Doxorubicin-Conjugated Iron Oxide Nanoparticles: Surface Engineering and Biomedical Investigation
Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32496029
DOI
10.1002/cplu.202000360
Knihovny.cz E-zdroje
- Klíčová slova
- antitumor agents, cytotoxicity, drug delivery, magnetic properties, nanoparticles,
- MeSH
- akrylové pryskyřice chemická syntéza chemie MeSH
- doxorubicin chemie farmakologie MeSH
- lidé MeSH
- magnetické nanočástice chemie MeSH
- nádorové buněčné linie MeSH
- nosiče léků chemická syntéza chemie MeSH
- povrchové vlastnosti MeSH
- protinádorové látky chemie farmakologie MeSH
- screeningové testy protinádorových léčiv MeSH
- uvolňování léčiv MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akrylové pryskyřice MeSH
- doxorubicin MeSH
- magnetické nanočástice MeSH
- nosiče léků MeSH
- protinádorové látky MeSH
Development of therapeutic systems to treat glioblastoma, the most common and aggressive brain tumor, belongs to priority tasks in cancer research. We have synthesized colloidally stable magnetic nanoparticles (Dh =336 nm) coated with doxorubicin (Dox) conjugated copolymers of N,N-dimethylacrylamide and either N-acryloylglycine methyl ester or N-acryloylmethyl 6-aminohexanoate. The terminal carboxyl groups of the copolymers were reacted with alendronate by carbodiimide formation. Methyl ester groups were then transferred to hydrazides for binding Dox by a hydrolytically labile hydrazone bond. The polymers were subsequently bound on the magnetic nanoparticles through bisphosphonate terminal groups. Finally, the anticancer effect of the Dox-conjugated particles was investigated using the U-87 glioblastoma cell line in terms of particle internalization and cell viability, which decreased to almost zero at a concentration of 100 μg of particles per ml. These results confirmed that poly(N,N-dimethylacrylamide)-coated magnetic nanoparticles can serve as a solid support for Dox delivery to glioblastoma cells.
Zobrazit více v PubMed
U. Kostiv, V. Patsula, M. Šlouf, I. M. Pongrac, S. Škokić, M. Dobrivojević Radmilović, I. Pavičić, I. Vinković Vrček, S. Gajović, D. Horák, RSC Adv. 2017, 7, 8786-8797.
A. B. Shatan, K. Venclíková, B. A. Zasońska, V. Patsula, O. Pop-Georgievski, E. Petrovský, D. Horák, Pharm. Res. 2019, 36, 147.
V. Patsula, T. Borisova, U. Kostiv, M. Galkin, A. Pastukhov, D. Horák, Nanoscience 2019, 11, 61-69.
K. Holá, Z. Marková, G. Zoppellaro, J. Tuček, R. Zbořil, Biotechnol. Adv. 2015, 33, 1162-1176.
M. Arruebo, R. Fernández-Pacheco, M. R. Ibarra, J. Santamaría, Nano Today 2007, 2, 22-32.
U. Altanerova, M. Babincova, P. Babinec, K. Benejova, J. Jakubechova, V. Altanerova, M. Zduriencikova, V. Repiska, C. Altaner, Int. J. Nanomed. 2017, 12, 7923-7936.
M. Bañobre-López, A. Teijeiro, J. Rivas, Rep. Pract. Oncol. Radiother. 2013, 18, 397-400.
J. A. Champion, Y. K. Katare, S. Mitragotri, J. Controlled Release 2007, 121, 3-9.
R. Hachani, M. Lowdell, M. Birchall, A. Hervault, D. Mertz, S. Begin-Coline, N. T. K. Thanh, Nanoscale 2016, 8, 3278-3287.
H. Hayashi, Y. Hakuta, Materials 2010, 3, 3794-3817.
W. Zhang, F. Shen, R. Hong, Particuology 2011, 9, 179-18.
W. Wu, Z. Wu, T. Yu, C. Jiang, W.-S. Kim, Sci. Technol. Adv. Mater. 2015, 16, 023501.
M. A. Malik, M. Y. Wani, M. A. Hashim, Arabian J. Chem. 2012, 5, 397-417.
S. N. Khadzhiev, K. M. Kadiev, G. P. Yampolskaya, M. K. Kadieva, Adv. Colloid Interface Sci. 2013, 197, 132-145.
J. A. Smith, P.-L. Tremblay, M. S. Pravin, O. L. Snoeyenbos-West, A. E. Franks, K. P. Nevin, D. R. Lovley, Appl. Environ. Microbiol. 2014, 80, 4331-4340.
M. Timko, M. Molcan, A. Hashim, A. Skumiel, M. Müller, H. Gojzewski, A. Jozefczak, J. Kovac, M. Rajnak, M. Makowski, P. Kopčanský, EEE Trans. Magn. 2013, 49, 250-254.
A. Quarta, A. Curcio, H. Kakwereb, T. Pellegrino, Nanoscale 2012, 4, 3319-3334.
T. Kikuchi, R. Kasuya, S. Endo, A. Nakamura, T. Takai, N. M. Nolte, K. Tohji, J. Balachandran, J. Magn. Magn. Mater. 2011, 323, 1216-1222.
A. Z. M. Badruddoza, L. Junwen, K. Hidajat, M. S. Uddin, Colloids Surf. B 2012, 92, 223-231.
M. Hrubý, T. Etrych, J. Kučka, M. Forsterová, K. Ulbrich, J. Appl. Polym. Sci. 2006, 101, 3192-3201.
A. Ruiz, P. C. Morais, R. Bentes de Azevedo, Z. G. M. Lacava, A. Villanueva, M. P. Morales, J. Nanopart. Res. 2014, 16, 2589.
W.-Y. Rho, H.-M. Kim, S. Kyeong, Y.-L. Kang, D.-H. Kim, H. Kang, C. Jeong, D.-E. Kim, Y.-S. Lee, B.-H. Jun, J. Ind. Eng. Chem. 2014, 20, 2646-2649.
J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, J. Hubalek, Pharmacol. Res. 2010, 62, 144-149.
D. Portet, B. Denizot, E. Rump, J.-J. Lejeune, P. Jallet, J. Colloid Interface Sci. 2001, 238, 37-42.
J. P. Brown, S. Morin, W. Leslie, A. Papaioannou, A. M. Cheung, Can. Fam. Phys. 2014, 60, 324-333.
A. Mathew, A. Brufsky, Int. J. Cancer 2015, 137, 753-764.
D. Sturm, S. Bender, D. T. W. Jones, P. Lichter, J. Grill, O. Becher, C. Hawkins, J. Majewski, C. Jones, J. F. Costello, A. Iavarone, K. Aldape, C. W. Brennan, N. Jabado, S. M. Pfister, Nat. Rev. Cancer 2014, 14, 92-107.
D. Horák, M. Babič, P. Jendelová, V. Herynek, M. Trchová, K. Likavčanová, M. Kapcalová, M. Hájek, E. Syková, J. Magn. Magn. Mater. 2009, 321, 1539-1547.
M. Gregori, D. Bertani, E. Cazzaniga, A. Orlando, M. Mauri, A. Bianchi, F. Re, S. Sesana, S. Minniti, M. Francolini, A. Cagnotto, M. Salmona, L. Nardo, D. Salerno, F. Mantegazza, M. Masserini, R. Simonutti, Macromol. Biosci. 2015, 15, 1687-1697.
B. A. Zasonska, N. Boiko, D. Horák, O. Klyuchivska, H. Macková, M. Beneš, M. Babič, M. Trchová, J. Hromádková, R. Stoika, J. Biomed. Nanotechnol. 2013, 9, 479-491.
Z. Plichta, D. Horák, D. Mareková, K. Turnovcová, R. Kaiser, P. Jendelová, ChemMedChem, 2020, 15,.96-104.
Z. Plichta, Y. Kozak, R. Panchuk, V. Sokolova, M. Epple, L. Kobylinska, P. Jendelová, D. Horák, Beilstein J. Nanotechnol. 2018, 9, 2533-2545.
M. P. Algi, O. Okay, Eur. Polym. J. 2014, 59, 113-121.
D. B. Thomas, A. J. Convertine, L. J. Myrick, C. W. Scales, A. E. Smith, A. B. Lowe, Y. A. Vasilieva, N. Ayres, C. L. McCormick, Macromolecules 2014, 37, 8941-8950.
B. Neises, W. Steglich, Angew. Chem. Int. Ed. 1978, 17, 522-524;
Angew. Chem. 1978, 90, 556-557.
E. Amstad, M. Textora, E. Reimhult, Nanoscale 2011, 3, 2819-2843.
P. Chytil, T. Etrych, Č. Koňák, M. Šírová, T. Mrkvan, B. Říhová, K. Ulbrich, J. Controlled Release 2006, 115, 26-36.
T. Etrych, P. Chytil, M. Jelínková, B. Říhová, K. Ulbrich, Macromol. Biosci. 2002, 2, 43-52.
J. Kalia, R. T. Raines, Angew. Chem. Int. Ed. 2008, 47, 7523-7526;
Angew. Chem. 2008, 120, 7633-7636.
V. Patsula, M. Moskvin, S. Dutz, D. Horák, J. Phys. Chem. Solids 2016, 88, 24-30.
V. Patsula, D. Horák, J. Kučka, H. Macková, V. Lobaz, P. Francová, V. Herynek, T. Heizer, P. Páral, L. Šefc, Sci. Rep. 2019, 9, 10765.
B. Chertok, A. E. David, V. C. Yang, Biomaterials 2010, 31, 6317-6324.
D. N. Benoit, H. Zhu, M. H. Lilierose, R. A. Verm, N. Ali, A. N. Morrison, J. D. Fortner, C. Avendano, V. L. Colvin, Anal. Chem. 2012, 84, 9238-9245.
S. J. Sofia, V. Premnath, E. W. Merrill, Macromolecules 1998, 31, 5059-5070.
Polymer-coated hexagonal upconverting nanoparticles: chemical stability and cytotoxicity