The structure and substrate specificity of human Cdk12/Cyclin K
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM104291
NIGMS NIH HHS - United States
T32 CA078207
NCI NIH HHS - United States
GM104291
NIGMS NIH HHS - United States
T32 CA78207
NCI NIH HHS - United States
PubMed
24662513
PubMed Central
PMC3973122
DOI
10.1038/ncomms4505
PII: ncomms4505
Knihovny.cz E-zdroje
- MeSH
- cyklin-dependentní kinasy chemie metabolismus MeSH
- cykliny chemie metabolismus MeSH
- ELISA MeSH
- HeLa buňky MeSH
- hmotnostní spektrometrie MeSH
- imunoprecipitace MeSH
- konformace proteinů MeSH
- krystalizace MeSH
- lidé MeSH
- molekulární modely * MeSH
- multiproteinové komplexy chemie metabolismus MeSH
- substrátová specifita MeSH
- western blotting MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- CCNK protein, human MeSH Prohlížeč
- CDK12 protein, human MeSH Prohlížeč
- cyklin-dependentní kinasy MeSH
- cykliny MeSH
- multiproteinové komplexy MeSH
Phosphorylation of the RNA polymerase II C-terminal domain (CTD) by cyclin-dependent kinases is important for productive transcription. Here we determine the crystal structure of Cdk12/CycK and analyse its requirements for substrate recognition. Active Cdk12/CycK is arranged in an open conformation similar to that of Cdk9/CycT but different from those of cell cycle kinases. Cdk12 contains a C-terminal extension that folds onto the N- and C-terminal lobes thereby contacting the ATP ribose. The interaction is mediated by an HE motif followed by a polybasic cluster that is conserved in transcriptional CDKs. Cdk12/CycK showed the highest activity on a CTD substrate prephosphorylated at position Ser7, whereas the common Lys7 substitution was not recognized. Flavopiridol is most potent towards Cdk12 but was still 10-fold more potent towards Cdk9. T-loop phosphorylation of Cdk12 required coexpression with a Cdk-activating kinase. These results suggest the regulation of Pol II elongation by a relay of transcriptionally active CTD kinases.
Zobrazit více v PubMed
Bartkowiak B. & Greenleaf A. L. Phosphorylation of RNAPII: To P-TEFb or not to P-TEFb? Transcription 2, 115–119 (2011). PubMed PMC
Fuda N. J., Ardehali M. B. & Lis J. T. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature 461, 186–192 (2009). PubMed PMC
Phatnani H. P. & Greenleaf A. L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006). PubMed
Schwer B. & Shuman S. Deciphering the RNA polymerase II CTD code in fission yeast. Mol. Cell 43, 311–318 (2011). PubMed PMC
Heidemann M., Hintermair C., Voß K. & Eick D. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Biochim. Biophys. Acta 1829, 55–62 (2013). PubMed
Egloff S., Dienstbier M. & Murphy S. Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet. 28, 333–341 (2012). PubMed
Schröder S. et al.. Acetylation of RNA polymerase II regulates growth-factor-induced gene transcription in mammalian cells. Mol. Cell 52, 314–324 (2013). PubMed PMC
Sims R. J. III et al.. The C-terminal domain of RNA polymerase II is modified by site-specific methylation. Science 332, 99–103 (2011). PubMed PMC
Buratowski S. The CTD code. Nat. Struct. Biol. 10, 679–680 (2003). PubMed
Mayer A. et al.. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336, 1723–1725 (2012). PubMed
Kim H. et al.. Gene-specific RNA polymerase II phosphorylation and the CTD code. Nat. Struct. Mol. Biol. 17, 1279–1786 (2010). PubMed PMC
Tietjen J. R. et al.. Chemical-genomic dissection of the CTD code. Nat. Struct. Mol. Biol. 17, 1154–1161 (2010). PubMed PMC
Mayer A. et al.. Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. 17, 1272–1278 (2010). PubMed
Bataille A. R. et al.. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol. Cell 45, 158–170 (2012). PubMed
Bartkowiak B. et al.. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev. 24, 2303–2316 (2010). PubMed PMC
Blazek D. et al.. The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 25, 2158–2172 (2011). PubMed PMC
Cheng S. W. et al.. Interaction of cyclin-dependent kinase 12/CrkRS with cyclin K1 is required for the phosphorylation of the C-terminal domain of RNA polymerase II. Mol. Cell. Biol. 32, 4691–4704 (2012). PubMed PMC
Viladevall L. et al.. TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Mol. Cell 33, 738–751 (2009). PubMed PMC
Qiu H., Hu C. & Hinnebusch A. G. Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol. Cell 33, 752–762 (2009). PubMed PMC
Qiu H., Hu C., Gaur N. A. & Hinnebusch A. G. Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex. EMBO J. 31, 3494–3505 (2012). PubMed PMC
Akhtar M. S. et al.. TFIIH kinase places bivalent marks on the carboxyterminal domain of RNA polymerase II. Mol. Cell 34, 387–393 (2009). PubMed PMC
Glover-Cutter K. et al.. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol. 29, 5455–5464 (2009). PubMed PMC
Kim M., Suh H., Cho E.-J. & Buratowski S. Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. J. Biol. Chem. 284, 26421–26426 (2009). PubMed PMC
St Amour C. V. et al.. Separate domains of fission yeast Cdk9 (P-TEFb) are required for capping enzyme recruitment and primed (Ser7-Phosphorylated) Rpb1 carboxyl-terminal domain substrate recognition. Mol. Cell. Biol. 32, 2372–2383 (2012). PubMed PMC
Baumli S. et al.. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J. 27, 1907–1918 (2008). PubMed PMC
Brown N. R., Noble M. E., Endicott J. A. & Johnson L. N. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat. Cell Biol. 1, 438–443 (1999). PubMed
Russo A. A., Jeffrey P. D., Patten A. K., Massague J. & Pavletich N. P. Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382, 325–331 (1996). PubMed
Anand K., Schulte A., Vogel-Bachmayr K., Scheffzek K. & Geyer M. Structural insights into the cyclin T1-Tat-TAR RNA transcription activation complex from EIAV. Nat. Struct. Mol. Biol. 15, 1287–1292 (2008). PubMed
Dames S. A. et al.. Structure of the Cyclin T binding domain of Hexim1 and molecular basis for its recognition of P-TEFb. Proc. Natl Acad. Sci. USA 104, 14312–14317 (2007). PubMed PMC
Schulze-Gahmen U. et al.. The AFF4 scaffold binds human P-TEFb adjacent to HIV Tat. Elife 2, e00327 (2013). PubMed PMC
Madhusudan, Akamine P., Xuong N. H. & Taylor S. S. Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase. Nat. Struct. Biol. 9, 273–277 (2002). PubMed
Bao Z. Q., Jacobsen D. M. & Young M. A. Briefly bound to activate: transient binding of a second catalytic magnesium activates the structure and dynamics of CDK2 kinase for catalysis. Structure 19, 675–690 (2011). PubMed PMC
Adams J. A. Kinetic and catalytic mechanisms of protein kinases. Chem. Rev. 101, 2271–2290 (2001). PubMed
Czudnochowski N., Bösken C. A. & Geyer M. Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition. Nat. Commun. 3, 842 (2012). PubMed
Larochelle S. et al.. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat. Struct. Mol. Biol. 19, 1108–1115 (2012). PubMed PMC
Eick D. & Geyer M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 113, 8456–8490 (2013). PubMed
Hintermair C. et al.. Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. EMBO J. 31, 2784–2797 (2012). PubMed PMC
Wang S. & Fischer P. M. Cyclin-dependent kinase 9: a key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends. Pharmacol. Sci. 29, 302–313 (2008). PubMed
Huse M. & Kuriyan J. The conformational plasticity of protein kinases. Cell 109, 275–282 (2002). PubMed
Endicott J. A., Noble M. E. & Johnson L. N. The structural basis for control of eukaryotic protein kinases. Annu. Rev. Biochem. 81, 587–613 (2012). PubMed
Goldberg J., Nairn A. C. & Kuriyan J. Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Cell 84, 875–887 (1996). PubMed
Baumli S., Hole A. J., Wang L., Noble M. E. & Endicott J. A. The CDK9 tail determines the reaction pathway of positive transcription elongation factor b. Structure 20, 1–8 (2012). PubMed PMC
Ghamari A. et al.. In vivo live imaging of RNA polymerase II transcription factories in primary cells. Genes Dev. 27, 767–777 (2013). PubMed PMC
Lee T. I. & Young R. A. Transcriptional regulation and its misregulation in disease. Cell 152, 1237–1251 (2013). PubMed PMC
Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011). PubMed PMC
Wei X. et al.. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat. Genet. 43, 442–446 (2011). PubMed PMC
Kan Z. et al.. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010). PubMed
Buratowski S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009). PubMed PMC
Corden J. L. RNA polymerase II C-terminal domain: tethering transcription to transcript and template. Chem. Rev. 113, 8423–8455 (2013). PubMed PMC
Bieniossek C., Imasaki T., Takagi Y. & Berger I. MultiBac: expanding the research toolbox for multiprotein complexes. Trends Biochem. Sci. 37, 49–57 (2012). PubMed PMC
Kabsch W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010). PubMed PMC
McCoy A. J. et al.. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007). PubMed PMC
Baek K., Brown R. S., Birrane G. & Ladias J. A. Crystal structure of human cyclin K, a positive regulator of cyclin-dependent kinase 9. J. Mol. Biol. 366, 563–573 (2007). PubMed PMC
Murshudov G. N. et al.. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr 67, 355–367 (2011). PubMed PMC
Adams P. D. et al.. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010). PubMed PMC
Emsley P. & Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004). PubMed
Chapman R. D. et al.. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318, 1780–1782 (2007). PubMed
Russo A. A., Jeffrey P. D. & Pavletich N. P. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat. Struct. Biol. 3, 696–700 (1996). PubMed
CDK11 is required for transcription of replication-dependent histone genes
CDK12: cellular functions and therapeutic potential of versatile player in cancer
CDK12 controls G1/S progression by regulating RNAPII processivity at core DNA replication genes
The emerging roles of CDK12 in tumorigenesis
PDB
4NST