The structure and substrate specificity of human Cdk12/Cyclin K

. 2014 Mar 24 ; 5 () : 3505. [epub] 20140324

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24662513

Grantová podpora
R01 GM104291 NIGMS NIH HHS - United States
T32 CA078207 NCI NIH HHS - United States
GM104291 NIGMS NIH HHS - United States
T32 CA78207 NCI NIH HHS - United States

Phosphorylation of the RNA polymerase II C-terminal domain (CTD) by cyclin-dependent kinases is important for productive transcription. Here we determine the crystal structure of Cdk12/CycK and analyse its requirements for substrate recognition. Active Cdk12/CycK is arranged in an open conformation similar to that of Cdk9/CycT but different from those of cell cycle kinases. Cdk12 contains a C-terminal extension that folds onto the N- and C-terminal lobes thereby contacting the ATP ribose. The interaction is mediated by an HE motif followed by a polybasic cluster that is conserved in transcriptional CDKs. Cdk12/CycK showed the highest activity on a CTD substrate prephosphorylated at position Ser7, whereas the common Lys7 substitution was not recognized. Flavopiridol is most potent towards Cdk12 but was still 10-fold more potent towards Cdk9. T-loop phosphorylation of Cdk12 required coexpression with a Cdk-activating kinase. These results suggest the regulation of Pol II elongation by a relay of transcriptionally active CTD kinases.

Zobrazit více v PubMed

Bartkowiak B. & Greenleaf A. L. Phosphorylation of RNAPII: To P-TEFb or not to P-TEFb? Transcription 2, 115–119 (2011). PubMed PMC

Fuda N. J., Ardehali M. B. & Lis J. T. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461, 186–192 (2009). PubMed PMC

Phatnani H. P. & Greenleaf A. L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006). PubMed

Schwer B. & Shuman S. Deciphering the RNA polymerase II CTD code in fission yeast. Mol. Cell 43, 311–318 (2011). PubMed PMC

Heidemann M., Hintermair C., Voß K. & Eick D. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Biochim. Biophys. Acta 1829, 55–62 (2013). PubMed

Egloff S., Dienstbier M. & Murphy S. Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet. 28, 333–341 (2012). PubMed

Schröder S. et al.. Acetylation of RNA polymerase II regulates growth-factor-induced gene transcription in mammalian cells. Mol. Cell 52, 314–324 (2013). PubMed PMC

Sims R. J. III et al.. The C-terminal domain of RNA polymerase II is modified by site-specific methylation. Science 332, 99–103 (2011). PubMed PMC

Buratowski S. The CTD code. Nat. Struct. Biol. 10, 679–680 (2003). PubMed

Mayer A. et al.. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336, 1723–1725 (2012). PubMed

Kim H. et al.. Gene-specific RNA polymerase II phosphorylation and the CTD code. Nat. Struct. Mol. Biol. 17, 1279–1786 (2010). PubMed PMC

Tietjen J. R. et al.. Chemical-genomic dissection of the CTD code. Nat. Struct. Mol. Biol. 17, 1154–1161 (2010). PubMed PMC

Mayer A. et al.. Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. 17, 1272–1278 (2010). PubMed

Bataille A. R. et al.. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol. Cell 45, 158–170 (2012). PubMed

Bartkowiak B. et al.. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev. 24, 2303–2316 (2010). PubMed PMC

Blazek D. et al.. The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 25, 2158–2172 (2011). PubMed PMC

Cheng S. W. et al.. Interaction of cyclin-dependent kinase 12/CrkRS with cyclin K1 is required for the phosphorylation of the C-terminal domain of RNA polymerase II. Mol. Cell. Biol. 32, 4691–4704 (2012). PubMed PMC

Viladevall L. et al.. TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Mol. Cell 33, 738–751 (2009). PubMed PMC

Qiu H., Hu C. & Hinnebusch A. G. Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol. Cell 33, 752–762 (2009). PubMed PMC

Qiu H., Hu C., Gaur N. A. & Hinnebusch A. G. Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex. EMBO J. 31, 3494–3505 (2012). PubMed PMC

Akhtar M. S. et al.. TFIIH kinase places bivalent marks on the carboxyterminal domain of RNA polymerase II. Mol. Cell 34, 387–393 (2009). PubMed PMC

Glover-Cutter K. et al.. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol. 29, 5455–5464 (2009). PubMed PMC

Kim M., Suh H., Cho E.-J. & Buratowski S. Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. J. Biol. Chem. 284, 26421–26426 (2009). PubMed PMC

St Amour C. V. et al.. Separate domains of fission yeast Cdk9 (P-TEFb) are required for capping enzyme recruitment and primed (Ser7-Phosphorylated) Rpb1 carboxyl-terminal domain substrate recognition. Mol. Cell. Biol. 32, 2372–2383 (2012). PubMed PMC

Baumli S. et al.. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J. 27, 1907–1918 (2008). PubMed PMC

Brown N. R., Noble M. E., Endicott J. A. & Johnson L. N. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat. Cell Biol. 1, 438–443 (1999). PubMed

Russo A. A., Jeffrey P. D., Patten A. K., Massague J. & Pavletich N. P. Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382, 325–331 (1996). PubMed

Anand K., Schulte A., Vogel-Bachmayr K., Scheffzek K. & Geyer M. Structural insights into the cyclin T1-Tat-TAR RNA transcription activation complex from EIAV. Nat. Struct. Mol. Biol. 15, 1287–1292 (2008). PubMed

Dames S. A. et al.. Structure of the Cyclin T binding domain of Hexim1 and molecular basis for its recognition of P-TEFb. Proc. Natl Acad. Sci. USA 104, 14312–14317 (2007). PubMed PMC

Schulze-Gahmen U. et al.. The AFF4 scaffold binds human P-TEFb adjacent to HIV Tat. Elife 2, e00327 (2013). PubMed PMC

Madhusudan, Akamine P., Xuong N. H. & Taylor S. S. Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase. Nat. Struct. Biol. 9, 273–277 (2002). PubMed

Bao Z. Q., Jacobsen D. M. & Young M. A. Briefly bound to activate: transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis. Structure 19, 675–690 (2011). PubMed PMC

Adams J. A. Kinetic and catalytic mechanisms of protein kinases. Chem. Rev. 101, 2271–2290 (2001). PubMed

Czudnochowski N., Bösken C. A. & Geyer M. Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition. Nat. Commun. 3, 842 (2012). PubMed

Larochelle S. et al.. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat. Struct. Mol. Biol. 19, 1108–1115 (2012). PubMed PMC

Eick D. & Geyer M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 113, 8456–8490 (2013). PubMed

Hintermair C. et al.. Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. EMBO J. 31, 2784–2797 (2012). PubMed PMC

Wang S. & Fischer P. M. Cyclin-dependent kinase 9: a key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends. Pharmacol. Sci. 29, 302–313 (2008). PubMed

Huse M. & Kuriyan J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002). PubMed

Endicott J. A., Noble M. E. & Johnson L. N. The structural basis for control of eukaryotic protein kinases. Annu. Rev. Biochem. 81, 587–613 (2012). PubMed

Goldberg J., Nairn A. C. & Kuriyan J. Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Cell 84, 875–887 (1996). PubMed

Baumli S., Hole A. J., Wang L., Noble M. E. & Endicott J. A. The CDK9 tail determines the reaction pathway of positive transcription elongation factor b. Structure 20, 1–8 (2012). PubMed PMC

Ghamari A. et al.. In vivo live imaging of RNA polymerase II transcription factories in primary cells. Genes Dev. 27, 767–777 (2013). PubMed PMC

Lee T. I. & Young R. A. Transcriptional regulation and its misregulation in disease. Cell 152, 1237–1251 (2013). PubMed PMC

Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011). PubMed PMC

Wei X. et al.. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat. Genet. 43, 442–446 (2011). PubMed PMC

Kan Z. et al.. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010). PubMed

Buratowski S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009). PubMed PMC

Corden J. L. RNA polymerase II C-terminal domain: tethering transcription to transcript and template. Chem. Rev. 113, 8423–8455 (2013). PubMed PMC

Bieniossek C., Imasaki T., Takagi Y. & Berger I. MultiBac: expanding the research toolbox for multiprotein complexes. Trends Biochem. Sci. 37, 49–57 (2012). PubMed PMC

Kabsch W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010). PubMed PMC

McCoy A. J. et al.. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007). PubMed PMC

Baek K., Brown R. S., Birrane G. & Ladias J. A. Crystal structure of human cyclin K, a positive regulator of cyclin-dependent kinase 9. J. Mol. Biol. 366, 563–573 (2007). PubMed PMC

Murshudov G. N. et al.. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr 67, 355–367 (2011). PubMed PMC

Adams P. D. et al.. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010). PubMed PMC

Emsley P. & Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004). PubMed

Chapman R. D. et al.. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318, 1780–1782 (2007). PubMed

Russo A. A., Jeffrey P. D. & Pavletich N. P. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat. Struct. Biol. 3, 696–700 (1996). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace