016/j.bbrc.2010.05.059. PubMed DOI
Tanimura S., Asato K., Fujishiro S.H., Kohno M. Specific Blockade of the ERK Pathway Inhibits the Invasiveness of Tumor Cells: Down-Regulation of Matrix Metalloproteinase-3/-9/-14 and CD44. Biochem. Biophys. Res. Commun. 2003;304:801–806. doi: 10.1016/S0006-291X(03)00670-3. PubMed DOI
Deryugina E.I., Ratnikov B.I., Postnova T.I., Rozanov D.V., Strongin A.Y. Processing of Integrin Alpha(v) Subunit by Membrane Type 1 Matrix Metalloproteinase Stimulates Migration of Breast Carcinoma Cells on Vitronectin and Enhances Tyrosine Phosphorylation of Focal Adhesion Kinase. J. Biol. Chem. 2002;277:9749–9756. doi: 10.1074/jbc.M110269200. PubMed DOI
Sounni N.E., Devy L., Hajitou A., Frankenne F., Munaut C., Gilles C., Deroanne C., Thompson E.W., Foidart J.M., Noel A. MT1-MMP Expression Promotes Tumor Growth and Angiogenesis through an up-Regulation of Vascular Endothelial Growth Factor Expression. FASEB J. 2002;16:555–564. doi: 10.1096/fj.01-0790com. PubMed DOI
Sounni N.E., Roghi C., Chabottaux V., Janssen M., Munaut C., Maquoi E., Galvez B.G., Gilles C., Frankenne F., Murphy G., et al. Up-Regulation of Vascular Endothelial Growth Factor-A by Active Membrane-Type 1 Matrix Metalloproteinase through Activation of Src-Tyrosine Kinases. J. Biol. Chem. 2004;279:13564–13574. doi: 10.1074/jbc.M307688200. PubMed DOI
Eisenach P.A., Roghi C., Fogarasi M., Murphy G., English W.R. MT1-MMP Regulates VEGF-A Expression through a Complex with VEGFR-2 and Src. J. Cell Sci. 2010;123:4182–4193. doi: 10.1242/jcs.062711. PubMed DOI
Funahashi Y., Shawber C.J., Sharma A., Kanamaru E., Choi Y.K., Kitajewski J. Notch Modulates VEGF Action in Endothelial Cells by Inducing Matrix Metalloprotease Activity. Vasc. Cell. 2011;3:2. doi: 10.1186/2045-824X-3-2. PubMed DOI PMC
Itoh Y., Seiki M. MT1-MMP: A Potent Modifier of Pericellular Microenvironment. J. Cell Physiol. 2006;206:1–8. doi: 10.1002/jcp.20431. PubMed DOI
Gonzalo P., Moreno V., Gálvez B.G., Arroyo A.G. MT1-MMP and Integrins: Hand-to-Hand in Cell Communication. Biofactors. 2010;36:248–254. doi: 10.1002/biof.99. PubMed DOI
Gálvez B.G., Matías-Román S., Yáñez-Mó M., Sánchez-Madrid F., Arroyo A.G. ECM Regulates MT1-MMP Localization with Beta1 or Alphavbeta3 Integrins at Distinct Cell Compartments Modulating Its Internalization and Activity on Human Endothelial Cells. J. Cell Biol. 2002;159:509–521. doi: 10.1083/jcb.200205026. PubMed DOI PMC
Goodison S., Urquidi V., Tarin D. CD44 Cell Adhesion Molecules. Mol. Pathol. 1999;52:189–196. doi: 10.1136/mp.52.4.189. PubMed DOI PMC
Mori H., Tomari T., Koshikawa N., Kajita M., Itoh Y., Sato H., Tojo H., Yana I., Seiki M. CD44 Directs Membrane-Type 1 Matrix Metalloproteinase to Lamellipodia by Associating with Its Hemopexin-like Domain. EMBO J. 2002;21:3949–3959. doi: 10.1093/emboj/cdf411. PubMed DOI PMC
Suenaga N., Mori H., Itoh Y., Seiki M. CD44 Binding through the Hemopexin-like Domain Is Critical for Its Shedding by Membrane-Type 1 Matrix Metalloproteinase. Oncogene. 2005;24:859–868. doi: 10.1038/sj.onc.1208258. PubMed DOI
Kajita M., Itoh Y., Chiba T., Mori H., Okada A., Kinoh H., Seiki M. Membrane-Type 1 Matrix Metalloproteinase Cleaves CD44 and Promotes Cell Migration. J. Cell Biol. 2001;153:893–904. doi: 10.1083/jcb.153.5.893. PubMed DOI PMC
Mori T., Kitano K., Terawaki S.I., Maesaki R., Fukami Y., Hakoshima T. Structural Basis for CD44 Recognition by ERM Proteins. J. Biol. Chem. 2008;283:29602. doi: 10.1074/jbc.M803606200. PubMed DOI PMC
Janoštiak R., Tolde O., Brůhová Z., Novotný M., Hanks S.K., Rösel D., Brábek J. Tyrosine Phosphorylation within the SH3 Domain Regulates CAS Subcellular Localization, Cell Migration, and Invasiveness. Mol. Biol. Cell. 2011;22:4256. doi: 10.1091/mbc.e11-03-0207. PubMed DOI PMC
Wang Y., McNiven M.A. Invasive Matrix Degradation at Focal Adhesions Occurs via Protease Recruitment by a FAK-P130Cas Complex. J. Cell Biol. 2012;196:375–385. doi: 10.1083/jcb.201105153. PubMed DOI PMC
Yang J., Kasberg W.C., Celo A., Liang Z., Quispe K., Sharon Stack M. Post-Translational Modification of the Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Cytoplasmic Tail Impacts Ovarian Cancer Multicellular Aggregate Dynamics. J. Biol. Chem. 2017;292:13111–13121. doi: 10.1074/jbc.M117.800904. PubMed DOI PMC
Bruney L., Liu Y., Grisoli A., Ravosa M.J., Stack M.S. Integrin-Linked Kinase Activity Modulates the pro-Metastatic Behavior of Ovarian Cancer Cells. Oncotarget. 2016;7:21968. doi: 10.18632/oncotarget.7880. PubMed DOI PMC
Wickström S.A., Lange A., Montanez E., Fässler R. The ILK/PINCH/Parvin Complex: The Kinase Is Dead, Long Live the Pseudokinase! EMBO J. 2010;29:281–291. doi: 10.1038/emboj.2009.376. PubMed DOI PMC
Lange A., Wickström S.A., Jakobson M., Zent R., Sainio K., Fässler R. Integrin-Linked Kinase Is an Adaptor with Essential Functions during Mouse Development. Nature. 2009;461:1002–1006. doi: 10.1038/nature08468. PubMed DOI
Fukuda K., Gupta S., Chen K., Wu C., Qin J. The Pseudoactive Site of ILK Is Essential for Its Binding to Alpha-Parvin and Localization to Focal Adhesions. Mol. Cell. 2009;36:819–830. doi: 10.1016/j.molcel.2009.11.028. PubMed DOI PMC
Wolf K., Mazo I., Leung H., Engelke K., von Andrian U.H., Deryugina E.I., Strongin A.Y., Bröcker E.B., Friedl P. Compensation Mechanism in Tumor Cell Migration: Mesenchymal-Amoeboid Transition after Blocking of Pericellular Proteolysis. J. Cell Biol. 2003;160:267–277. doi: 10.1083/jcb.200209006. PubMed DOI PMC
Rösel D., Brábek J., Tolde O., Mierke C.T., Zitterbart D.P., Raupach C., Bicanová K., Kollmannsberger P., Paňková D., Veselý P., et al. Up-Regulation of Rho/ROCK Signaling in Sarcoma Cells Drives Invasion and Increased Generation of Protrusive Forces. Mol. Cancer Res. 2008;6:1410–1420. doi: 10.1158/1541-7786.MCR-07-2174. PubMed DOI
Clark A.G., Vignjevic D.M. Modes of Cancer Cell Invasion and the Role of the Microenvironment. Curr. Opin. Cell Biol. 2015;36:13–22. doi: 10.1016/j.ceb.2015.06.004. PubMed DOI
Cao J., Chiarelli C., Richman O., Zarrabi K., Kozarekar P., Zucker S. Membrane Type 1 Matrix Metalloproteinase Induces Epithelial-to-Mesenchymal Transition in Prostate Cancer. J. Biol. Chem. 2008;283:6232–6240. doi: 10.1074/jbc.M705759200. PubMed DOI
Yu X., Zech T., McDonald L., Gonzalez E.G., Li A., Macpherson I., Schwarz J.P., Spence H., Futó K., Timpson P., et al. N-WASP Coordinates the Delivery and F-Actin-Mediated Capture of MT1-MMP at Invasive Pseudopods. J. Cell Biol. 2012;199:527–544. doi: 10.1083/jcb.201203025. PubMed DOI PMC
Sabeh F., Li X.Y., Saunders T.L., Rowe R.G., Weiss S.J. Secreted versus Membrane-Anchored Collagenases: Relative Roles in Fibroblast-Dependent Collagenolysis and Invasion. J. Biol. Chem. 2009;284:23001–23011. doi: 10.1074/jbc.M109.002808. PubMed DOI PMC
Cao J., Kozarekar P., Pavlaki M., Chiarelli C., Bahou W.F., Zucker S. Distinct Roles for the Catalytic and Hemopexin Domains of Membrane Type 1-Matrix Metalloproteinase in Substrate Degradation and Cell Migration. J. Biol. Chem. 2004;279:14129–14139. doi: 10.1074/jbc.M312120200. PubMed DOI
Li X.-Y., Ota I., Yana I., Sabeh F., Weiss S.J. Molecular Dissection of the Structural Machinery Underlying the Tissue-Invasive Activity of Membrane Type-1 Matrix Metalloproteinase. Mol. Biol. Cell. 2008;19:3221–3233. doi: 10.1091/mbc.e08-01-0016. PubMed DOI PMC
Hotary K., Allen E., Punturieri A., Yana I., Weiss S.J. Regulation of Cell Invasion and Morphogenesis in a Three-Dimensional Type I Collagen Matrix by Membrane-Type Matrix Metalloproteinases 1, 2, and 3. J. Cell Biol. 2000;149:1309–1323. doi: 10.1083/jcb.149.6.1309. PubMed DOI PMC
Pahwa S., Bhowmick M., Amar S., Cao J., Strongin A.Y., Fridman R., Weiss S.J., Fields G.B. Characterization and Regulation of MT1-MMP Cell Surface-Associated Activity. Chem. Biol. Drug Des. 2019;93:1251–1264. doi: 10.1111/cbdd.13450. PubMed DOI PMC
Nyalendo C., Sartelet H., Gingras D., Béliveau R. Inhibition of Membrane-Type 1 Matrix Metalloproteinase Tyrosine Phosphorylation Blocks Tumor Progression in Mice. Anticancer Res. 2010;30:422. PubMed
Uekita T., Gotoh I., Kinoshita T., Itoh Y., Sato H., Shiomi T., Okada Y., Seiki M. Membrane-Type 1 Matrix Metalloproteinase Cytoplasmic Tail-Binding Protein-1 Is a New Member of the Cupin Superfamily. A Possible Multifunctional Protein Acting as an Invasion Suppressor down-Regulated in Tumors. J. Biol. Chem. 2004;279:12734–12743. doi: 10.1074/jbc.M309957200. PubMed DOI
Qiang L., Cao H., Chen J., Weller S.G., Krueger E.W., Zhang L., Razidlo G.L., McNiven M.A. Pancreatic Tumor Cell Metastasis Is Restricted by MT1-MMP Binding Protein MTCBP-1. J. Cell Biol. 2019;218:317–332. doi: 10.1083/jcb.201802032. PubMed DOI PMC
Ferrari R., Martin G., Tagit O., Guichard A., Cambi A., Voituriez R., Vassilopoulos S., Chavrier P. MT1-MMP Directs Force-Producing Proteolytic Contacts That Drive Tumor Cell Invasion. Nat. Commun. 2019;10:4886. doi: 10.1038/s41467-019-12930-y. PubMed DOI PMC