Poly(glycerol monomethacrylate)-encapsulated upconverting nanoparticles prepared by miniemulsion polymerization: morphology, chemical stability, antifouling properties and toxicity evaluation
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38059042
PubMed Central
PMC10697003
DOI
10.1039/d3na00793f
PII: d3na00793f
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In this report, upconverting NaYF4:Yb3+,Er3+ nanoparticles (UCNPs) were synthesized by high-temperature coprecipitation of lanthanide chlorides and encapsulated in poly(glycerol monomethacrylate) (PGMMA). The UCNP surface was first treated with hydrophobic penta(propylene glycol) methacrylate phosphate (SIPO) to improve colloidal stability and enable encapsulation by reversible addition-fragmentation chain transfer miniemulsion polymerization (RAFT) of glycidyl methacrylate (GMA) in water, followed by its hydrolysis. The resulting UCNP-containing PGMMA particles (UCNP@PGMMA), hundreds of nanometers in diameter, were thoroughly characterized by transmission (TEM) and scanning electron microscopy (SEM), dynamic light scattering (DLS), infrared (FTIR) and fluorescence emission spectroscopy, and thermogravimetric analysis (TGA) in terms of particle morphology, size, polydispersity, luminescence, and composition. The morphology, typically raspberry-like, depended on the GMA/UCNP weight ratio. Coating of the UCNPs with hydrophilic PGMMA provided the UCNPs with antifouling properties while enhancing chemical stability and reducing the cytotoxicity of neat UCNPs to a non-toxic level. In addition, it will allow the binding of molecules such as photosensitizers, thus expanding the possibilities for use in various biomedical applications.
Zobrazit více v PubMed
Mahata M. De R. Lee K. Biomedicines. 2021;9:756. doi: 10.3390/biomedicines9070756. doi: 10.3390/biomedicines9070756. PubMed DOI PMC
Chinen A. B. Guan C. M. Ferrer J. R. Barnaby S. N. Merkel T. J. Mirkin C. A. Chem. Rev. 2015;115:10530–10574. doi: 10.1021/acs.chemrev.5b00321. doi: 10.1021/acs.chemrev.5b00321. PubMed DOI PMC
Shen J. Sun L. D. Yan C. H. Dalton Trans. 2008;42:5687–5697. doi: 10.1039/B805306E. doi: 10.1039/B805306E. PubMed DOI
Smith A. M. Gao X. H. Nie S. M. Photochem. Photobiol. 2004;80:377–385. doi: 10.1111/j.1751-1097.2004.tb00102.x. doi: 10.1111/j.1751-1097.2004.tb00102.x. PubMed DOI
Wang F. Liu X. G. Chem. Soc. Rev. 2009;38:976–989. doi: 10.1039/B809132N. doi: 10.1039/B809132N. PubMed DOI
Du K. Feng J. Gao X. Zhang H. Light: Sci. Appl. 2022;11:222. doi: 10.1038/s41377-022-00871-z. doi: 10.1038/s41377-022-00871-z. PubMed DOI PMC
Li C. Li X. Liu X. ACS Appl. Mater. Interfaces. 2022;14:10947–10954. doi: 10.1021/acsami.1c22816. doi: 10.1021/acsami.1c22816. PubMed DOI
Zhu X. Zhang J. Liu J. Zhang Y. Adv. Sci. 2019;6:1901358. doi: 10.1002/advs.201901358. doi: 10.1002/advs.201901358. PubMed DOI PMC
Wang M. Abbineni G. Clevenger A. Mao C. Xu S. Nanomed. Nanotechnol. Biol. Med. 2011;7:710–729. doi: 10.1016/j.nano.2011.02.013. doi: 10.1016/j.nano.2011.02.013. PubMed DOI PMC
Schäferling M. and Resch-Genger U., in Reviews in Fluorescence, ed. C. Geddes, Springer, Cham, 2017, pp. 71–109. 10.1007/978-3-319-48260-6_5 DOI
Liu Y. Lu Y. Yang X. Zheng X. Wen F. Wang F. Vidal X. Zhao J. Liu D. Zhou Z. Ma C. Zhou J. Piper J. A. Xi P. Jin D. Nature. 2017;543:229–233. doi: 10.1038/nature21366. doi: 10.1038/nature21366. PubMed DOI
Duan C. Liang L. Li L. Zhang R. Xu Z. P. J. Mater. Chem. B. 2018;6:192–209. doi: 10.1039/C7TB02527K. doi: 10.1039/C7TB02527K. PubMed DOI
Liu C. Zheng X. Dai T. Wang H. Chen X. Chen B. Sun T. Wang F. Chu S. Rao J. Angew. Chem. 2022;61:e202116802. doi: 10.1002/anie.202116802. doi: 10.1002/anie.202116802. PubMed DOI PMC
Xu J. Gulzar A. Yang P. Bi H. Yang D. Gai S. He F. Lin J. Xing B. Jin D. Coord. Chem. Rev. 2019;381:104–134. doi: 10.1016/j.ccr.2018.11.014. doi: 10.1016/j.ccr.2018.11.014. DOI
Chen G. Qiu H. Prasad P. N. Chen X. Chem. Rev. 2014;114:5161–5214. doi: 10.1021/cr400425h. doi: 10.1021/cr400425h. PubMed DOI PMC
Wen S. Zhou J. Zheng K. Bednarkiewicz A. Liu X. Jin D. Nat. Commun. 2018;9:2415. doi: 10.1038/s41467-018-04813-5. doi: 10.1038/s41467-018-04813-5. PubMed DOI PMC
Plohl O. Kraft M. Kovač J. Belec B. Ponikvar-Svet M. Würth C. Lisjak D. Resch-Genger U. Langmuir. 2017;33:553–560. doi: 10.1021/acs.langmuir.6b03907. doi: 10.1021/acs.langmuir.6b03907. PubMed DOI
Bevilacqua P. Nuzzo S. Torino E. Condorelli G. Salvatore M. Grimaldi A. M. Nanomaterials. 2021;11:780. doi: 10.3390/nano11030780. doi: 10.3390/nano11030780. PubMed DOI PMC
Sun Y. Zhang W. Wang B. Xu X. Chou J. Shimoni O. Ung A. T. Jin D. A. Chem. Commun. 2018;54:3851–3854. doi: 10.1039/C8CC00708J. doi: 10.1039/C8CC00708J. PubMed DOI
Sedlmeier A. Gorris H. H. Chem. Soc. Rev. 2015;44:1526–1560. doi: 10.1039/C4CS00186A. doi: 10.1039/C4CS00186A. PubMed DOI
Schork F. J. Luo Y. Smulders W. Russum J. P. Butté A. Fontenot K. Adv. Polym. Sci. 2005;175:129–255. doi: 10.1007/b100115. doi: 10.1007/b100115. DOI
Dai X. Yu L. Zhang Y. Zhang L. Tan J. Macromolecules. 2019;52:7468–7476. doi: 10.1021/acs.macromol.9b01689. doi: 10.1021/acs.macromol.9b01689. DOI
Tiarks F. Landfester K. Antonietti M. Langmuir. 2001;17:908–918. doi: 10.1021/la001276n. doi: 10.1021/la001276n. DOI
Mckenzie A. Hoskins R. Swift T. Grant C. Rimmer S. ACS Appl. Mater. Interfaces. 2017;9:7577–7590. doi: 10.1021/acsami.6b15004. doi: 10.1021/acsami.6b15004. PubMed DOI
Jesson C. P. Cunningham V. J. Smallridge M. J. Armes S. P. Macromolecules. 2018;51:3221–3232. doi: 10.1021/acs.macromol.8b00294. doi: 10.1021/acs.macromol.8b00294. PubMed DOI PMC
De Leonardis P. Cellesi F. Tirelli N. Colloids Surf., A. 2019;580:123734. doi: 10.1016/j.colsurfa.2019.123734. doi: 10.1016/j.colsurfa.2019.123734. DOI
Nothling M. D. Fu Q. Reyhani A. Allison-Logan S. Jung K. Zhu J. Kamigaito M. Boyer C. Qiao G. G. Adv. Sci. 2020;7:2001656. doi: 10.1002/advs.202001656. doi: 10.1002/advs.202001656. PubMed DOI PMC
Allegrezza M. L. Konkolewicz D. ACS Macro Lett. 2021;10:433–446. doi: 10.1021/acsmacrolett.1c00046. doi: 10.1021/acsmacrolett.1c00046. PubMed DOI
Hu Q. Luo Y. Cao X. Chen Z. Huang Y. Niu L. ACS Appl. Mater. Interfaces. 2021;13:54794–54800. doi: 10.1021/acsami.1c17564. doi: 10.1021/acsami.1c17564. PubMed DOI
Piogé S. Tran T. N. McKenzie T. G. Pascual S. Ashokkumar M. Fontaine L. Qiao G. Macromolecules. 2018;51:8862–8869. doi: 10.1021/acs.macromol.8b01606. doi: 10.1021/acs.macromol.8b01606. DOI
Hartlieb M. Macromol. Rapid Commun. 2022;43:2100514. doi: 10.1002/marc.202100514. doi: 10.1002/marc.202100514. PubMed DOI
Colombo C. Monhemius A. J. Plant J. A. Ecotoxicol. Environ. Saf. 2008;71:722–730. doi: 10.1016/j.ecoenv.2007.11.011. doi: 10.1016/j.ecoenv.2007.11.011. PubMed DOI
Barbero N. Barolo C. Viscardi G. World J. Chem. Educ. 2016;4:80–85. doi: 10.12691/wjce-4-4-3. DOI
Kostiv U. Kotelnikov I. Proks V. Šlouf M. Kučka J. Engstová H. Ježek P. Horák D. ACS Appl. Mater. Interfaces. 2016;8:20422–20431. doi: 10.1021/acsami.6b07291. doi: 10.1021/acsami.6b07291. PubMed DOI
Ratcliffe L. P. D. Ryan A. J. Armes S. P. Macromolecules. 2013;46:769–777. doi: 10.1021/ma301909w. doi: 10.1021/ma301909w. DOI
Lovell P. A. Schork F. J. Biomacromolecules. 2020;21:4396–4441. doi: 10.1021/acs.biomac.0c00769. doi: 10.1021/acs.biomac.0c00769. PubMed DOI
Docherty P. J. Derry M. J. Armes S. P. Polym. Chem. 2019;10:603–611. doi: 10.1039/C8PY01584H. doi: 10.1039/C8PY01584H. DOI
Zhang W. D'Agosto F. Boyron O. Rieger J. Charleux B. Macromolecules. 2011;19:7584–7593. doi: 10.1021/ma201515n. doi: 10.1021/ma201515n. DOI
Baddam V. Välinen L. Kucklinga L. Tenhu H. Polym. Chem. 2022;13:3790–3799. doi: 10.1039/D2PY00301E. doi: 10.1039/D2PY00301E. DOI
Fan X. Jia X. Zhang H. Zhang B. Li C. Zhang Q. Langmuir. 2013;29:11730–11741. doi: 10.1021/la402759w. doi: 10.1021/la402759w. PubMed DOI
Gerber O. Pichon B. P. Ihiawakrim D. Florea I. Moldovan S. Ersen O. Begin D. Grenèche J.-M. Lemonnier S. Barraud E. Begin-Colin S. Nanoscale. 2017;9:305–313. doi: 10.1039/C6NR07567C. doi: 10.1039/C6NR07567C. PubMed DOI
Xu D. Wang M. Ge X. Hon-Wah Lam M. Ge X. J. Mater. Chem. 2012;22:5784–5791. doi: 10.1039/C2JM15364E. doi: 10.1039/C2JM15364E. DOI
Penfold N. J. W. Yeow J. Boyer C. Armes S. P. ACS Macro Lett. 2019;8:1029–1054. doi: 10.1021/acsmacrolett.9b00464. doi: 10.1021/acsmacrolett.9b00464. PubMed DOI
Wan J. Fan B. Thang S. H. Chem. Sci. 2022;13:4192–4224. doi: 10.1039/d2sc00762b. doi: 10.1039/D2SC00762B. PubMed DOI PMC
Zetterlund P. B. Saka Y. Okubo M. Macromol. Chem. Phys. 2009;210:140149. doi: 10.1002/macp.200800451. doi: 10.1002/macp.200800451. DOI
Saleh M. I. Rühle B. Wang S. Radnik J. You Y. Resch-Genger U. Sci. Rep. 2020;10:19318. doi: 10.1038/s41598-020-76116-z. doi: 10.1038/s41598-020-76116-z. PubMed DOI PMC
Lisjak D. Plohl O. Vidmar J. Majaron B. Ponikvar-Svet M. Langmuir. 2016;32:8222–8229. doi: 10.1021/acs.langmuir.6b02675. doi: 10.1021/acs.langmuir.6b02675. PubMed DOI
Andresen E. Würth C. Prinz C. Michaelis M. Resch-Genger U. Nanoscale. 2020;12:12589–12601. doi: 10.1039/D0NR02931A. doi: 10.1039/D0NR02931A. PubMed DOI
Lahtinen S. Lyytikäinen A. Päkkilä H. Hömppi E. Perälä N. Lastusaari M. Soukka T. J. Phys. Chem. C. 2017;121:656–665. doi: 10.1021/acs.jpcc.6b09301. doi: 10.1021/acs.jpcc.6b09301. DOI
Estebanez N. González-Béjar M. Pérez-Prieto J. ACS Omega. 2019;4:3012–3019. doi: 10.1021/acsomega.8b03015. doi: 10.1021/acsomega.8b03015. PubMed DOI PMC
Nahorniak M. Patsula V. Mareková D. Matouš P. Shapoval O. Oleksa V. Vosmanská M. Machová Urdzíková L. Jendelová P. Herynek V. Horák D. Int. J. Mol. Sci. 2023;24:2724. doi: 10.3390/ijms24032724. doi: 10.3390/ijms24032724. PubMed DOI PMC
Souri M. Shahvandi M. K. Chiani M. Kashkooli F. M. Farhangi A. Mehrabi M. R. Rahmim A. Savage V. M. Soltani M. Drug Delivery. 2023;30:2186312. doi: 10.1080/10717544.2023.2186312. doi: 10.1080/10717544.2023.2186312. PubMed DOI PMC
Sarkar S. Kundu S. Mater. Today: Proc. 2023 doi: 10.1016/j.matpr.2023.04.200. DOI
ISO 10993-5:2009: Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity, 2009, https://www.iso.org/standard/36406.html
Patrucco E. Ouasti S. Vo C. D. De Leonardis P. Pollicino A. Armes S. P. Scandola M. Tirelli N. Biomacromolecules. 2009;10:3130–3140. doi: 10.1021/bm900856r. doi: 10.1021/bm900856r. PubMed DOI
Suk J. S. Xu Q. Kim N. Hanes J. Ensign L. M. Adv. Drug Delivery Rev. 2016;99:28–51. doi: 10.1016/j.addr.2015.09.012. doi: 10.1016/j.addr.2015.09.012. PubMed DOI PMC
Epoxy Resins: Chemistry and Technology, ed. C. May, CRC Press, 2nd edn, 2018. 10.1201/9780203756713 DOI