Absence of CDK12 in oocyte leads to female infertility

. 2025 Mar 27 ; 16 (1) : 213. [epub] 20250327

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40148269

Grantová podpora
22-27301S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
22-27301S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
22-27301S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
EXCELLENCE [CZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE] Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)

Odkazy

PubMed 40148269
PubMed Central PMC11950339
DOI 10.1038/s41419-025-07536-w
PII: 10.1038/s41419-025-07536-w
Knihovny.cz E-zdroje

Transcriptional activity and gene expression are critical for the development of mature, meiotically competent oocytes. Our study demonstrates that the absence of cyclin-dependent kinase 12 (CDK12) in oocytes leads to complete female sterility, as fully developed oocytes capable of completing meiosis I are absent from the ovaries. Mechanistically, CDK12 regulates RNA polymerase II activity in growing oocytes and ensures the maintenance of the physiological maternal transcriptome, which is essential for protein synthesis that drives further oocyte growth. Notably, CDK12-deficient growing oocytes exhibit a 71% reduction in transcriptional activity. Furthermore, impaired oocyte development disrupts folliculogenesis, leading to premature ovarian failure without terminal follicle maturation or ovulation. In conclusion, our findings identify CDK12 as a key master regulator of the oocyte transcriptional program and gene expression, indispensable for oocyte growth and female fertility. A schematic illustrating the effects of loss of CDK12 in mammalian oocytes on the regulation of transcription by polymerase II and the concomitant effects on translation. This disruption leads to an aberrant transcriptome and translatome, resulting in the absence of fully mature oocytes and ultimately female sterility.

Zobrazit více v PubMed

Sternlicht AL, Schultz RM. Biochemical studies of mammalian oogenesis: Kinetics of accumulation of total and poly(A)-containing RNA during growth of the mouse oocyte. J Exp Zool. 1981;215:191–200. 10.1002/jez.1402150209. PubMed

Ida Jentoft AM, Bäuerlein FJ, Welp LM, Urlaub H, Ferná ndez-Busnadiego R, Jentoft IM, et al. Mammalian oocytes store proteins for the early embryo on cytoplasmic lattices. Cell. 2023;186:5308–27. 10.1016/j.cell.2023.10.003. PubMed

Sha QQ, Dai XX, Dang Y, Tang F, Liu J, Zhang YL, et al. A MAPK cascade couples maternal mRNA translation and degradation to meiotic cell cycle progression in mouse oocytes. Dev. 2017;144:452–63. 10.1242/dev.144410. PubMed

Leesch F, Lorenzo-Orts L, Pribitzer C, Grishkovskaya I, Roehsner J, Chugunova A, et al. A molecular network of conserved factors keeps ribosomes dormant in the egg. Nature. 2023;613:712 10.1038/S41586-022-05623-Y. PubMed PMC

Wickramasinghe D, Albertini DF. Centrosome phosphorylation and the developmental expression of meiotic competence in mouse oocytes. Dev Biol. 1992;152:62–74. 10.1016/0012-1606(92)90156-B. PubMed

Iyyappan R, Aleshkina D, Ming H, Dvoran M, Kakavand K, Anso VaDJ, et al. The translational oscillation in oocyte and early embryo development. Nucleic Acids Res. 2023;2023:2023 10.1093/NAR/GKAD996. PubMed PMC

Yang F, Wang W, Cetinbas M, Sadreyev RI, Blower MD. Genome-wide analysis identifies cis-acting elements regulating mRNA polyadenylation and translation during vertebrate oocyte maturation. RNA. 2020;26:324–44. 10.1261/RNA.073247.119/-/DC1. PubMed PMC

Luo Y, Lee IW, Jo YJ, Namgoong S, Kim NH. Depletion of the LINC complex disrupts cytoskeleton dynamics and meiotic resumption in mouse oocytes. Sci Rep. 2016;6:1–11. 10.1038/srep20408. PubMed PMC

Sun H, Han L, Guo Y, An H, Wang B, Zhang X, et al. The global phosphorylation landscape of mouse oocytes during meiotic maturation. EMBO J 2024. 10.1038/S44318-024-00222-1/SUPPL_FILE/44318_2024_222_MOESM28_ESM.PDF. PubMed PMC

Eppig JJ, Schroeder AC. Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro1. Biol Reprod. 1989;41:268–76. 10.1095/biolreprod41.2.268. PubMed

Sha QQ, Zhu YZ, Li S, Jiang Y, Chen L, Sun XH, et al. Characterization of zygotic genome activation-dependent maternal mRNA clearance in mouse. Nucleic Acids Res. 2020;48:879–94. 10.1093/NAR/GKZ1111. PubMed PMC

ABE K-I, INOUE A, SUZUKI MG, AOKI F. Global gene silencing is caused by the dissociation of RNA polymerase II from DNA in mouse oocytes. J Reprod Dev. 2010;56:502–7. 10.1262/jrd.10-068a. PubMed

Blazek D, Kohoutek J, Bartholomeeusen K, Johansen E, Hulinkova P, Luo Z, et al. The cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 2011;25:2158–72. 10.1101/gad.16962311. PubMed PMC

Chirackal Manavalan AP, Pilarova K, Kluge M, Bartholomeeusen K, Rajecky M, Oppelt J, et al. CDK12 controls G1/S progression by regulating RNAPII processivity at core DNA replication genes. EMBO Rep. 2019;20:e47592 10.15252/embr.201847592. PubMed PMC

Choi SH, Martinez TF, Kim S, Donaldson C, Shokhirev MN, Saghatelian A, et al. CDK12 phosphorylates 4E-BP1 to enable mTORC1-dependent translation and mitotic genome stability. Genes Dev. 2019;33:418–35. 10.1101/gad.322339.118. PubMed PMC

Bartkowiak B, Liu P, Phatnani HP, Fuda NJ, Cooper JJ, Price DH, et al. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev. 2010;24:2303–16. 10.1101/gad.1968210. PubMed PMC

Tien JF, Mazloomian A, Cheng SWG, Hughes CS, Chow CCT, Canapi LT, et al. CDK12 regulates alternative last exon mRNA splicing and promotes breast cancer cell invasion. Nucleic Acids Res. 2017;45:6698–716. 10.1093/nar/gkx187. PubMed PMC

Magnuson B, Bedi K, Narayanan IV, Bartkowiak B, Blinkiewicz H, Paulsen MT, et al. CDK12 regulates co-transcriptional splicing and RNA turnover in human cells. IScience 2022;25. 10.1016/J.ISCI.2022.105030. PubMed PMC

Ang HX, Sutiman N, Deng XL, Bartelt LC, Chen Q, Barrera A, et al. Cooperative regulation of coupled oncoprotein translation and stability in triple-negative breast cancer by EGFR and CDK12. BioRxiv 2021:2021.03.03.433762. 10.1101/2021.03.03.433762. PubMed PMC

Coordes B, Brünger KM, Burger K, Soufi B, Horenk J, Eick D, et al. Ctk1 function is necessary for full translation initiation activity in Saccharomyces cerevisiae. Eukaryot Cell. 2015;14:86 10.1128/EC.00106-14. PubMed PMC

Bell D, Berchuck A, Birrer M, Chien J, Cramer DW, Dao F, et al. Integrated Genomic Analyses of Ovarian Carcinoma. Nature. 2011;474:609 10.1038/NATURE10166. PubMed PMC

Ekumi KM, Paculova H, Lenasi T, Pospichalova V, Bösken CA, Rybarikova J, et al. Ovarian carcinoma CDK12 mutations misregulate expression of DNA repair genes via deficient formation and function of the Cdk12/CycK complex. Nucleic Acids Res. 2015;43:2575 10.1093/NAR/GKV101. PubMed PMC

França MM, Mendonca BB Genetics of Primary Ovarian Insufficiency in the Next-Generation Sequencing Era. J Endocr Soc 2019;4. 10.1210/JENDSO/BVZ037. PubMed PMC

França MM, Funari MFA, Nishi MY, Narcizo AM, Domenice S, Costa EMF, et al. Identification of the first homozygous 1-bp deletion in GDF9 gene leading to primary ovarian insufficiency by using targeted massively parallel sequencing. Clin Genet. 2018;93:408–11. 10.1111/CGE.13156. PubMed

Liu XM, Yan MQ, Ji SY, Sha QQ, Huang T, Zhao H, et al. Loss of oocyte Rps26 in mice arrests oocyte growth and causes premature ovarian failure. Cell Death Dis. 2018;9. 10.1038/S41419-018-1196-3. PubMed PMC

Santos M, Cordts EB, Peluso C, Dornas M, Neto FHV, Bianco B, et al. Association of BMP15 and GDF9 variants to premature ovarian insufficiency. J Assist Reprod Genet. 2019;36:2163–9. 10.1007/S10815-019-01548-0. PubMed PMC

Wu J, Feng S, Luo Y, Ning Y, Qiu P, Lin Y, et al. Transcriptomic profile of premature ovarian insufficiency with RNA-sequencing. Front Cell Dev Biol. 2024;12. 10.3389/FCELL.2024.1370772. PubMed PMC

Dubbury S, Boutz P, Nature PS-, 2018 undefined. CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. NatureComSJ Dubbury, PL Boutz, PA SharpNature, 2018•natureCom n.d. PubMed PMC

Krajewska M, Dries R, Grassetti AV, Dust S, Gao Y, Huang H, et al. CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation. Nat Commun. 2019;10:1–16. 10.1038/s41467-019-09703-y. PubMed PMC

Lamacova L, Jansova D, Jiang Z, Dvoran M, Aleshkina D, Iyyappan R, et al. CPEB3 Maintains Developmental Competence of the Oocyte. Cells 2024;13. 10.3390/CELLS13100850. PubMed PMC

Shestakova IG, Radzinsky VE, Khamoshina MB Occult form of premature ovarian insufficiency. Gynecol Endocrinol. 2016:1473–0766. 10.1080/09513590.2016.1232676.. PubMed

Philpott CC, Ringuette MJ, Dean J. Oocyte-specific expression and developmental regulation of ZP3, the sperm receptor of the mouse zona pellucida. Dev Biol. 1987;121:568–75. 10.1016/0012-1606(87)90192-8. PubMed

Monti M, Zanoni M, Calligaro A, Ko MSH, Mauri P, Redi CA. Developmental arrest and mouse antral not-surrounded nucleolus oocytes. Biol Reprod. 2013;88:1–7. 10.1095/biolreprod.112.103887. PubMed PMC

Wu D Mouse Oocytes, A Complex Single Cell Transcriptome. Front Cell Dev Biol. 2022;10. 10.3389/FCELL.2022.827937. PubMed PMC

Zhang YR, Yin Y, Guo SM, Wang YF, Zhao GN, Ji DM, et al. The landscape of transcriptional profiles in human oocytes with different chromatin configurations. J Ovarian Res. 2024;17:99 10.1186/S13048-024-01431-2. PubMed PMC

Bösken CA, Farnung L, Hintermair C, Schachter MM, Vogel-Bachmayr K, Blazek D, et al. The structure and substrate specificity of human Cdk12/Cyclin K. Nat Commun. 2014;5. 10.1038/ncomms4505. PubMed PMC

Cheng S-WG, Kuzyk MA, Moradian A, Ichu T-A, Chang VC-D, Tien JF, et al. Interaction of cyclin-dependent kinase 12/CrkRS with cyclin K1 is required for the phosphorylation of the C-terminal domain of RNA polymerase II. Mol Cell Biol. 2012;32:4691–704. 10.1128/MCB.06267-11. PubMed PMC

Fan Z, Devlin JR, Hogg SJ, Doyle MA, Harrison PF, Todorovski I, et al. CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. Sci Adv. 2020;6:eaaz5041 10.1126/sciadv.aaz5041. PubMed PMC

Niu T, Li K, Jiang L, Zhou Z, Hong J, Chen X, et al. Noncovalent CDK12/13 dual inhibitors-based PROTACs degrade CDK12-Cyclin K complex and induce synthetic lethality with PARP inhibitor. Eur J Med Chem. 2022;228:114012 10.1016/J.EJMECH.2021.114012. PubMed

Oqani RK, Lin T, Lee JE, Choi KM, Shin HY, Jin D. Il. P-TEFb kinase activity is essential for global transcription, resumption of meiosis and embryonic genome activation in pig. PLoS ONE. 2016;11:e0152254 10.1371/JOURNAL.PONE.0152254. PubMed PMC

Bowman EA, Kelly WG. RNA Polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases. Nucleus. 2014;5:224 10.4161/NUCL.29347. PubMed PMC

Röther S, Sträßer K. The RNA polymerase II CTD kinase Ctk1 functions in translation elongation. Genes Dev. 2007;21:1409 10.1101/GAD.428407. PubMed PMC

Ni Z, Ahmed N, Nabeel-Shah S, Guo X, Pu S, Song J, et al. Identifying human pre-mRNA cleavage and polyadenylation factors by genome-wide CRISPR screens using a dual fluorescence readthrough reporter. Nucleic Acids Res. 2024;52:4483–501. 10.1093/NAR/GKAE240. PubMed PMC

Jansova D, Koncicka M, Tetkova A, Cerna R, Malik R, del Llano E, et al. Regulation of 4E-BP1 activity in the mammalian oocyte. Cell Cycle. 2017;16:927–39. 10.1080/15384101.2017.1295178. PubMed PMC

Paynton BV, Rempel R, Bachvarova R. Changes in state of adenylation and time course of degradation of maternal mRNAs during oocyte maturation and early embryonic development in the mouse. Dev Biol. 1988;129:304–14. 10.1016/0012-1606(88)90377-6. PubMed

De Leon V, Johnson A, Bachvarova R. Half-lives and relative amounts of stored and polysomal ribosomes and poly(A) + RNA in mouse oocytes. Dev Biol. 1983;98:400–8. 10.1016/0012-1606(83)90369-X. PubMed

Juan HC, Lin Y, Chen HR, Fann MJ. Cdk12 is essential for embryonic development and the maintenance of genomic stability. Cell Death Differ. 2016;23:1038–48. 10.1038/cdd.2015.157. PubMed PMC

Federici S, Rossetti R, Moleri S, Munari EV, Frixou M, Bonomi M, et al. Primary ovarian insufficiency: update on clinical and genetic findings. Front Endocrinol (Lausanne). 2024;15:1464803 10.3389/FENDO.2024.1464803/BIBTEX. PubMed PMC

Sokol ES, Pavlick D, Frampton GM, Ross JS, Miller VA, Ali SM, et al. Pan-Cancer Analysis of CDK12 Loss-of-Function Alterations and Their Association with the Focal Tandem-Duplicator Phenotype. Oncologist. 2019;24:1526–33. 10.1634/THEONCOLOGIST.2019-0214/-/DC5. PubMed PMC

Rouxel F, Relator R, Kerkhof J, McConkey H, Levy M, Dias P, et al. CDK13-related disorder: Report of a series of 18 previously unpublished individuals and description of an epigenetic signature. Genet Med. 2022;24:1096–107. 10.1016/J.GIM.2021.12.016. PubMed

Wu Z, Zhang W, Chen L, Wang T, Wang X, Shi H, et al. CDK12 inhibition upregulates ATG7 triggering autophagy via AKT/FOXO3 pathway and enhances anti-PD-1 efficacy in colorectal cancer. Pharmacol Res. 2024;201. 10.1016/J.PHRS.2024.107097. PubMed

Wang H, Wan H, Li X, Liu W, Chen Q, Wang Y, et al. Atg7 is required for acrosome biogenesis during spermatogenesis in mice. Cell Res. 2014;24:852–69. 10.1038/CR.2014.70. PubMed PMC

Castillo J, Knol JC, Korver CM, Piersma SR, Pham TV, de Goeij-de Haas RR, et al. Human Testis Phosphoproteome Reveals Kinases as Potential Targets in Spermatogenesis and Testicular Cancer. Mol Cell Proteom. 2019;18:S132 10.1074/MCP.RA118.001278. PubMed PMC

Allingham-Hawkins DJ, Babul-Hirji R, Chitayat D, Holden JJA, Yang KT, Lee C, et al. Fragile X Premutation Is a Significant Risk Factor for Premature Ovarian Failure: The International Collaborative POF in Fragile X Study—Preliminary Data. Am J Med Genet. 1999;83:322. 10.1002/(SICI)1096-8628(19990402)83:4<322::AID-AJMG17>3.0.CO;2-B. PubMed PMC

Zhao H, Chen ZJ, Qin Y, Shi Y, Wang S, Choi Y, et al. Transcription Factor FIGLA is Mutated in Patients with Premature Ovarian Failure. Am J Hum Genet. 2008;82:1342–8. 10.1016/J.AJHG.2008.04.018. PubMed PMC

del Llano E, Masek T, Gahurova L, Pospisek M, Koncicka M, Jindrova A, et al. Age-related differences in the translational landscape of mammalian oocytes. Aging Cell. 2020:e13231. 10.1111/acel.13231. PubMed PMC

Ke H, Tang S, Guo T, Hou D, Jiao X, Li S, et al. Landscape of pathogenic mutations in premature ovarian insufficiency. Nat Med. 2023;29:483–92. 10.1038/S41591-022-02194-3. PubMed PMC

Luo W, Ke H, Tang S, Jiao X, Li Z, Zhao S, et al. Next-generation sequencing of 500 POI patients identified novel responsible monogenic and oligogenic variants. J Ovarian Res. 2023;16:1–13. 10.1186/S13048-023-01104-6/TABLES/3. PubMed PMC

Mok-Lin E, Ascano M, Serganov A, Rosenwaks Z, Tuschl T, Williams Z Premature recruitment of oocyte pool and increased mTOR activity in Fmr1 knockout mice and reversal of phenotype with rapamycin. Sci Rep. 2018;8. 10.1038/S41598-017-18598-Y. PubMed PMC

Jasti S, Warren BD, McGinnis LK, Kinsey WH, Petroff BK, Petroff MG. The Autoimmune Regulator Prevents Premature Reproductive Senescence in Female Mice. Biol Reprod. 2012;86:110 10.1095/BIOLREPROD.111.097501. PubMed PMC

Liang LF, Soyal SM, Dean J. FIGα, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes. Development. 1997;124:4939–47. PubMed

Day FR, Hinds DA, Tung JY, Stolk L, Styrkarsdottir U, Saxena R, et al. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat Commun. 2015;61:1–7. 10.1038/ncomms9464. PubMed PMC

JSE L, JA V, AG U, WP V, JHJ. H Menopause: genome stability as new paradigm. Maturitas n.d.;92:15–23. PubMed

Rodgers RJ, Laven JSE. Genetic relationships between early menopause and the behaviour of theca interna during follicular atresia. Hum Reprod. 2020;35:2185–7. 10.1093/HUMREP/DEAA173. PubMed

Zhang C, Yu D, Mei Y, Liu S, Shao H, Sun Q, et al. Single-cell RNA sequencing of peripheral blood reveals immune cell dysfunction in premature ovarian insufficiency. Front Endocrinol (Lausanne). 2023;14. 10.3389/FENDO.2023.1129657. PubMed PMC

Liu D, Guan X, Liu W, Jia Y, Zhou H, Xi C, et al. Identification of transcriptome characteristics of granulosa cells and the possible role of UBE2C in the pathogenesis of premature ovarian insufficiency. J Ovarian Res. 2023;16:1–20. 10.1186/S13048-023-01266-3/FIGURES/9. PubMed PMC

Yu Z, Peng W, Li M. Exploring biomarkers of premature ovarian insufficiency based on oxford nanopore transcriptional profile and machine learning. Sci Rep. 2023;131:1–10. 10.1038/s41598-023-38754-x. PubMed PMC

Meskhi A, Seif MW. Premature ovarian failure. Curr Opin Obstet Gynecol. 2006;18:418–26. 10.1097/01.GCO.0000233937.36554.D3. PubMed

Shelling AN. Premature ovarian failure. Reproduction. 2010;140:633–41. 10.1530/REP-09-0567. PubMed

Rossetti R, Ferrari I, Bonomi M, Persani L. Genetics of primary ovarian insufficiency. Clin Genet. 2017;91:183–98. 10.1111/cge.12921. PubMed

Coulam CB, Laws ER, Abboud CF, Randall RV. PRIMARY AMENORRHEA AND PITUITARY ADENOMAS. Fertil Steril. 1981;35:615–9. 10.1016/S0015-0282(16)45551-2. PubMed

Kalantaridou SN, Davis SR, Nelson LM. PREMATURE OVARIAN FAILURE. Endocrinol Metab Clin North Am. 1998;27:989–1006. 10.1016/S0889-8529(05)70051-7. PubMed

Fraison E, Crawford G, Casper G, Harris V, Ledger W. Pregnancy following diagnosis of premature ovarian insufficiency: a systematic review. Reprod Biomed Online. 2019;39:467–76. 10.1016/J.RBMO.2019.04.019. PubMed

Erickson GF, Shimasaki S. The role of the oocyte in folliculogenesis. Trends Endocrinol Metab. 2000;11:193–8. 10.1016/S1043-2760(00)00249-6. PubMed

Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996;383:531–5. 10.1038/383531A0. PubMed

Aaltonen J, Laitinen MP, Vuojolainen K, Jaatinen R, Horelli-Kuitunen N, Seppä L, et al. Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J Clin Endocrinol Metab. 1999;84:2744–50. 10.1210/JCEM.84.8.5921. PubMed

Bodensteiner KJ, Clay CM, Moeller CL, Sawyer HR. Molecular cloning of the ovine Growth/Differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries. Biol Reprod. 1999;60:381–6. 10.1095/BIOLREPROD60.2.381. PubMed

Jaatinen R, Laitinen MP, Vuojolainen K, Aaltonen J, Louhio H, Heikinheimo K, et al. Localization of growth differentiation factor-9 (GDF-9) mRNA and protein in rat ovaries and cDNA cloning of rat GDF-9 and its novel homolog GDF-9B. Mol Cell Endocrinol. 1999;156:189–93. 10.1016/S0303-7207(99)00100-8. PubMed

Isola JVV, Ocañas SR, Hubbart CR, Ko S, Mondal SA, Hense JD, et al. A single-cell atlas of the aging mouse ovary. Nat Aging. 2024;41:145–62. 10.1038/s43587-023-00552-5. PubMed PMC

Houles T, Lavoie G, Nourreddine S, Cheung W, Vaillancourt-Jean É, Guérin CM, et al. CDK12 is hyperactivated and a synthetic-lethal target in BRAF-mutated melanoma. Nat Commun. 2022;131:1–16. 10.1038/s41467-022-34179-8. PubMed PMC

Yagel S, Gullo G, Ospedaliera A, Riuniti Villa O, Cervello S, Gonfloni S, et al. Signaling pathway intervention in premature ovarian failure. Front Med. 2022;9:999440 10.3389/FMED.2022.999440. PubMed PMC

Tetkova A, Hancova M. Mouse Oocyte Isolation, Cultivation and RNA Microinjection. BIO-PROTOCOL 2016. 10.21769/bioprotoc.1729.

Jansova D, Aleshkina D, Jindrova A, Iyyappan R, An Q, Fan G, et al. Single Molecule RNA Localization and Translation in the Mammalian Oocyte and Embryo. J Mol Biol. 2021;433. 10.1016/J.JMB.2021.167166. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...