Temoporfin-Conjugated PEGylated Poly(N,N-dimethylacrylamide)-Coated Upconversion Colloid for NIR-Induced Photodynamic Therapy of Pancreatic Cancer

. 2024 Sep 09 ; 25 (9) : 5771-5785. [epub] 20240618

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38888278

Photodynamic therapy (PDT) has the potential to cure pancreatic cancer with minimal side effects. Visible wavelengths are primarily used to activate hydrophobic photosensitizers, but in clinical practice, these wavelengths do not sufficiently penetrate deeper localized tumor cells. In this work, NaYF4:Yb3+,Er3+,Fe2+ upconversion nanoparticles (UCNPs) were coated with polymer and labeled with meta-tetra(hydroxyphenyl)chlorin (mTHPC; temoporfin) to enable near-infrared light (NIR)-triggered PDT of pancreatic cancer. The coating consisted of alendronate-terminated poly[N,N-dimethylacrylamide-co-2-aminoethylacrylamide]-graft-poly(ethylene glycol) [P(DMA-AEM)-PEG-Ale] to ensure the chemical and colloidal stability of the particles in aqueous physiological fluids, thereby also improving the therapeutic efficacy. The designed particles were well tolerated by the human pancreatic adenocarcinoma cell lines CAPAN-2, PANC-1, and PA-TU-8902. After intratumoral injection of mTHPC-conjugated polymer-coated UCNPs and subsequent exposure to 980 nm NIR light, excellent PDT efficacy was achieved in tumor-bearing mice.

Zobrazit více v PubMed

Halbrook C. J.; Lyssiotis C. A.; Pasca di Magliano M.; Maitra A. Pancreatic cancer: Advances and challenges. Cell 2023, 186, 1729–1754. 10.1016/j.cell.2023.02.014. PubMed DOI PMC

Rawla P.; Sunkara T.; Gaduputi V. Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J. Oncol. 2019, 10, 10–27. 10.14740/wjon1166. PubMed DOI PMC

Park W.; Chawla A.; O’Reilly E. M. Pancreatic cancer: A review. JAMA 2021, 326, 851–862. 10.1001/jama.2021.13027. PubMed DOI PMC

Adekolujo O. S.; Wahab A.; Akanbi M. O.; Oyasiji T.; Hrinczenko B.; Alese O. B. Isolated pulmonary metastases in pancreatic ductal adenocarcinoma: A review of current evidence. Cancer Biol. Ther. 2023, 24, 2198479.10.1080/15384047.2023.2198479. PubMed DOI PMC

Grossberg A. J.; Chu L. C.; Deig C. R.; Fishman E. K.; Hwang W. L.; Maitra A.; Marks D. L.; Mehta A.; Nabavizadeh N.; Simeone D. M.; Weekes C. D.; Thomas C. R. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. Ca-Cancer J. Clin. 2020, 70, 375–403. 10.3322/caac.21626. PubMed DOI PMC

Vetvicka D.; Sivak L.; Jogdeo C. M.; Kumar R.; Khan R.; Hang Y.; Oupický D. Gene silencing delivery systems for the treatment of pancreatic cancer: Where and what to target next?. J. Controlled Release 2021, 331, 246–259. 10.1016/j.jconrel.2021.01.020. PubMed DOI

Olajubutu O.; Ogundipe O. D.; Adebayo A.; Adesina S. K. Drug delivery strategies for the treatment of pancreatic cancer. Pharmaceutics 2023, 15, 1318.10.3390/pharmaceutics15051318. PubMed DOI PMC

Huang H. C.; Mallidi S.; Liu J.; Chiang C. T.; Mai Z.; Goldschmidt R.; Ebrahim-Zadeh N.; Rizvi I.; Hasan T. Photodynamic therapy synergizes with irinotecan to overcome compensatory mechanisms and improve treatment outcomes in pancreatic cancer. Cancer Res. 2016, 76, 1066–1077. 10.1158/0008-5472.CAN-15-0391. PubMed DOI PMC

Broadwater D.; Medeiros H. C. D.; Lunt R. R.; Lunt S. Y. Current advances in photoactive agents for cancer imaging and therapy. Annu. Rev. Biomed. Eng. 2021, 23, 29–60. 10.1146/annurev-bioeng-122019-115833. PubMed DOI

Dougherty T. J.; Gomer C. J.; Henderson B. W.; Jori G.; Kessel D.; Korbelik M.; Moan J.; Peng Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998, 90, 889–905. 10.1093/jnci/90.12.889. PubMed DOI PMC

Agostinis P.; Berg K.; Cengel K. A.; Foster T. H.; Girotti A. W.; Gollnick S. O.; Hahn S. M.; Hamblin M. R.; Juzeniene A.; Kessel D.; et al. Photodynamic therapy of cancer: An update. Ca-Cancer J. Clin. 2011, 61, 250–281. 10.3322/caac.20114. PubMed DOI PMC

Chatterjee D. K.; Yong Z. Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine 2008, 3, 73–82. 10.2217/17435889.3.1.73. PubMed DOI

Wang H.; Han R.-L.; Yang L.-M.; Shi J.-H.; Liu Z.-J.; Hu Y.; Wang Y.; Liu S.-J.; Gan Y. Design and synthesis of core-shell-shell upconversion nanoparticles for NIR-induced drug release, photodynamic therapy, and cell imaging. ACS Appl. Mater. Interfaces 2016, 8, 4416–4423. 10.1021/acsami.5b11197. PubMed DOI

van Straten D.; Mashayekhi V.; de Bruijn H.; Oliveira S.; Robinson D. Oncologic photodynamic therapy: Basic principles, current clinical status and future directions. Cancers 2017, 9, 19.10.3390/cancers9020019. PubMed DOI PMC

Huggett M. T.; Jermyn M.; Gillams A.; Illing R.; Mosse S.; Novelli M.; Kent E.; Bown S. G.; Hasan T.; Pogue B. W.; Pereira S. P. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br. J. Cancer 2014, 110, 1698–1704. 10.1038/bjc.2014.95. PubMed DOI PMC

Lange C.; Lehmann C.; Mahler M.; Bednarski P. J. Comparison of cellular death pathways after mTHPC-mediated photodynamic therapy (PDT) in five human cancer cell lines. Cancers 2019, 11, E70210.3390/cancers11050702. PubMed DOI PMC

Senge M. O.; Brandt J. C. Temoporfin (Foscan, 5,10,15,20-tetra(m-hydroxyphenyl)chlorin) - A second-generation photosensitizer. Photochem. Photobiol. 2011, 87, 1240–1296. 10.1111/j.1751-1097.2011.00986.x. PubMed DOI

Wiehe A.; Senge M. O. The photosensitizer temoporfin (mTHPC) – Chemical, pre-clinical and clinical developments in the last decade. Photochem. Photobiol. 2023, 99, 356–419. 10.1111/php.13730. PubMed DOI

Bown S. G.; Rogowska A. Z.; Whitelaw D. E.; Lees W. R.; Lovat L. B.; Ripley P.; Jones L.; Wyld P.; Gillams A.; Hatfield A. W. R. Photodynamic therapy for cancer of the pancreas. Gut 2002, 50, 549–557. 10.1136/gut.50.4.549. PubMed DOI PMC

Kiesslich T.; Berlanda J.; Plaetzer K.; Krammer B.; Berr F. Comparative characterization of the efficiency and cellular pharmacokinetics of Foscan- and Foslip-based photodynamic treatment in human biliary tract cancer cell lines. Photochem. Photobiol. Sci. 2007, 6, 619–627. 10.1039/b617659c. PubMed DOI

Dos Santos A. F.; Arini G. S.; de Almeida D. R. Q.; Labriola L. Nanophotosensitizers for cancer therapy: A promising technology?. J. Phys. Mater. 2021, 4, 032006.10.1088/2515-7639/abf7dd. DOI

Saeed M.; Ren W.; Wu A. Therapeutic applications of iron oxide based nanoparticles in cancer: Basic concepts and recent advances. Biomater. Sci. 2018, 6, 708–725. 10.1039/C7BM00999B. PubMed DOI

Yang H.; Liu R.; Xu Y.; Qian L.; Dai Z. Photosensitizer nanoparticles boost photodynamic therapy for pancreatic cancer treatment. Nano-Micro Lett. 2021, 13, 35.10.1007/s40820-020-00561-8. PubMed DOI PMC

Yakavets I.; Millard M.; Zorin V.; Lassalle H.-P.; Bezdetnaya L. Current state of the nanoscale delivery systems for temoporfin-based photodynamic therapy: Advanced delivery strategies. J. Controlled Release 2019, 304, 268–287. 10.1016/j.jconrel.2019.05.035. PubMed DOI

Grahn M. F.; Giger A.; McGuinness A.; de Jode M. L.; Stewart J. C.; Ris H. B.; Altermatt H. J.; Williams N. S. mTHPC polymer conjugates: The in vivo photodynamic activity of four candidate compounds. Lasers Med. Sci. 1999, 14, 40–46. 10.1007/s101030050019. PubMed DOI

Bautista-Sanchez A.; Kasselouri A.; Desroches M.-C.; Blais J.; Maillard P.; de Oliveira D. M.; Tedesco A. C.; Prognon P.; Delaire J. Photophysical properties of glucoconjugated chlorins and porphyrins and their associations with cyclodextrins. J. Photochem. Photobiol., B 2005, 81, 154–162. 10.1016/j.jphotobiol.2005.05.013. PubMed DOI

Gravier J.; Schneider R.; Frochot C.; Bastogne T.; Schmitt F.; Didelon J.; Guillemin F.; Barberi-Heyob M. Improvement of meta-tetra(hydroxyphenyl)chlorin-like photosensitizer selectivity with folate-based targeted delivery, Synthesis and in vivo delivery studies. J. Med. Chem. 2008, 51, 3867–3877. 10.1021/jm800125a. PubMed DOI

Rogers L.; Sergeeva N. N.; Paszko E.; Vaz G. M.; Senge M. O. Lead structures for applications in photodynamic therapy. 6. Temoporfin anti-inflammatory conjugates to target the tumor microenvironment for in vitro PDT. PLoS One 2015, 10, e012537210.1371/journal.pone.0125372. PubMed DOI PMC

Rezende T. K. L.; Barbosa H. P.; dos Santos L. F.; Lima K.; Alves de Matos P.; Tsubone T. M.; Gonçalves R. R.; Ferrari J. L. Upconversion rare earths nanomaterials applied to photodynamic therapy and bioimaging. Front. Chem. 2022, 10, 1035449.10.3389/fchem.2022.1035449. PubMed DOI PMC

Kostiv U.; Patsula V.; Noculak A.; Podhorodecki A.; Větvička D.; Poučková P.; Sedláková Z.; Horák D. Phthalocyanine-conjugated upconversion NaYF4:Yb3+/Er3+@SiO2 nanospheres for NIR-triggered photodynamic therapy in a tumor mice model. ChemMedChem 2017, 12, 2066–2073. 10.1002/cmdc.201700508. PubMed DOI

Hamblin M. R. Upconversion in photodynamic therapy: Plumbing the depths. Dalton Trans. 2018, 47, 8571–8580. 10.1039/C8DT00087E. PubMed DOI PMC

Tsai Y. C.; Vijayaraghavan P.; Chiang W. H.; Chen H. H.; Liu T. I.; Shen M. Y.; Omoto A.; Kamimura M.; Soga K.; Chiu H. C. Targeted delivery of functionalized upconversion nanoparticles for externally triggered photothermal/photodynamic therapies of brain glioblastoma. Theranostics 2018, 8, 1435–1448. 10.7150/thno.22482. PubMed DOI PMC

Yu Q.; Rodriguez E. M.; Naccache R.; Forgione P.; Lamoureux G.; Sanz-Rodriguez F.; Scheglmann D.; Capobianco J. A. Chemical modification of temoporfin - a second generation photosensitizer activated using upconverting nanoparticles for singlet oxygen generation. Chem. Commun. 2014, 50, 12150–12153. 10.1039/C4CC05867D. PubMed DOI

Shapoval O.; Větvička D.; Patsula V.; Engstová H.; Kočková O.; Konefał M.; Kabešová M.; Horák D. Temoporfin-conjugated upconversion nanoparticles for NIR-induced photodynamic therapy: Studies with pancreatic adenocarcinoma cells in vitro and in vivo. Pharmaceutics 2023, 15, 2694.10.3390/pharmaceutics15122694. PubMed DOI PMC

Reschel T.; Koňák Č.; Oupický D.; Seymour L. W.; Ulbrich K. Physical properties and in vitro transfection efficiency of gene delivery vectors based on complexes of DNA with synthetic polycations. J. Control. Release 2002, 81, 201–217. 10.1016/s0168-3659(02)00045-7. PubMed DOI

Colombo C.; Monhemius A. J.; Plant J. A. Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotoxicol. Environ. Saf. 2008, 71, 722–730. 10.1016/j.ecoenv.2007.11.011. PubMed DOI

Freinbichler W.; Tipton K. F.; Corte L. D.; Linert W. Mechanistic aspects of the Fenton reaction under conditions approximated to the extracellular fluid. J. Inorg. Biochem. 2009, 103, 28–34. 10.1016/j.jinorgbio.2008.08.014. PubMed DOI

Shapoval O.; Brandmeier J. C.; Nahorniak M.; Oleksa V.; Makhneva E.; Gorris H. H.; Farka Z.; Horák D. PMVEMA-coated upconverting nanoparticles for upconversion-linked immunoassay of cardiac troponin. Talanta 2022, 244, 123400.10.1016/j.talanta.2022.123400. PubMed DOI

Shapoval O.; Sulimenko V.; Klebanovych A.; Rabyk M.; Shapoval P.; Kaman O.; Rydvalová E.; Filipová M.; Dráberová E.; Dráber P.; Horák D. Multimodal fluorescently labeled polymer-coated GdF3 nanoparticles inhibit degranulation in mast cells. Nanoscale 2021, 13, 19023–19037. 10.1039/D1NR06127E. PubMed DOI

Luo X.; Chen Q.; Guo H.; Zhang H.; He X.; Zhao W. One-step hydrothermal synthesis of Cit-NaYbF4:Er3+ nanocrystals with enhanced red upconversion emission for in vivo fluorescence molecular tomography. J. Rare Earths 2024, 42, 36–45. 10.1016/j.jre.2022.09.027. DOI

Gregori M.; Bertani D.; Cazzaniga E.; Orlando A.; Mauri M.; Bianchi A.; Re F.; Sesana S.; Minniti S.; Francolini M.; Cagnotto A.; Salmona M.; Nardo L.; Salerno D.; Mantegazza F.; Masserini M.; Simonutti R. Investigation of functionalized poly(N,N-dimethylacrylamide)-block-polystyrene nanoparticles as novel drug delivery system to overcome the blood-brain barrier in vitro. Macromol. Biosci. 2015, 15, 1687–1697. 10.1002/mabi.201500172. PubMed DOI

Gualdesi M. S.; Vara J.; Aiassa V.; Alvarez Igarzabal C. I.; Ortiz C. S. New poly(acrylamide) nanoparticles in the development of third generation photosensitizers. Dyes Pigments 2021, 184, 108856.10.1016/j.dyepig.2020.108856. DOI

Borah B. M.; Cacaccio J.; Watson R.; Pandey R. K. Phototriggered release of tumor-imaging and therapy agents from lyophilized multifunctional polyacrylamide nanoparticles. ACS Appl. Bio Mater. 2019, 2, 5663–5675. 10.1021/acsabm.9b00741. PubMed DOI

Awar A. A.; Codd M.; Pratt N.; Scott R. M. Involvement of amine protons in n-butylamine-cresol hydrogen bonding. J. Phys. Chem. 1983, 87, 1188–1191. 10.1021/j100230a019. DOI

Quiñones Vélez G.; Carmona-Sarabia L.; Rodríguez-Silva W. A.; Rivera Raíces A. A.; Feliciano-Cruz L.; Hu T.; Peterson E. A.; Lopez-Mejias V. Potentiating bisphosphonate-based coordination complexes to treat osteolytic metastases. J. Mater. Chem. B 2020, 8, 2155–2168. 10.1039/c9tb01857c. PubMed DOI PMC

Kostiv U.; Janoušková O.; Šlouf M.; Kotov N.; Engstová H.; Smolková K.; Ježek P.; Horák D. Silica-modified monodisperse hexagonal lanthanide nanocrystals: Synthesis and biological properties. Nanoscale 2015, 7, 18096–18104. 10.1039/C5NR05572E. PubMed DOI

Patsula V.; Mareková D.; Jendelová P.; Nahorniak M.; Shapoval O.; Matouš P.; Oleksa V.; Konefał R.; Vosmanská M.; Machová-Urdziková L.; Horák D. Polymer-coated hexagonal upconverting nanoparticles: Chemical stability and cytotoxicity. Front. Chem. 2023, 11, 1207984.10.3389/fchem.2023.1207984. PubMed DOI PMC

Kostiv U.; Kučka J.; Lobaz V.; Kotov N.; Janoušková O.; Šlouf M.; Krajnik B.; Podhorodecki A.; Francová P.; Šefc L.; Jirák D.; Horák D. Highly colloidally stable trimodal 125I-radiolabeled PEG-neridronate-coated upconversion/magnetic bioimaging nanoprobes. Sci. Rep. 2020, 10, 20016.10.1038/s41598-020-77112-z. PubMed DOI PMC

Hanana H.; Turcotte P.; Dubé M.; Gagnon C.; Gagné F. Response of the freshwater mussel, Dreissena polymorpha to sub-lethal concentrations of samarium and yttrium after chronic exposure. Ecotoxicol. Environ. Saf. 2018, 165, 662–670. 10.1016/j.ecoenv.2018.09.047. PubMed DOI

Andresen E.; Würth C.; Prinz C.; Michaelis M.; Resch-Genger U. Time-resolved luminescence spectroscopy for monitoring the stability and dissolution behaviour of upconverting nanocrystals with different surface coatings. Nanoscale 2020, 12, 12589–12601. 10.1039/D0NR02931A. PubMed DOI

Lisjak D.; Plohl O.; Vidmar J.; Majaron B.; Ponikvar-Svet M. Dissolution mechanism of upconverting AYF4:Yb,Tm (A = Na or K) nanoparticles in aqueous media. Langmuir 2016, 32, 8222–8229. 10.1021/acs.langmuir.6b02675. PubMed DOI

Nahorniak M.; Patsula V.; Mareková D.; Matouš P.; Shapoval O.; Oleksa V.; Vosmanská M.; Machová Urdzíková L.; Jendelová P.; Herynek V.; Horák D. Chemical and colloidal stability of polymer-coated NaYF4:Yb,Er nanoparticles in aqueous media and viability of cells: The effect of a protective coating. Int. J. Mol. Sci. 2023, 24, 2724.10.3390/ijms24032724. PubMed DOI PMC

Saleh M. I.; Rühle B.; Wang S.; Radnik J.; You Y.; Resch-Genger U. Assessing the protective effects of different surface coatings on NaYF4:Yb3+, Er3+ upconverting nanoparticles in buffer and DMEM. Sci. Rep. 2020, 10, 19318.10.1038/s41598-020-76116-z. PubMed DOI PMC

Firsching F. H.; Brune S. N. Solubility products of the trivalent rare-earth phosphates. J. Chem. Eng. Data 1991, 36, 93–95. 10.1021/je00001a028. DOI

Boyer J. C.; Manseau M. P.; Murray J. I.; van Veggel F. C. J. M. Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir 2010, 26, 1157–1164. 10.1021/la902260j. PubMed DOI

Hu P.; Wu T.; Fan W.; Chen L.; Liu Y.; Ni D.; Bu W.; Shi J. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials 2017, 141, 86–95. 10.1016/j.biomaterials.2017.06.035. PubMed DOI

Larue L.; Myrzakhmetov B.; Ben-Mihoub A.; Moussaron A.; Thomas N.; Arnoux P.; Baros F.; Vanderesse R.; Acherar S.; Frochot C. Fighting hypoxia to improve PDT. Pharmaceuticals 2019, 12, 163.10.3390/ph12040163. PubMed DOI PMC

Friedmann Angeli J. P.; Krysko D. V.; Conrad M. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat. Rev. Cancer 2019, 19, 405–414. 10.1038/s41568-019-0149-1. PubMed DOI

Chu H.; Cao T.; Dai G.; Liu B.; Duan H.; Kong C.; Tian N.; Hou D.; Sun Z. Recent advances in functionalized upconversion nanoparticles for light-activated tumor therapy. RSC Adv. 2021, 11, 35472–35488. 10.1039/D1RA05638G. PubMed DOI PMC

Chen C. W.; Chan Y. C.; Hsiao M.; Liu R. S. Plasmon-enhanced photodynamic cancer therapy by upconversion nanoparticles conjugated with Au nanorods. ACS Appl. Mater. Interfaces 2016, 8, 32108–32119. 10.1021/acsami.6b07770. PubMed DOI

Zhou A.; Wei Y.; Chen Q.; Xing D. In vivo near-infrared photodynamic therapy based on targeted upconversion nanoparticles. J. Biomed. Nanotechnol. 2015, 11, 2003–2010. 10.1166/jbn.2015.2150. PubMed DOI

Sharma K. S.; Dubey A. K.; Kumar C.; Phadnis P. P.; Sudarsan V.; Vatsa R. K. Mesoporous silica-coated upconversion nanoparticles assisted photodynamic therapy using 5-aminolevulinic acid: Mechanistic and in vivo studies. ACS Appl. Bio Mater. 2022, 5, 583–597. 10.1021/acsabm.1c01074. PubMed DOI

Punjabi A.; Wu X.; Tokatli-Apollon A.; El-Rifai M.; Lee H.; Zhang Y.; Wang C.; Liu Z.; Chan E. M.; Duan C.; Han G. Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy. ACS Nano 2014, 8, 10621–10630. 10.1021/nn505051d. PubMed DOI PMC

Wang C.; Tao H.; Cheng L.; Liu Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 2011, 32, 6145–6154. 10.1016/j.biomaterials.2011.05.007. PubMed DOI

Yang S.; Li N.; Liu Z.; Sha W.; Chen D.; Xu Q.; Lu J. Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment. Nanoscale 2014, 6, 14903–14910. 10.1039/C4NR05305B. PubMed DOI

Wang C.; Cheng L.; Liu Y.; Wang X.; Ma X.; Deng Z.; Li Y.; Liu Z. Imaging-guided pH-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light. Adv. Funct. Mater. 2013, 23, 3077–3086. 10.1002/adfm.201202992. DOI

Liang S.; Sun C.; Yang P.; Ma P. A.; Huang S.; Cheng Z.; Yu X.; Lin J. Core-shell structured upconversion nanocrystal-dendrimer composite as a carrier for mitochondria targeting and catalase enhanced anti-cancer photodynamic therapy. Biomaterials 2020, 240, 119850.10.1016/j.biomaterials.2020.119850. PubMed DOI

Park Y. I.; Kim H. M.; Kim J. H.; Moon K. C.; Yoo B.; Lee K. T.; Lee N.; Choi Y.; Park W.; Ling D.; Na K.; Moon W. K.; Choi S. H.; Park H. S.; Yoon S. Y.; Suh Y. D.; Lee S. H.; Hyeon T. Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv. Mater. 2012, 24, 5755–5761. 10.1002/adma.201202433. PubMed DOI

Tang X. L.; Wu J.; Lin B. L.; Cui S.; Liu H. M.; Yu R. T.; Shen X. D.; Wang T. W.; Xia W. Near-infrared light-activated red-emitting upconverting nanoplatform for T1-weighted magnetic resonance imaging and photodynamic therapy. Acta Biomater. 2018, 74, 360–373. 10.1016/j.actbio.2018.05.017. PubMed DOI

Hayashi K.; Jiang P.; Yamauchi K.; Yamamoto N.; Tsuchiya H.; Tomita K.; Moossa A. R.; Bouvet M.; Hoffman R. M. Real-time imaging of tumor-cell shedding and trafficking in lymphatic channels. Cancer Res. 2007, 67, 8223–8228. 10.1158/0008-5472.CAN-07-1237. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...