Polymer-coated hexagonal upconverting nanoparticles: chemical stability and cytotoxicity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37426333
PubMed Central
PMC10327433
DOI
10.3389/fchem.2023.1207984
PII: 1207984
Knihovny.cz E-zdroje
- Klíčová slova
- cell viability, dissolution, lanthanides, luminescence, nanoparticles, upconversion, uptake,
- Publikační typ
- časopisecké články MeSH
Large (120 nm) hexagonal NaYF4:Yb, Er nanoparticles (UCNPs) were synthesized by high-temperature coprecipitation method and coated with poly(ethylene glycol)-alendronate (PEG-Ale), poly (N,N-dimethylacrylamide-co-2-aminoethylacrylamide)-alendronate (PDMA-Ale) or poly(methyl vinyl ether-co-maleic acid) (PMVEMA). The colloidal stability of polymer-coated UCNPs in water, PBS and DMEM medium was investigated by dynamic light scattering; UCNP@PMVEMA particles showed the best stability in PBS. Dissolution of the particles in water, PBS, DMEM and artificial lysosomal fluid (ALF) determined by potentiometric measurements showed that all particles were relatively chemically stable in DMEM. The UCNP@Ale-PEG and UCNP@Ale-PDMA particles were the least soluble in water and ALF, while the UCNP@PMVEMA particles were the most chemically stable in PBS. Green fluorescence of FITC-Ale-modified UCNPs was observed inside the cells, demonstrating successful internalization of particles into cells. The highest uptake was observed for neat UCNPs, followed by UCNP@Ale-PDMA and UCNP@PMVEMA. Viability of C6 cells and rat mesenchymal stem cells (rMSCs) growing in the presence of UCNPs was monitored by Alamar Blue assay. Culturing with UCNPs for 24 h did not affect cell viability. Prolonged incubation with particles for 72 h reduced cell viability to 40%-85% depending on the type of coating and nanoparticle concentration. The greatest decrease in cell viability was observed in cells cultured with neat UCNPs and UCNP@PMVEMA particles. Thanks to high upconversion luminescence, high cellular uptake and low toxicity, PDMA-coated hexagonal UCNPs may find future applications in cancer therapy.
Center for Advanced Preclinical Imaging 1st Faculty of Medicine Charles University Prague Czechia
Department of Analytical Chemistry University of Chemistry and Technology Prague Prague Czechia
Department of Neurosciences 2nd Faculty of Medicine Charles University Prague Czechia
Institute of Experimental Medicine Czech Academy of Sciences Prague Czechia
Institute of Macromolecular Chemistry Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Abdul Jalil R., Zhang Y. (2008). Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 29, 4122–4128. 10.1016/j.biomaterials.2008.07.012 PubMed DOI
Ahmad M. Y., Ahmad M. W., Yue H., Ho S. L., Park J. A., Jung K.-H., et al. (2020). In vivo positive magnetic resonance imaging applications of poly(methyl vinyl ether-alt-maleic acid)-coated ultra-small paramagnetic gadolinium oxide nanoparticles. Molecules 25, 1159. 10.3390/molecules25051159 PubMed DOI PMC
Andresen E., Würth C., Prinz C., Michaelis M., Resch-Genger U. (2020). Time-resolved luminescence spectroscopy for monitoring the stability and dissolution behaviour of upconverting nanocrystals with different surface coatings. Nanoscale 12, 12589–12601. 10.1039/D0NR02931A PubMed DOI
Auzel F. (2004). Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139–174. 10.1021/cr020357g PubMed DOI
Barbier O., Arreola-Mendoza L., Del Razo L. M. (2010). Molecular mechanisms of fluoride toxicity. Biol. Interact. 188, 319–333. 10.1016/j.cbi.2010.07.011 PubMed DOI
Boyer J.-C., Vetrone F., Cuccia L. A., Capobianco J. A. (2006). Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 128, 7444–7445. 10.1021/ja061848b PubMed DOI
Boyer J. C., Naseaou M. P., Morray J. I., van Veggel F. C. J. M. (2010). Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir 26, 1157–1164. 10.1021/la902260j PubMed DOI
Colombo C., Monhemius A. J., Plant J. A. (2008). Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotoxicol. Environ. Saf. 71, 722–730. 10.1016/j.ecoenv.2007.11.011 PubMed DOI
Egatz-Gomez A., Asher M., Peterson R., Roldan M. A., Ros A. (2022). Microwave synthesis of upconverting nanoparticles with bis(2-ethylhexyl) adipate. RSC Adv. 12, 23026–23038. 10.1039/D2RA03262G PubMed DOI PMC
Fischer S., Bronstein N. D., Swabeck J. K., Chan E. M., Alivisatos A. P. (2016). Precise tuning of surface quenching for luminescence enhancement in core–shell lanthanide-doped nanocrystals. Nano Lett. 16, 7241–7247. 10.1021/acs.nanolett.6b03683 PubMed DOI
Fischer S., Martín-Rodríguez R., Fröhlich B., Krämer K. W., Meijerink A., Goldschmidt J. C. (2014). Upconversion quantum yield of Er3+-doped β-NaYF4 and Gd2O2S: The effects of host lattice, Er3+ doping, and excitation spectrum bandwidth. J. Lumin. 153, 281–287. 10.1016/j.jlumin.2014.03.047 DOI
Hamblin M. R. (2018). Upconversion in photodynamic therapy: Plumbing the depths. Dalton Trans. 47, 8571–8580. 10.1039/c8dt00087e PubMed DOI PMC
Jin J., Gu Y.-J., Man C. W.-Y., Cheng J., Xu Z., Zhang Y., et al. (2011). Polymer-coated NaYF4:Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging. ACS Nano 5, 7838–7847. 10.1021/nn201896m PubMed DOI
Johnson N. J. J., Sangeetha N. M., Boyer J.-C., van Veggel F. C. J. M. (2010). Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF4:Yb3+/Er3+ nanoparticles. Nanoscale 2, 771–777. 10.1039/b9nr00379g PubMed DOI
Jones C. M. S., Gakamsky A., Marques-Hueso J. (2021). The upconversion quantum yield (ucqy): A review to standardize the measurement methodology, improve comparability, and define efficiency standards. Sci. Technol. Adv. Mat. 22, 810–848. 10.1080/14686996.2021.1967698 PubMed DOI PMC
Kaiser M., Würth C., Kraft M., Hyppänen I., Soukka T., Resch-Genger U. (2017). Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles – measurements and simulations. Nanoscale 9, 10051–10058. 10.1039/c7nr02449e PubMed DOI
Kamimura M., Miyamoto D., Saito Y., Soga K., Nagasaki Y. (2008). Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling. Langmuir 24, 8864–8870. 10.1021/la801056c PubMed DOI
Kostiv U., Lobaz V., Kučka J., Švec P., Sedláček O., Hrubý M., et al. (2017). A simple neridronate-based surface coating strategy for upconversion nanoparticles: Highly colloidally stable 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale 9, 16680–16688. 10.1039/c7nr05456d PubMed DOI
Li S., Wei X., Li S., Zhu C., Wu C. (2020). Up-Conversion luminescent nanoparticles for molecular imaging, cancer diagnosis and treatment. Int. J. Nanomed. 15, 9431–9445. 10.2147/IJN.S266006 PubMed DOI PMC
Li X., Zhang F., Zhao D. (2015). Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 44, 1346–1378. 10.1039/c4cs00163j PubMed DOI
Liang G., Wang H., Shi H., Wang H., Zhu M., Jing A., et al. (2020). Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J. Nanobiotechnol. 18, 154. 10.1186/s12951-020-00713-3 PubMed DOI PMC
Lisjak D., Plohl O., Vidmar J., Majaron B., Ponikvar-Svet M. (2016). Dissolution mechanism of upconverting AYF4:Yb,Tm (A = Na or K) nanoparticles in aqueous media. Langmuir 32, 8222–8229. 10.1021/acs.langmuir.6b02675 PubMed DOI
Longhin E. M., El Yamani N., Rundén-Pran E., Dusinska M. (2022). The alamar blue assay in the context of safety testing of nanomaterials. Front. Toxicol. 4, 981701. 10.3389/ftox.2022.981701 PubMed DOI PMC
MacKenzie L. E., Alvarez-Ruiz D., Pal R. (2022). Low-temperature open-air synthesis of PVP-coated NaYF4:Yb,Er,Mn upconversion nanoparticles with strong red emission. R. Soc. Open Sci. 9, 211508. 10.1098/rsos.211508 PubMed DOI PMC
Mao L., Lu Z., He N., Zhang L., Deng Y., Duan D. (2017). A new method for improving the accuracy of miRNA detection with NaYF4:Yb,Er upconversion nanoparticles. Sci. China Chem. 60, 157–162. 10.1007/s11426-016-0021-0 DOI
Mi C., Zhang J., Gao H., Wu X., Wang M., Wu Y., et al. (2010). Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare Earth-doped up-conversion fluorescent (NaYF4: Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells. Nanoscale 2, 1141–1148. 10.1039/c0nr00102c PubMed DOI PMC
Nahorniak M., Patsula V., Mareková D., Matouš P., Shapoval O., Oleksa V., et al. (2023). Chemical and colloidal stability of polymer-coated NaYF4:Yb,Er nanoparticles in aqueous media and viability of cells: The effect of a protective coating. Int. J. Mol. Sci. 24, 2724. 10.3390/ijms24032724 PubMed DOI PMC
Oleksa V., Macková H., Patsula V., Dydowitzová A., Janoušková O., Horák D. (2020). Doxorubicin-conjugated iron oxide nanoparticles: Surface engineering and biomedical investigation. ChemPlusChem 85, 1156–1163. 10.1002/cplu.202000360 PubMed DOI
Oliveira H., Bednarkiewicz A., Falk A., Fröhlich E., Lisjak D., Prina-Mello A., et al. (2019). Critical considerations on the clinical translation of upconversion nanoparticles (UCNPs): Recommendations from the European upconversion network (COST Action CM1403). Adv. Healthc. Mat. 8, 1801233. 10.1002/adhm.201801233 PubMed DOI
Park W., Lu D., Ahn S. (2015). Plasmon enhancement of luminescence upconversion. Chem. Soc. Rev. 44, 2940–2962. 10.1039/c5cs00050e PubMed DOI
Park Y. I., Nam S. H., Kim J. H., Bae Y. M., Yoo B., Kim H. M., et al. (2013). Comparative study of upconverting nanoparticles with various crystal structures, core/shell structures, and surface characteristics. J. Phys. Chem. C 117, 2239–2244. 10.1021/jp3105248 DOI
Pichaandi J., Boyer J.-C., Delaney K. R., van Veggel F. C. J. M. (2011). Two-photon upconversion laser (scanning and wide-field) microscopy using ln3+-doped NaYF4 upconverting nanocrystals: A critical evaluation of their performance and potential in bioimaging. J. Phys. Chem. C 115, 19054–19064. 10.1021/jp206345j DOI
Plohl O., Kralj S., Majaron B., Fröhlich E., Ponikvar-Svet M., Makovec D., et al. (2017). Amphiphilic coatings for the protection of upconverting nanoparticles against dissolution in aqueous media. Dalton Trans. 46, 6975–6984. 10.1039/c7dt00529f PubMed DOI
Ramírez-García G., Panikar S. S., López-Luke T., Piazza V., Honorato-Colin M. A., Camacho-Villegas T., et al. (2018). An immunoconjugated up-conversion nanocomplex for selective imaging and photodynamic therapy against HER2-positive breast cancer. Nanoscale 10, 10154–10165. 10.1039/c8nr01512k PubMed DOI
Saleh M. I., Rühle B., Wang S., Radnik J., You Y., Resch-Genger U. (2020). Assessing the protective effects of different surface coatings on NaYF4:Yb3+, Er3+ upconverting nanoparticles in buffer and DMEM. Sci. Rep. 10, 19318. 10.1038/s41598-020-76116-z PubMed DOI PMC
Schietinger S., Menezes L. S., Lauritzen B., Benson O. (2009). Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals. Nano Lett. 9, 2477–2481. 10.1021/nl901253t PubMed DOI
Shan S. N., Wang X. Y., Jia N. Q. (2011). Synthesis of NaYF4:Yb3+, Er3+ upconversion nanoparticles in normal microemulsions. Nanoscale Res. Lett. 6, 539. 10.1186/1556-276x-6-539 PubMed DOI PMC
Shao H., Xu D., Ding Y., Hong X., Liu Y. (2018). An “off-on” colorimetric and fluorometric assay for Cu(II) based on the use of NaYF4:Yb(III),Er(III) upconversion nanoparticles functionalized with branched polyethylenimine. Microchim. Acta 185, 211. 10.1007/s00604-018-2740-7 PubMed DOI
Sun L.-D., Wang Y.-F., Yan C.-H. (2014). Paradigms and challenges for bioapplication of rare Earth upconversion luminescent nanoparticles: Small size and tunable emission/excitation spectra. Acc. Chem. Res. 47, 1001–1009. 10.1021/ar400218t PubMed DOI
Wang F., Wang J., Liu X. (2010). Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. Int. Ed. 49, 7456–7460. 10.1002/anie.201003959 PubMed DOI
Wang M., Liu J.-L., Zhang Y.-X., Hou W., Wu X.-L., Xu S.-K. (2009). Two-phase solvothermal synthesis of rare-Earth doped NaYF4 upconversion fluorescent nanocrystals. Mat. Lett. 63, 325–327. 10.1016/j.matlet.2008.10.028 DOI
Wang Z.-L., Hao J., Chan H. L. W., Wong W.-T., Wong K.-L. (2012). A strategy for simultaneously realizing the cubic-to-hexagonal phase transition and controlling the small size of NaYF4:Yb3+,Er3+ nanocrystals for in vitro cell imaging. Small 8, 1863–1868. 10.1002/smll.201102703 PubMed DOI
Wen S., Zhou J., Zheng K., Bednarkiewicz A., Liu X., Jin D. (2018). Advances in highly doped upconversion nanoparticles. Nat. Commun. 9, 2415. 10.1038/s41467-018-04813-5 PubMed DOI PMC
Wilhelm S., Kaiser M., Würth C., Heiland J., Carrillo-Carrion C., Muhr V., et al. (2015). Water dispersible upconverting nanoparticles: Effects of surface modification on their luminescence and colloidal stability. Nanoscale 7, 1403–1410. 10.1039/c4nr05954a PubMed DOI
Wisser M. D., Fischer S., Siefe C., Alivisatos A. P., Salleo A., Dionne J. A. (2018). Improving quantum yield of upconverting nanoparticles in aqueous media via emission sensitization. Nano Lett. 18, 2689–2695. 10.1021/acs.nanolett.8b00634 PubMed DOI
Xie X., Gao N., Deng R., Sun Q., Xu Q.-H., Liu X. (2013). Mechanistic investigation of photon upconversion in Nd3+-sensitized core–shell nanoparticles. J. Am. Chem. Soc. 135, 12608–12611. 10.1021/ja4075002 PubMed DOI
Yao W., Tian Q., Liu J., Wu Z., Cui S., Ding J., et al. (2016). Large-scale synthesis and screen printing of upconversion hexagonal-phase NaYF4:Yb3+,Tm3+/Er3+/Eu3+ plates for security applications. J. Mat. Chem. C 4, 6327–6335. 10.1039/c6tc01513a DOI
Ye S., Chen G., Shao W., Qu J., Prasad P. N. (2015). Tuning upconversion through a sensitizer/activator-isolated NaYF4 core/shell structure. Nanoscale 7, 3976–3984. 10.1039/c4nr07678h PubMed DOI
Zhou J., Liu Q., Feng W., Sun Y., Li F. (2015). Upconversion luminescent materials: Advances and applications. Chem. Rev. 115, 395–465. 10.1021/cr400478f PubMed DOI