Absence of CDK12 in oocyte leads to female infertility
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-27301S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
22-27301S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
22-27301S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
EXCELLENCE [CZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE]
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
40148269
PubMed Central
PMC11950339
DOI
10.1038/s41419-025-07536-w
PII: 10.1038/s41419-025-07536-w
Knihovny.cz E-zdroje
- MeSH
- cyklin-dependentní kinasy * metabolismus genetika MeSH
- meióza genetika MeSH
- myši MeSH
- oocyty * metabolismus MeSH
- RNA-polymerasa II metabolismus MeSH
- transkriptom genetika MeSH
- ženská infertilita * genetika patologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CDK12 protein, human MeSH Prohlížeč
- cyklin-dependentní kinasy * MeSH
- RNA-polymerasa II MeSH
Transcriptional activity and gene expression are critical for the development of mature, meiotically competent oocytes. Our study demonstrates that the absence of cyclin-dependent kinase 12 (CDK12) in oocytes leads to complete female sterility, as fully developed oocytes capable of completing meiosis I are absent from the ovaries. Mechanistically, CDK12 regulates RNA polymerase II activity in growing oocytes and ensures the maintenance of the physiological maternal transcriptome, which is essential for protein synthesis that drives further oocyte growth. Notably, CDK12-deficient growing oocytes exhibit a 71% reduction in transcriptional activity. Furthermore, impaired oocyte development disrupts folliculogenesis, leading to premature ovarian failure without terminal follicle maturation or ovulation. In conclusion, our findings identify CDK12 as a key master regulator of the oocyte transcriptional program and gene expression, indispensable for oocyte growth and female fertility. A schematic illustrating the effects of loss of CDK12 in mammalian oocytes on the regulation of transcription by polymerase II and the concomitant effects on translation. This disruption leads to an aberrant transcriptome and translatome, resulting in the absence of fully mature oocytes and ultimately female sterility.
Zobrazit více v PubMed
Sternlicht AL, Schultz RM. Biochemical studies of mammalian oogenesis: Kinetics of accumulation of total and poly(A)-containing RNA during growth of the mouse oocyte. J Exp Zool. 1981;215:191–200. 10.1002/jez.1402150209. PubMed
Ida Jentoft AM, Bäuerlein FJ, Welp LM, Urlaub H, Ferná ndez-Busnadiego R, Jentoft IM, et al. Mammalian oocytes store proteins for the early embryo on cytoplasmic lattices. Cell. 2023;186:5308–27. 10.1016/j.cell.2023.10.003. PubMed
Sha QQ, Dai XX, Dang Y, Tang F, Liu J, Zhang YL, et al. A MAPK cascade couples maternal mRNA translation and degradation to meiotic cell cycle progression in mouse oocytes. Dev. 2017;144:452–63. 10.1242/dev.144410. PubMed
Leesch F, Lorenzo-Orts L, Pribitzer C, Grishkovskaya I, Roehsner J, Chugunova A, et al. A molecular network of conserved factors keeps ribosomes dormant in the egg. Nature. 2023;613:712 10.1038/S41586-022-05623-Y. PubMed PMC
Wickramasinghe D, Albertini DF. Centrosome phosphorylation and the developmental expression of meiotic competence in mouse oocytes. Dev Biol. 1992;152:62–74. 10.1016/0012-1606(92)90156-B. PubMed
Iyyappan R, Aleshkina D, Ming H, Dvoran M, Kakavand K, Anso VaDJ, et al. The translational oscillation in oocyte and early embryo development. Nucleic Acids Res. 2023;2023:2023 10.1093/NAR/GKAD996. PubMed PMC
Yang F, Wang W, Cetinbas M, Sadreyev RI, Blower MD. Genome-wide analysis identifies cis-acting elements regulating mRNA polyadenylation and translation during vertebrate oocyte maturation. RNA. 2020;26:324–44. 10.1261/RNA.073247.119/-/DC1. PubMed PMC
Luo Y, Lee IW, Jo YJ, Namgoong S, Kim NH. Depletion of the LINC complex disrupts cytoskeleton dynamics and meiotic resumption in mouse oocytes. Sci Rep. 2016;6:1–11. 10.1038/srep20408. PubMed PMC
Sun H, Han L, Guo Y, An H, Wang B, Zhang X, et al. The global phosphorylation landscape of mouse oocytes during meiotic maturation. EMBO J 2024. 10.1038/S44318-024-00222-1/SUPPL_FILE/44318_2024_222_MOESM28_ESM.PDF. PubMed PMC
Eppig JJ, Schroeder AC. Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro1. Biol Reprod. 1989;41:268–76. 10.1095/biolreprod41.2.268. PubMed
Sha QQ, Zhu YZ, Li S, Jiang Y, Chen L, Sun XH, et al. Characterization of zygotic genome activation-dependent maternal mRNA clearance in mouse. Nucleic Acids Res. 2020;48:879–94. 10.1093/NAR/GKZ1111. PubMed PMC
ABE K-I, INOUE A, SUZUKI MG, AOKI F. Global gene silencing is caused by the dissociation of RNA polymerase II from DNA in mouse oocytes. J Reprod Dev. 2010;56:502–7. 10.1262/jrd.10-068a. PubMed
Blazek D, Kohoutek J, Bartholomeeusen K, Johansen E, Hulinkova P, Luo Z, et al. The cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 2011;25:2158–72. 10.1101/gad.16962311. PubMed PMC
Chirackal Manavalan AP, Pilarova K, Kluge M, Bartholomeeusen K, Rajecky M, Oppelt J, et al. CDK12 controls G1/S progression by regulating RNAPII processivity at core DNA replication genes. EMBO Rep. 2019;20:e47592 10.15252/embr.201847592. PubMed PMC
Choi SH, Martinez TF, Kim S, Donaldson C, Shokhirev MN, Saghatelian A, et al. CDK12 phosphorylates 4E-BP1 to enable mTORC1-dependent translation and mitotic genome stability. Genes Dev. 2019;33:418–35. 10.1101/gad.322339.118. PubMed PMC
Bartkowiak B, Liu P, Phatnani HP, Fuda NJ, Cooper JJ, Price DH, et al. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev. 2010;24:2303–16. 10.1101/gad.1968210. PubMed PMC
Tien JF, Mazloomian A, Cheng SWG, Hughes CS, Chow CCT, Canapi LT, et al. CDK12 regulates alternative last exon mRNA splicing and promotes breast cancer cell invasion. Nucleic Acids Res. 2017;45:6698–716. 10.1093/nar/gkx187. PubMed PMC
Magnuson B, Bedi K, Narayanan IV, Bartkowiak B, Blinkiewicz H, Paulsen MT, et al. CDK12 regulates co-transcriptional splicing and RNA turnover in human cells. IScience 2022;25. 10.1016/J.ISCI.2022.105030. PubMed PMC
Ang HX, Sutiman N, Deng XL, Bartelt LC, Chen Q, Barrera A, et al. Cooperative regulation of coupled oncoprotein translation and stability in triple-negative breast cancer by EGFR and CDK12. BioRxiv 2021:2021.03.03.433762. 10.1101/2021.03.03.433762. PubMed PMC
Coordes B, Brünger KM, Burger K, Soufi B, Horenk J, Eick D, et al. Ctk1 function is necessary for full translation initiation activity in Saccharomyces cerevisiae. Eukaryot Cell. 2015;14:86 10.1128/EC.00106-14. PubMed PMC
Bell D, Berchuck A, Birrer M, Chien J, Cramer DW, Dao F, et al. Integrated Genomic Analyses of Ovarian Carcinoma. Nature. 2011;474:609 10.1038/NATURE10166. PubMed PMC
Ekumi KM, Paculova H, Lenasi T, Pospichalova V, Bösken CA, Rybarikova J, et al. Ovarian carcinoma CDK12 mutations misregulate expression of DNA repair genes via deficient formation and function of the Cdk12/CycK complex. Nucleic Acids Res. 2015;43:2575 10.1093/NAR/GKV101. PubMed PMC
França MM, Mendonca BB Genetics of Primary Ovarian Insufficiency in the Next-Generation Sequencing Era. J Endocr Soc 2019;4. 10.1210/JENDSO/BVZ037. PubMed PMC
França MM, Funari MFA, Nishi MY, Narcizo AM, Domenice S, Costa EMF, et al. Identification of the first homozygous 1-bp deletion in GDF9 gene leading to primary ovarian insufficiency by using targeted massively parallel sequencing. Clin Genet. 2018;93:408–11. 10.1111/CGE.13156. PubMed
Liu XM, Yan MQ, Ji SY, Sha QQ, Huang T, Zhao H, et al. Loss of oocyte Rps26 in mice arrests oocyte growth and causes premature ovarian failure. Cell Death Dis. 2018;9. 10.1038/S41419-018-1196-3. PubMed PMC
Santos M, Cordts EB, Peluso C, Dornas M, Neto FHV, Bianco B, et al. Association of BMP15 and GDF9 variants to premature ovarian insufficiency. J Assist Reprod Genet. 2019;36:2163–9. 10.1007/S10815-019-01548-0. PubMed PMC
Wu J, Feng S, Luo Y, Ning Y, Qiu P, Lin Y, et al. Transcriptomic profile of premature ovarian insufficiency with RNA-sequencing. Front Cell Dev Biol. 2024;12. 10.3389/FCELL.2024.1370772. PubMed PMC
Dubbury S, Boutz P, Nature PS-, 2018 undefined. CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. NatureComSJ Dubbury, PL Boutz, PA SharpNature, 2018•natureCom n.d. PubMed PMC
Krajewska M, Dries R, Grassetti AV, Dust S, Gao Y, Huang H, et al. CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation. Nat Commun. 2019;10:1–16. 10.1038/s41467-019-09703-y. PubMed PMC
Lamacova L, Jansova D, Jiang Z, Dvoran M, Aleshkina D, Iyyappan R, et al. CPEB3 Maintains Developmental Competence of the Oocyte. Cells 2024;13. 10.3390/CELLS13100850. PubMed PMC
Shestakova IG, Radzinsky VE, Khamoshina MB Occult form of premature ovarian insufficiency. Gynecol Endocrinol. 2016:1473–0766. 10.1080/09513590.2016.1232676.. PubMed
Philpott CC, Ringuette MJ, Dean J. Oocyte-specific expression and developmental regulation of ZP3, the sperm receptor of the mouse zona pellucida. Dev Biol. 1987;121:568–75. 10.1016/0012-1606(87)90192-8. PubMed
Monti M, Zanoni M, Calligaro A, Ko MSH, Mauri P, Redi CA. Developmental arrest and mouse antral not-surrounded nucleolus oocytes. Biol Reprod. 2013;88:1–7. 10.1095/biolreprod.112.103887. PubMed PMC
Wu D Mouse Oocytes, A Complex Single Cell Transcriptome. Front Cell Dev Biol. 2022;10. 10.3389/FCELL.2022.827937. PubMed PMC
Zhang YR, Yin Y, Guo SM, Wang YF, Zhao GN, Ji DM, et al. The landscape of transcriptional profiles in human oocytes with different chromatin configurations. J Ovarian Res. 2024;17:99 10.1186/S13048-024-01431-2. PubMed PMC
Bösken CA, Farnung L, Hintermair C, Schachter MM, Vogel-Bachmayr K, Blazek D, et al. The structure and substrate specificity of human Cdk12/Cyclin K. Nat Commun. 2014;5. 10.1038/ncomms4505. PubMed PMC
Cheng S-WG, Kuzyk MA, Moradian A, Ichu T-A, Chang VC-D, Tien JF, et al. Interaction of cyclin-dependent kinase 12/CrkRS with cyclin K1 is required for the phosphorylation of the C-terminal domain of RNA polymerase II. Mol Cell Biol. 2012;32:4691–704. 10.1128/MCB.06267-11. PubMed PMC
Fan Z, Devlin JR, Hogg SJ, Doyle MA, Harrison PF, Todorovski I, et al. CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. Sci Adv. 2020;6:eaaz5041 10.1126/sciadv.aaz5041. PubMed PMC
Niu T, Li K, Jiang L, Zhou Z, Hong J, Chen X, et al. Noncovalent CDK12/13 dual inhibitors-based PROTACs degrade CDK12-Cyclin K complex and induce synthetic lethality with PARP inhibitor. Eur J Med Chem. 2022;228:114012 10.1016/J.EJMECH.2021.114012. PubMed
Oqani RK, Lin T, Lee JE, Choi KM, Shin HY, Jin D. Il. P-TEFb kinase activity is essential for global transcription, resumption of meiosis and embryonic genome activation in pig. PLoS ONE. 2016;11:e0152254 10.1371/JOURNAL.PONE.0152254. PubMed PMC
Bowman EA, Kelly WG. RNA Polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases. Nucleus. 2014;5:224 10.4161/NUCL.29347. PubMed PMC
Röther S, Sträßer K. The RNA polymerase II CTD kinase Ctk1 functions in translation elongation. Genes Dev. 2007;21:1409 10.1101/GAD.428407. PubMed PMC
Ni Z, Ahmed N, Nabeel-Shah S, Guo X, Pu S, Song J, et al. Identifying human pre-mRNA cleavage and polyadenylation factors by genome-wide CRISPR screens using a dual fluorescence readthrough reporter. Nucleic Acids Res. 2024;52:4483–501. 10.1093/NAR/GKAE240. PubMed PMC
Jansova D, Koncicka M, Tetkova A, Cerna R, Malik R, del Llano E, et al. Regulation of 4E-BP1 activity in the mammalian oocyte. Cell Cycle. 2017;16:927–39. 10.1080/15384101.2017.1295178. PubMed PMC
Paynton BV, Rempel R, Bachvarova R. Changes in state of adenylation and time course of degradation of maternal mRNAs during oocyte maturation and early embryonic development in the mouse. Dev Biol. 1988;129:304–14. 10.1016/0012-1606(88)90377-6. PubMed
De Leon V, Johnson A, Bachvarova R. Half-lives and relative amounts of stored and polysomal ribosomes and poly(A) + RNA in mouse oocytes. Dev Biol. 1983;98:400–8. 10.1016/0012-1606(83)90369-X. PubMed
Juan HC, Lin Y, Chen HR, Fann MJ. Cdk12 is essential for embryonic development and the maintenance of genomic stability. Cell Death Differ. 2016;23:1038–48. 10.1038/cdd.2015.157. PubMed PMC
Federici S, Rossetti R, Moleri S, Munari EV, Frixou M, Bonomi M, et al. Primary ovarian insufficiency: update on clinical and genetic findings. Front Endocrinol (Lausanne). 2024;15:1464803 10.3389/FENDO.2024.1464803/BIBTEX. PubMed PMC
Sokol ES, Pavlick D, Frampton GM, Ross JS, Miller VA, Ali SM, et al. Pan-Cancer Analysis of CDK12 Loss-of-Function Alterations and Their Association with the Focal Tandem-Duplicator Phenotype. Oncologist. 2019;24:1526–33. 10.1634/THEONCOLOGIST.2019-0214/-/DC5. PubMed PMC
Rouxel F, Relator R, Kerkhof J, McConkey H, Levy M, Dias P, et al. CDK13-related disorder: Report of a series of 18 previously unpublished individuals and description of an epigenetic signature. Genet Med. 2022;24:1096–107. 10.1016/J.GIM.2021.12.016. PubMed
Wu Z, Zhang W, Chen L, Wang T, Wang X, Shi H, et al. CDK12 inhibition upregulates ATG7 triggering autophagy via AKT/FOXO3 pathway and enhances anti-PD-1 efficacy in colorectal cancer. Pharmacol Res. 2024;201. 10.1016/J.PHRS.2024.107097. PubMed
Wang H, Wan H, Li X, Liu W, Chen Q, Wang Y, et al. Atg7 is required for acrosome biogenesis during spermatogenesis in mice. Cell Res. 2014;24:852–69. 10.1038/CR.2014.70. PubMed PMC
Castillo J, Knol JC, Korver CM, Piersma SR, Pham TV, de Goeij-de Haas RR, et al. Human Testis Phosphoproteome Reveals Kinases as Potential Targets in Spermatogenesis and Testicular Cancer. Mol Cell Proteom. 2019;18:S132 10.1074/MCP.RA118.001278. PubMed PMC
Allingham-Hawkins DJ, Babul-Hirji R, Chitayat D, Holden JJA, Yang KT, Lee C, et al. Fragile X Premutation Is a Significant Risk Factor for Premature Ovarian Failure: The International Collaborative POF in Fragile X Study—Preliminary Data. Am J Med Genet. 1999;83:322. 10.1002/(SICI)1096-8628(19990402)83:4<322::AID-AJMG17>3.0.CO;2-B. PubMed PMC
Zhao H, Chen ZJ, Qin Y, Shi Y, Wang S, Choi Y, et al. Transcription Factor FIGLA is Mutated in Patients with Premature Ovarian Failure. Am J Hum Genet. 2008;82:1342–8. 10.1016/J.AJHG.2008.04.018. PubMed PMC
del Llano E, Masek T, Gahurova L, Pospisek M, Koncicka M, Jindrova A, et al. Age-related differences in the translational landscape of mammalian oocytes. Aging Cell. 2020:e13231. 10.1111/acel.13231. PubMed PMC
Ke H, Tang S, Guo T, Hou D, Jiao X, Li S, et al. Landscape of pathogenic mutations in premature ovarian insufficiency. Nat Med. 2023;29:483–92. 10.1038/S41591-022-02194-3. PubMed PMC
Luo W, Ke H, Tang S, Jiao X, Li Z, Zhao S, et al. Next-generation sequencing of 500 POI patients identified novel responsible monogenic and oligogenic variants. J Ovarian Res. 2023;16:1–13. 10.1186/S13048-023-01104-6/TABLES/3. PubMed PMC
Mok-Lin E, Ascano M, Serganov A, Rosenwaks Z, Tuschl T, Williams Z Premature recruitment of oocyte pool and increased mTOR activity in Fmr1 knockout mice and reversal of phenotype with rapamycin. Sci Rep. 2018;8. 10.1038/S41598-017-18598-Y. PubMed PMC
Jasti S, Warren BD, McGinnis LK, Kinsey WH, Petroff BK, Petroff MG. The Autoimmune Regulator Prevents Premature Reproductive Senescence in Female Mice. Biol Reprod. 2012;86:110 10.1095/BIOLREPROD.111.097501. PubMed PMC
Liang LF, Soyal SM, Dean J. FIGα, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes. Development. 1997;124:4939–47. PubMed
Day FR, Hinds DA, Tung JY, Stolk L, Styrkarsdottir U, Saxena R, et al. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat Commun. 2015;61:1–7. 10.1038/ncomms9464. PubMed PMC
JSE L, JA V, AG U, WP V, JHJ. H Menopause: genome stability as new paradigm. Maturitas n.d.;92:15–23. PubMed
Rodgers RJ, Laven JSE. Genetic relationships between early menopause and the behaviour of theca interna during follicular atresia. Hum Reprod. 2020;35:2185–7. 10.1093/HUMREP/DEAA173. PubMed
Zhang C, Yu D, Mei Y, Liu S, Shao H, Sun Q, et al. Single-cell RNA sequencing of peripheral blood reveals immune cell dysfunction in premature ovarian insufficiency. Front Endocrinol (Lausanne). 2023;14. 10.3389/FENDO.2023.1129657. PubMed PMC
Liu D, Guan X, Liu W, Jia Y, Zhou H, Xi C, et al. Identification of transcriptome characteristics of granulosa cells and the possible role of UBE2C in the pathogenesis of premature ovarian insufficiency. J Ovarian Res. 2023;16:1–20. 10.1186/S13048-023-01266-3/FIGURES/9. PubMed PMC
Yu Z, Peng W, Li M. Exploring biomarkers of premature ovarian insufficiency based on oxford nanopore transcriptional profile and machine learning. Sci Rep. 2023;131:1–10. 10.1038/s41598-023-38754-x. PubMed PMC
Meskhi A, Seif MW. Premature ovarian failure. Curr Opin Obstet Gynecol. 2006;18:418–26. 10.1097/01.GCO.0000233937.36554.D3. PubMed
Shelling AN. Premature ovarian failure. Reproduction. 2010;140:633–41. 10.1530/REP-09-0567. PubMed
Rossetti R, Ferrari I, Bonomi M, Persani L. Genetics of primary ovarian insufficiency. Clin Genet. 2017;91:183–98. 10.1111/cge.12921. PubMed
Coulam CB, Laws ER, Abboud CF, Randall RV. PRIMARY AMENORRHEA AND PITUITARY ADENOMAS. Fertil Steril. 1981;35:615–9. 10.1016/S0015-0282(16)45551-2. PubMed
Kalantaridou SN, Davis SR, Nelson LM. PREMATURE OVARIAN FAILURE. Endocrinol Metab Clin North Am. 1998;27:989–1006. 10.1016/S0889-8529(05)70051-7. PubMed
Fraison E, Crawford G, Casper G, Harris V, Ledger W. Pregnancy following diagnosis of premature ovarian insufficiency: a systematic review. Reprod Biomed Online. 2019;39:467–76. 10.1016/J.RBMO.2019.04.019. PubMed
Erickson GF, Shimasaki S. The role of the oocyte in folliculogenesis. Trends Endocrinol Metab. 2000;11:193–8. 10.1016/S1043-2760(00)00249-6. PubMed
Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996;383:531–5. 10.1038/383531A0. PubMed
Aaltonen J, Laitinen MP, Vuojolainen K, Jaatinen R, Horelli-Kuitunen N, Seppä L, et al. Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J Clin Endocrinol Metab. 1999;84:2744–50. 10.1210/JCEM.84.8.5921. PubMed
Bodensteiner KJ, Clay CM, Moeller CL, Sawyer HR. Molecular cloning of the ovine Growth/Differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries. Biol Reprod. 1999;60:381–6. 10.1095/BIOLREPROD60.2.381. PubMed
Jaatinen R, Laitinen MP, Vuojolainen K, Aaltonen J, Louhio H, Heikinheimo K, et al. Localization of growth differentiation factor-9 (GDF-9) mRNA and protein in rat ovaries and cDNA cloning of rat GDF-9 and its novel homolog GDF-9B. Mol Cell Endocrinol. 1999;156:189–93. 10.1016/S0303-7207(99)00100-8. PubMed
Isola JVV, Ocañas SR, Hubbart CR, Ko S, Mondal SA, Hense JD, et al. A single-cell atlas of the aging mouse ovary. Nat Aging. 2024;41:145–62. 10.1038/s43587-023-00552-5. PubMed PMC
Houles T, Lavoie G, Nourreddine S, Cheung W, Vaillancourt-Jean É, Guérin CM, et al. CDK12 is hyperactivated and a synthetic-lethal target in BRAF-mutated melanoma. Nat Commun. 2022;131:1–16. 10.1038/s41467-022-34179-8. PubMed PMC
Yagel S, Gullo G, Ospedaliera A, Riuniti Villa O, Cervello S, Gonfloni S, et al. Signaling pathway intervention in premature ovarian failure. Front Med. 2022;9:999440 10.3389/FMED.2022.999440. PubMed PMC
Tetkova A, Hancova M. Mouse Oocyte Isolation, Cultivation and RNA Microinjection. BIO-PROTOCOL 2016. 10.21769/bioprotoc.1729.
Jansova D, Aleshkina D, Jindrova A, Iyyappan R, An Q, Fan G, et al. Single Molecule RNA Localization and Translation in the Mammalian Oocyte and Embryo. J Mol Biol. 2021;433. 10.1016/J.JMB.2021.167166. PubMed