Physical properties and in vitro transfection efficiency of gene delivery vectors based on complexes of DNA with synthetic polycations
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
11992692
DOI
10.1016/s0168-3659(02)00045-7
PII: S0168365902000457
Knihovny.cz E-zdroje
- MeSH
- chemické jevy MeSH
- chlorid sodný MeSH
- DNA genetika farmakokinetika MeSH
- Escherichia coli MeSH
- fyzikální chemie MeSH
- genetické vektory genetika farmakokinetika MeSH
- lékové transportní systémy metody MeSH
- melanom experimentální genetika metabolismus MeSH
- mikroskopie atomárních sil MeSH
- molekulová hmotnost MeSH
- myši MeSH
- nádorové buňky kultivované MeSH
- polyaminy chemická syntéza farmakokinetika MeSH
- polyelektrolyty MeSH
- radiační rozptyl MeSH
- roztoky MeSH
- stabilita léku MeSH
- světlo MeSH
- transfekce metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorid sodný MeSH
- DNA MeSH
- polyaminy MeSH
- polycations MeSH Prohlížeč
- polyelektrolyty MeSH
- roztoky MeSH
Biophysical properties of polycation/DNA complexes designed for gene delivery were studied with respect to the conditions of their preparation, chemical structure and molecular weight of the polycations involved. The polycations used included a variety of cationic polymers and copolymers containing primary and tertiary amino or quaternary ammonium groups. It was found that the molecular weight and the size of these polyelectrolyte complexes (PECs) increase with increasing temperature and pH of the buffer. By decreasing the molecular weight of polycations used for PEC formation, the complexes become unstable towards coagulation in aqueous solution at lower pH. The self-assembly of DNA with low-molecular-weight polycations in water provides PECs with the lowest molecular weight, smallest size and the lowest density but their stability in NaCl solutions is very poor. Despite the complexity of the multistep transfection process, a direct correlation between the transfection efficiency in vitro and the stability of the complexes in NaCl solutions and coagulation in 0.15 M NaCl solution was found. DNA complexes with polycations containing primary amino groups showed the best stability in saline solutions and also the best transfection activity. PECs formed by polycations with quaternary ammonium groups were the least resistant to destruction by the added salt and provided the lowest activity in transfection assays. The highest transfection activity was found for DNA complexes formed with a statistical copolymer containing primary and tertiary amines.
Citace poskytuje Crossref.org