• Je něco špatně v tomto záznamu ?

Elucidation of the Clustered Nano-Architecture of Radiation-Induced DNA Damage Sites and Surrounding Chromatin in Cancer Cells: A Single Molecule Localization Microscopy Approach

M. Hausmann, M. Falk, C. Neitzel, A. Hofmann, A. Biswas, T. Gier, I. Falkova, DW. Heermann, G. Hildenbrand

. 2021 ; 22 (7) : . [pub] 20210331

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21018980

Grantová podpora
the Heidelberg University Mobility Grant for International Research Cooperation within the excellence initiative II of the Deutsche Forschungsgemeinschaft (DFG) Deutsche Forschungsgemeinschaft
H1601/16-1 Deutsche Forschungsgemeinschaft
DAAD-19-03 DAAD-CAS
GACR 20-04109J Grantová Agentura České Republiky
The projects of Czech Government Plenipotentiary Czech Ministry of Education, Youth and Sports (MEYS-CR)
The Project 3 + 3 for cooperation with JINR Dubna Czech Ministry of Education, Youth and Sports (MEYS-CR)

In cancer therapy, the application of (fractionated) harsh radiation treatment is state of the art for many types of tumors. However, ionizing radiation is a "double-edged sword"-it can kill the tumor but can also promote the selection of radioresistant tumor cell clones or even initiate carcinogenesis in the normal irradiated tissue. Individualized radiotherapy would reduce these risks and boost the treatment, but its development requires a deep understanding of DNA damage and repair processes and the corresponding control mechanisms. DNA double strand breaks (DSBs) and their repair play a critical role in the cellular response to radiation. In previous years, it has become apparent that, beyond genetic and epigenetic determinants, the structural aspects of damaged chromatin (i.e., not only of DSBs themselves but also of the whole damage-surrounding chromatin domains) form another layer of complex DSB regulation. In the present article, we summarize the application of super-resolution single molecule localization microscopy (SMLM) for investigations of these structural aspects with emphasis on the relationship between the nano-architecture of radiation-induced repair foci (IRIFs), represented here by γH2AX foci, and their chromatin environment. Using irradiated HeLa cell cultures as an example, we show repair-dependent rearrangements of damaged chromatin and analyze the architecture of γH2AX repair clusters according to topological similarities. Although HeLa cells are known to have highly aberrant genomes, the topological similarity of γH2AX was high, indicating a functional, presumptively genome type-independent relevance of structural aspects in DSB repair. Remarkably, nano-scaled chromatin rearrangements during repair depended both on the chromatin domain type and the treatment. Based on these results, we demonstrate how the nano-architecture and topology of IRIFs and chromatin can be determined, point to the methodological relevance of SMLM, and discuss the consequences of the observed phenomena for the DSB repair network regulation or, for instance, radiation treatment outcomes.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21018980
003      
CZ-PrNML
005      
20210830100536.0
007      
ta
008      
210728s2021 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/ijms22073636 $2 doi
035    __
$a (PubMed)33807337
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Hausmann, Michael $u Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
245    10
$a Elucidation of the Clustered Nano-Architecture of Radiation-Induced DNA Damage Sites and Surrounding Chromatin in Cancer Cells: A Single Molecule Localization Microscopy Approach / $c M. Hausmann, M. Falk, C. Neitzel, A. Hofmann, A. Biswas, T. Gier, I. Falkova, DW. Heermann, G. Hildenbrand
520    9_
$a In cancer therapy, the application of (fractionated) harsh radiation treatment is state of the art for many types of tumors. However, ionizing radiation is a "double-edged sword"-it can kill the tumor but can also promote the selection of radioresistant tumor cell clones or even initiate carcinogenesis in the normal irradiated tissue. Individualized radiotherapy would reduce these risks and boost the treatment, but its development requires a deep understanding of DNA damage and repair processes and the corresponding control mechanisms. DNA double strand breaks (DSBs) and their repair play a critical role in the cellular response to radiation. In previous years, it has become apparent that, beyond genetic and epigenetic determinants, the structural aspects of damaged chromatin (i.e., not only of DSBs themselves but also of the whole damage-surrounding chromatin domains) form another layer of complex DSB regulation. In the present article, we summarize the application of super-resolution single molecule localization microscopy (SMLM) for investigations of these structural aspects with emphasis on the relationship between the nano-architecture of radiation-induced repair foci (IRIFs), represented here by γH2AX foci, and their chromatin environment. Using irradiated HeLa cell cultures as an example, we show repair-dependent rearrangements of damaged chromatin and analyze the architecture of γH2AX repair clusters according to topological similarities. Although HeLa cells are known to have highly aberrant genomes, the topological similarity of γH2AX was high, indicating a functional, presumptively genome type-independent relevance of structural aspects in DSB repair. Remarkably, nano-scaled chromatin rearrangements during repair depended both on the chromatin domain type and the treatment. Based on these results, we demonstrate how the nano-architecture and topology of IRIFs and chromatin can be determined, point to the methodological relevance of SMLM, and discuss the consequences of the observed phenomena for the DSB repair network regulation or, for instance, radiation treatment outcomes.
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a chromatin $x genetika $x ultrastruktura $7 D002843
650    _2
$a dvouřetězcové zlomy DNA $x účinky záření $7 D053903
650    _2
$a poškození DNA $x genetika $x účinky záření $7 D004249
650    _2
$a oprava DNA $x genetika $x účinky záření $7 D004260
650    _2
$a HeLa buňky $7 D006367
650    _2
$a lidé $7 D006801
650    _2
$a mikroskopie $x metody $7 D008853
650    _2
$a nádory $x genetika $7 D009369
650    _2
$a ionizující záření $7 D011839
650    _2
$a zobrazení jednotlivé molekuly $x metody $7 D000072760
655    _2
$a časopisecké články $7 D016428
700    1_
$a Falk, Martin $u Institute of Biophysics, Czech Academy of Sciences, 612 65 Brno, Czech Republic
700    1_
$a Neitzel, Charlotte $u Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
700    1_
$a Hofmann, Andreas $u Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg, Germany
700    1_
$a Biswas, Abin $u Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
700    1_
$a Gier, Theresa $u Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
700    1_
$a Falkova, Iva $u Institute of Biophysics, Czech Academy of Sciences, 612 65 Brno, Czech Republic
700    1_
$a Heermann, Dieter W $u Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg, Germany
700    1_
$a Hildenbrand, Georg $u Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
773    0_
$w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 22, č. 7 (2021)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33807337 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830100536 $b ABA008
999    __
$a ok $b bmc $g 1689919 $s 1139426
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 22 $c 7 $e 20210331 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
GRA    __
$a the Heidelberg University Mobility Grant for International Research Cooperation within the excellence initiative II of the Deutsche Forschungsgemeinschaft (DFG) $p Deutsche Forschungsgemeinschaft
GRA    __
$a H1601/16-1 $p Deutsche Forschungsgemeinschaft
GRA    __
$a DAAD-19-03 $p DAAD-CAS
GRA    __
$a GACR 20-04109J $p Grantová Agentura České Republiky
GRA    __
$a The projects of Czech Government Plenipotentiary $p Czech Ministry of Education, Youth and Sports (MEYS-CR)
GRA    __
$a The Project 3 + 3 for cooperation with JINR Dubna $p Czech Ministry of Education, Youth and Sports (MEYS-CR)
LZP    __
$a Pubmed-20210728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...