Intraperitoneal versus intravenous administration of Flamma®-conjugated PEG-alendronate-coated upconversion nanoparticles in a mouse pancreatic cancer model
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
39569328
PubMed Central
PMC11575528
DOI
10.1039/d4na00764f
PII: d4na00764f
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Pancreatic cancer is one of the most common forms of malignant disease with a poor survival prognosis. Currently, nanomedicine holds great promise for targeted diagnosis and treatment of this cancer, which also reduces toxic side effects. In this work, we prepared PEG-coated monodisperse upconversion nanoparticles (UCNPs) with a conjugated Flamma® fluorescent dye for imaging and detection of particle distribution in vivo. We performed a thorough physicochemical characterization of the particles and determined their colloidal and chemical stability in several aqueous media such as water, PBS, Dulbecco's modified Eagle's medium and artificial lysosomal fluid. Luminescence resonance energy transfer from the emission of UCNPs as a donor to the Flamma® as an acceptor was confirmed. Intraperitoneal versus intravenous administration was then compared in terms of biodistribution of particles in various organs in the orthotopic mice pancreatic cancer model. The intraperitoneal route was preferred over the intravenous one, because it significantly increased the accumulation of particles in the tumor tissue. These new UCNP@Ale-PEG-Flamma® nanoparticles are thus promising for new treatment avenues for pancreatic cancer.
See more in PubMed
Cipora E. Czerw A. Partyka O. Pajewska M. Badowska-Kozakiewicz A. Fudalej M. Sygit K. Kaczmarski M. Krzych-Fałta E. Jurczak A. Karakiewicz-Krawczyk K. Wieder-Huszla S. Banaś T. Bandurska E. Ciećko W. Kosior D. A. Kułak P. Deptała A. Quality of life in patients with pancreatic cancer-A literature review. Int. J. Environ. Res. Publ. Health. 2023;20:4895. doi: 10.3390/ijerph20064895. https://dx.doi.org/10.3390/ijerph20064895 PubMed DOI PMC
Jethva P. Momin M. Khan T. A. Omri A. Lanthanide-doped upconversion luminescent nanoparticles—evolving role in bioimaging, biosensing, and drug delivery. Materials. 2022;15:2374. doi: 10.3390/ma15072374. https://dx.doi.org/10.3390/ma15072374 PubMed DOI PMC
Liu S. Yan L. Huang J. Zhang Q. Zhou B. Controlling upconversion in emerging multilayer core–shell nanostructures: From fundamentals to frontier applications. Chem. Soc. Rev. 2022;51:1729–1765. doi: 10.1039/D1CS00753J. https://dx.doi.org/10.1039/D1CS00753J PubMed DOI
Zheng K. Z. Loh K. Y. Wang Y. Chen Q. S. Fan J. Y. Jung T. Nam S. H. Suh Y. D. Liu X. G. Recent advances in upconversion nanocrystals: Expanding the kaleidoscopic toolbox for emerging applications. Nano Today. 2019;29:100797. doi: 10.1016/j.nantod.2019.100797. https://dx.doi.org/10.1016/j.nantod.2019.100797 DOI
Qiu P. Zhou N. Chen H. Zhang C. Gao G. Cui D. Recent advances in lanthanide-doped upconversion nanomaterials: Synthesis, nanostructures and surface modification. Nanoscale. 2013;5:11512–11525. doi: 10.1039/C3NR03642A. https://dx.doi.org/10.1039/C3NR03642A PubMed DOI
Oleksa V. Macková H. Engstová H. Patsula V. Shapoval O. Velychkivska N. Ježek P. Horák D. Poly(N,N-dimethylacrylamide)-coated upconverting NaYF4:Yb,Er@NaYF4:Nd core-shell nanoparticles for fluorescent labeling of carcinoma cells. Sci. Rep. 2021;11:21373. doi: 10.1038/s41598-021-00845-y. https://dx.doi.org/10.1038/s41598-021-00845-y PubMed DOI PMC
Gee A. Xu X. Surface functionalisation of upconversion nanoparticles with different moieties for biomedical applications. Surfaces. 2018;1:96–121. doi: 10.3390/surfaces1010009. https://dx.doi.org/10.3390/surfaces1010009 DOI
Cheng L. Yang K. Shao M. Lu X. Liu Z. In vivo pharmacokinetics, long-term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice. Nanomedicine. 2011;6:1327–1340. doi: 10.2217/nnm.11.56. https://dx.doi.org/10.2217/nnm.11.56 PubMed DOI
Kostiv U. Lobaz V. Kučka J. Švec P. Sedláček O. Hrubý M. Janoušková O. Francová P. Kolářová V. Šefc L. Horák D. A simple neridronate-based surface coating strategy for upconversion nanoparticles: Highly colloidally stable 125I-radiolabeled NaYF4:Yb3+/Er3+@PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale. 2017;9:16680–16688. doi: 10.1039/C7NR05456D. https://dx.doi.org/10.1039/C7NR05456D PubMed DOI
Schraven S. Rosenhain S. Brueck R. Wiechmann T. M. Pola R. Etrych T. Lederle W. Lammers T. Gremse F. Kiessling F. Dye labeling for optical imaging biases drug carriers' biodistribution and tumor uptake. Nanomed.: Nanotechnol. Biol. Med. 2023;48:102650. doi: 10.1016/j.nano.2023.102650. https://dx.doi.org/10.1016/j.nano.2023.102650 PubMed DOI
Arai M. S. de Camargo A. S. S. Exploring the use of upconversion nanoparticles in chemical and biological sensors: From surface modifications to point-of-care devices. Nanoscale Adv. 2021;3:5135–5165. doi: 10.1039/D1NA00327E. https://dx.doi.org/10.1039/D1NA00327E PubMed DOI PMC
Oh K. Yhee J. Y. Lee D. Kim K. Kwon I. C. Seo J. H. Kim S. Y. Yuk S. H. Accurate sequential detection of primary tumor and metastatic lymphatics using a temperature-induced phase transition nanoparticulate system. Int. J. Nanomed. 2014;9:2955–2965. doi: 10.2147/IJN.S63720. https://dx.doi.org/10.2147/IJN.S63720 PubMed DOI PMC
Pola R. Studenovský M. Pechar M. Ulbrich K. Hovorka O. Větvička D. Říhová B. HPMA-copolymer conjugates targeted to tumor endothelium using synthetic oligopeptides. J. Drug Target. 2009;17:763–776. doi: 10.3109/10611860903115282. https://dx.doi.org/10.3109/10611860903115282 PubMed DOI
Vetvicka D. Sivak L. Jogdeo C. M. Kumar R. Khan R. Hang Y. Oupický D. Gene silencing delivery systems for the treatment of pancreatic cancer: Where and what to target next? J. Contr. Release. 2021;331:246–259. doi: 10.1016/j.jconrel.2021.01.020. https://dx.doi.org/10.1016/j.jconrel.2021.01.020 PubMed DOI
Dakwar G. R. Shariati M. Willaert W. Ceelen W. De Smedt S. C. Remaut K. Nanomedicine-based intraperitoneal therapy for the treatment of peritoneal carcinomatosis - Mission possible? Adv. Drug Deliv. Rev. 2017;108:13–24. doi: 10.1016/j.addr.2016.07.001. https://dx.doi.org/10.1016/j.addr.2016.07.001 PubMed DOI
Xie Y. Hang Y. Wang Y. Sleightholm R. Prajapati D. R. Bader J. Yu A. Tang W. Jaramillo L. Li J. Singh R. K. Oupický D. Stromal modulation and treatment of metastatic pancreatic cancer with local intraperitoneal triple miRNA/siRNA nanotherapy. ACS Nano. 2020;14:255–271. doi: 10.1021/acsnano.9b03978. https://dx.doi.org/10.1021/acsnano.9b03978 PubMed DOI PMC
Flessner M. F. The transport barrier in intraperitoneal therapy. Ren. Physiol. 2015;288:F433–F442. doi: 10.1152/ajprenal.00313.2004. https://dx.doi.org/10.1152/ajprenal.00313.2004 PubMed DOI
Colombo C. Monhemius A. J. Plant J. A. Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotoxicol. Environ. Saf. 2008;71:722–730. doi: 10.1016/j.ecoenv.2007.11.011. https://dx.doi.org/10.1016/j.ecoenv.2007.11.011 PubMed DOI
Froese N. R. Special considerations in paediatric intensive care. Anaesth. Intensive Care Med. 2009;10:514–521. doi: 10.1016/j.mpaic.2009.06.004. https://dx.doi.org/10.1016/j.mpaic.2009.06.004 DOI
Aoki S. Noguchi M. Takezawa T. Ikeda S. Uchihashi K. Kuroyama H. Chimuro T. Toda S. Fluid dwell impact induces peritoneal fibrosis in the peritoneal cavity reconstructed in vitro. J. Artif. Organs. 2016;19:87–96. doi: 10.1007/s10047-015-0864-7. https://dx.doi.org/10.1007/s10047-015-0864-7 PubMed DOI
Nahorniak M. Pop-Georgievski O. Velychkivska N. Filipová M. Rydvalová E. Gunár K. Matouš P. Kostiv U. Horák D. Rose Bengal-modified upconverting nanoparticles: Synthesis, characterization, and biological evaluation. Life. 2022;12:1383. doi: 10.3390/life12091383. https://dx.doi.org/10.3390/life12091383 PubMed DOI PMC
Oleksa V. Bernátová I. Patsula V. Líšková S. Bališ P. Radosinska J. Mičurová A. Kluknavský M. Jasenovec T. Radosinska D. Macková H. Horák D. Poly(ethylene glycol)-alendronate-coated magnetite nanoparticles do not alter cardiovascular functions and red blood cells properties in hypertensive rats. Nanomaterials. 2021;11:1238. doi: 10.3390/nano11051238. https://dx.doi.org/10.3390/nano11051238 PubMed DOI PMC
Schindelin J. Arganda-Carreras I. Frise E. Kaynig V. Longair M. Pietzsch T. Preibisch S. Rueden C. Saalfeld S. Schmid B. Tinevez J.-Y. White D. J. Hartenstein V. Eliceiri K. Tomancak P. Cardona A. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. https://dx.doi.org/10.1038/nmeth.2019 PubMed DOI PMC
Kostiv U. Natile M. M. Jirák D. Půlpánová D. Jiráková K. Vosmanská M. Horák D. PEG-neridronate-modified NaYF4:Gd3+,Yb3+,Tm3+/NaGdF4 core-shell upconverting nanoparticles for bimodal magnetic resonance/optical luminescence imaging. ACS Omega. 2021;6:14420–14429. doi: 10.1021/acsomega.1c01313. https://dx.doi.org/10.1021/acsomega.1c01313 PubMed DOI PMC
Saleh M. I. Rühle B. Wang S. Radnik J. You Y. Resch-Genger U. Assessing the protective effects of different surface coatings on NaYF4:Yb3+, Er3+ upconverting nanoparticles in buffer and DMEM. Sci. Rep. 2020;10:19318. doi: 10.1038/s41598-020-76116-z. https://dx.doi.org/10.1038/s41598-020-76116-z PubMed DOI PMC
Andresen E. Würth C. Prinz C. Michaelis M. Resch-Genger U. Time-resolved luminescence spectroscopy for monitoring the stability and dissolution behavior of upconverting nanocrystals with different surface coatings. Nanoscale. 2020;12:12589–12601. doi: 10.1039/D0NR02931A. https://dx.doi.org/10.1039/D0NR02931A PubMed DOI
Nahorniak M. Patsula V. Mareková D. Matouš P. Shapoval O. Oleksa V. Vosmanská M. Machová Urdziková L. Jendelová P. Herynek V. Horák D. Chemical and colloidal stability of polymer-coated NaYF4:Yb,Er nanoparticles in aqueous media and viability of cells: The effect of a protective coating. Int. J. Mol. Sci. 2023;24:2724. doi: 10.3390/ijms24032724. https://dx.doi.org/10.3390/ijms24032724 PubMed DOI PMC
Vasylyshyn T. Patsula V. Filipová M. Konefał R.-L. Horák D. Poly(glycerol monomethacrylate)-encapsulated upconverting nanoparticles prepared by miniemulsion polymerization: Morphology, chemical stability, antifouling properties and toxicity evaluation. Nanoscale Adv. 2023;5:6979–6989. doi: 10.1039/D3NA00793F. https://dx.doi.org/10.1039/d3na00793f PubMed DOI PMC
Lisjak D. Plohl O. Vidmar J. Majaron B. Ponikvar-Svet M. Dissolution mechanism of upconverting AYF4:Yb,Tm (A = Na or K) nanoparticles in aqueous media. Langmuir. 2016;32:8222–8229. doi: 10.1021/acs.langmuir.6b02675. https://dx.doi.org/10.1021/acs.langmuir.6b02675 PubMed DOI
Kumar B. Malhotra K. Fuku R. van Houten J. Qu G. Y. Piunno P. A. Krull U. J. Recent trends in the developments of analytical probes based on lanthanide-doped upconversion nanoparticles. Trends Anal. Chem. 2021;139:116256. doi: 10.1016/j.trac.2021.116256. https://dx.doi.org/10.1016/j.trac.2021.116256 DOI
Tajon C. A. Yang H. Tian B. Tian Y. Ercius P. Schuck P. J. Chan E. M. Cohen B. E. Photostable and efficient upconverting nanocrystal-based chemical sensors. Opt. Mater. 2018;84:345–353. doi: 10.1016/j.optmat.2018.07.031. https://dx.doi.org/10.1016/j.optmat.2018.07.031 PubMed DOI PMC
Kotulska A. M. Pilch-Wróbel A. Lahtinen S. Soukka T. Bednarkiewicz A. Upconversion FRET quantitation: the role of donor photoexcitation mode and compositional architecture on the decay and intensity-based responses. Light Sci. Appl. 2022;11:256. doi: 10.1038/s41377-022-00946-x. https://dx.doi.org/10.1038/s41377-022-00946-x PubMed DOI PMC