Invadopodia Structure in 3D Environment Resolved by Near-Infrared Branding Protocol Combining Correlative Confocal and FIB-SEM Microscopy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1815684J
Grantová Agentura České Republiky
PROGRES Q43
Univerzita Karlova v Praze
SVV 260432
Univerzita Karlova v Praze
No.CZ.02.1.01/0.0/0.0/16_013/0001775
European Regional Development Fund
276321
Univerzita Karlova v Praze
PubMed
34360570
PubMed Central
PMC8346040
DOI
10.3390/ijms22157805
PII: ijms22157805
Knihovny.cz E-zdroje
- Klíčová slova
- CLEM, FIB-SEM, MT1-MMP, invadopodia, invasiveness,
- MeSH
- blízká infračervená spektroskopie metody MeSH
- fibrosarkom patologie MeSH
- invazivní růst nádoru MeSH
- lidé MeSH
- mikroskopie elektronová rastrovací metody MeSH
- nádorové buňky kultivované MeSH
- nádory prsu patologie MeSH
- počítačové zpracování obrazu MeSH
- podozomy patologie MeSH
- zobrazování trojrozměrné metody MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Cancer cell invasion through tissue barriers is the intrinsic feature of metastasis, the most life-threatening aspect of cancer. Detailed observation and analysis of cancer cell behaviour in a 3D environment is essential for a full understanding of the mechanisms of cancer cell invasion. The inherent limits of optical microscopy resolution do not allow to for in-depth observation of intracellular structures, such as invadopodia of invading cancer cells. The required resolution can be achieved using electron microscopy techniques such as FIB-SEM. However, visualising cells in a 3D matrix using FIB-SEM is challenging due to difficulties with localisation of a specific cell deep within the resin block. We have developed a new protocol based on the near-infrared branding (NIRB) procedure that extends the pattern from the surface grid deep inside the resin. This 3D burned pattern allows for precise trimming followed by targeted 3D FIB-SEM. Here we present detailed 3D CLEM results combining confocal and FIB-SEM imaging of cancer cell invadopodia that extend deep into the collagen meshwork.
Department of Cell Biology Charles University Viničná 7 12800 Prague Czech Republic
Department of Physical Chemistry Charles University Hlavova 8 12800 Prague Czech Republic
Zobrazit více v PubMed
Linder S., Wiesner C., Himmel M. Degrading devices: Invadosomes in proteolytic cell invasion. Annu. Rev. Cell Dev. Biol. 2011;27:185–211. doi: 10.1146/annurev-cellbio-092910-154216. PubMed DOI
Gimona M., Buccione R. Adhesions that mediate invasion. Int. J. Biochem. Cell Biol. 2006;38:1875–1892. doi: 10.1016/j.biocel.2006.05.003. PubMed DOI
Schoumacher M., Goldman R.D., Louvard D., Vignjevic D.M. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J. Cell Biol. 2010;189:541–556. doi: 10.1083/jcb.200909113. PubMed DOI PMC
Lizárraga F., Poincloux R., Romao M., Montagnac G., Le Dez G., Bonne I., Rigaill G., Raposo G., Chavrier P. Diaphanous-related formins are required for invadopodia formation and invasion of breast tumor cells. Cancer Res. 2009;69:2792–2800. doi: 10.1158/0008-5472.CAN-08-3709. PubMed DOI
Tolde O., Rösel D., Veselý P., Folk P., Brábek J. The structure of invadopodia in a complex 3D environment. Eur. J. Cell Biol. 2010;89:674–680. doi: 10.1016/j.ejcb.2010.04.003. PubMed DOI
Wisdom K.M., Adebowale K., Chang J., Lee J.Y., Nam S., Desai R., Rossen N.S., Rafat M., West R.B., Hodgson L., et al. Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat. Commun. 2018;9:4144. doi: 10.1038/s41467-018-06641-z. PubMed DOI PMC
Iizuka S., Leon R.P., Gribbin K.P., Zhang Y., Navarro J., Smith R., Devlin K., Wang L.G., Gibbs S.L., Korkola J., et al. Crosstalk between invadopodia and the extracellular matrix. Eur. J. Cell Biol. 2020;99:151122. doi: 10.1016/j.ejcb.2020.151122. PubMed DOI
Begemann I., Galic M. Correlative Light Electron Microscopy: Connecting Synaptic Structure and Function. Front. Synaptic Neurosci. 2016;8:28. doi: 10.3389/fnsyn.2016.00028. PubMed DOI PMC
Razi M., Tooze S.A. Correlative light and electron microscopy. Methods Enzymol. 2009;452:261–275. doi: 10.1016/S0076-6879(08)03617-3. PubMed DOI
Bishop D., Nikić I., Brinkoetter M., Knecht S., Potz S., Kerschensteiner M., Misgeld T. Near-infrared branding efficiently correlates light and electron microscopy. Nat. Methods. 2011;8:568–570. doi: 10.1038/nmeth.1622. PubMed DOI
Luckner M., Burgold S., Filser S., Scheungrab M., Niyaz Y., Hummel E., Wanner G., Herms J. Label-free 3D-CLEM Using Endogenous Tissue Landmarks. iScience. 2018;6:92–101. doi: 10.1016/j.isci.2018.07.012. PubMed DOI PMC
Artym V.V., Swatkoski S., Matsumoto K., Campbell C.B., Petrie R.J., Dimitriadis E.K., Li X., Mueller S.C., Bugge T.H., Gucek M., et al. Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network. J. Cell Biol. 2015;208:331–350. doi: 10.1083/jcb.201405099. PubMed DOI PMC
Tolde O., Gandalovičová A., Křížová A., Veselý P., Chmelík R., Rosel D., Brábek J. Quantitative phase imaging unravels new insight into dynamics of mesenchymal and amoeboid cancer cell invasion. Sci. Rep. 2018;8:12020. doi: 10.1038/s41598-018-30408-7. PubMed DOI PMC
Xu C.S., Pang S., Hayworth K.J., Hess H.F. Volume Microscopy. Humana; New York, NY, USA: 2020. Transforming FIB-SEM Systems for Large-Volume connectomics and cell biology; pp. 221–243.
Artym V.V., Zhang Y., Seillier-Moiseiwitsch F., Yamada K.M., Mueller S.C. Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: Defining the stages of invadopodia formation and function. Cancer Res. 2006;66:3034–3043. doi: 10.1158/0008-5472.CAN-05-2177. PubMed DOI
Schorb M., Briggs J.A.G. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity. Ultramicroscopy. 2014;143:24–32. doi: 10.1016/j.ultramic.2013.10.015. PubMed DOI PMC
Peddie C.J., Blight K., Wilson E., Melia C., Marrison J., Carzaniga R., Domart M.-C., O’Toole P., Larijani B., Collinson L.M. Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells. Ultramicroscopy. 2014;143:3–14. doi: 10.1016/j.ultramic.2014.02.001. PubMed DOI PMC
Itoh Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol. 2015;44–46:207–223. doi: 10.1016/j.matbio.2015.03.004. PubMed DOI
Gifford V., Itoh Y. MT1-MMP-dependent cell migration: Proteolytic and non-proteolytic mechanisms. Biochem. Soc. Trans. 2019;47:811–826. doi: 10.1042/BST20180363. PubMed DOI PMC
Wolf K., Friedl P. Functional imaging of pericellular proteolysis in cancer cell invasion. Biochimie. 2005;87:315–320. doi: 10.1016/j.biochi.2004.10.016. PubMed DOI
Hoshino D., Kirkbride K.C., Costello K., Clark E.S., Sinha S., Grega-Larson N., Tyska M.J., Weaver A.M. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep. 2013;5:1159–1168. doi: 10.1016/j.celrep.2013.10.050. PubMed DOI PMC
Knott G., Rosset S., Cantoni M. Focussed ion beam milling and scanning electron microscopy of brain tissue. J. Vis. Exp. 2011;53:e2588. doi: 10.3791/2588. PubMed DOI PMC
Cytoplasmic Tail of MT1-MMP: A Hub of MT1-MMP Regulation and Function