Poly(glycerol monomethacrylate)-encapsulated upconverting nanoparticles prepared by miniemulsion polymerization: morphology, chemical stability, antifouling properties and toxicity evaluation

. 2023 Dec 05 ; 5 (24) : 6979-6989. [epub] 20231113

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38059042

In this report, upconverting NaYF4:Yb3+,Er3+ nanoparticles (UCNPs) were synthesized by high-temperature coprecipitation of lanthanide chlorides and encapsulated in poly(glycerol monomethacrylate) (PGMMA). The UCNP surface was first treated with hydrophobic penta(propylene glycol) methacrylate phosphate (SIPO) to improve colloidal stability and enable encapsulation by reversible addition-fragmentation chain transfer miniemulsion polymerization (RAFT) of glycidyl methacrylate (GMA) in water, followed by its hydrolysis. The resulting UCNP-containing PGMMA particles (UCNP@PGMMA), hundreds of nanometers in diameter, were thoroughly characterized by transmission (TEM) and scanning electron microscopy (SEM), dynamic light scattering (DLS), infrared (FTIR) and fluorescence emission spectroscopy, and thermogravimetric analysis (TGA) in terms of particle morphology, size, polydispersity, luminescence, and composition. The morphology, typically raspberry-like, depended on the GMA/UCNP weight ratio. Coating of the UCNPs with hydrophilic PGMMA provided the UCNPs with antifouling properties while enhancing chemical stability and reducing the cytotoxicity of neat UCNPs to a non-toxic level. In addition, it will allow the binding of molecules such as photosensitizers, thus expanding the possibilities for use in various biomedical applications.

Zobrazit více v PubMed

Mahata M. De R. Lee K. Biomedicines. 2021;9:756. doi: 10.3390/biomedicines9070756. doi: 10.3390/biomedicines9070756. PubMed DOI PMC

Chinen A. B. Guan C. M. Ferrer J. R. Barnaby S. N. Merkel T. J. Mirkin C. A. Chem. Rev. 2015;115:10530–10574. doi: 10.1021/acs.chemrev.5b00321. doi: 10.1021/acs.chemrev.5b00321. PubMed DOI PMC

Shen J. Sun L. D. Yan C. H. Dalton Trans. 2008;42:5687–5697. doi: 10.1039/B805306E. doi: 10.1039/B805306E. PubMed DOI

Smith A. M. Gao X. H. Nie S. M. Photochem. Photobiol. 2004;80:377–385. doi: 10.1111/j.1751-1097.2004.tb00102.x. doi: 10.1111/j.1751-1097.2004.tb00102.x. PubMed DOI

Wang F. Liu X. G. Chem. Soc. Rev. 2009;38:976–989. doi: 10.1039/B809132N. doi: 10.1039/B809132N. PubMed DOI

Du K. Feng J. Gao X. Zhang H. Light: Sci. Appl. 2022;11:222. doi: 10.1038/s41377-022-00871-z. doi: 10.1038/s41377-022-00871-z. PubMed DOI PMC

Li C. Li X. Liu X. ACS Appl. Mater. Interfaces. 2022;14:10947–10954. doi: 10.1021/acsami.1c22816. doi: 10.1021/acsami.1c22816. PubMed DOI

Zhu X. Zhang J. Liu J. Zhang Y. Adv. Sci. 2019;6:1901358. doi: 10.1002/advs.201901358. doi: 10.1002/advs.201901358. PubMed DOI PMC

Wang M. Abbineni G. Clevenger A. Mao C. Xu S. Nanomed. Nanotechnol. Biol. Med. 2011;7:710–729. doi: 10.1016/j.nano.2011.02.013. doi: 10.1016/j.nano.2011.02.013. PubMed DOI PMC

Schäferling M. and Resch-Genger U., in Reviews in Fluorescence, ed. C. Geddes, Springer, Cham, 2017, pp. 71–109. 10.1007/978-3-319-48260-6_5 DOI

Liu Y. Lu Y. Yang X. Zheng X. Wen F. Wang F. Vidal X. Zhao J. Liu D. Zhou Z. Ma C. Zhou J. Piper J. A. Xi P. Jin D. Nature. 2017;543:229–233. doi: 10.1038/nature21366. doi: 10.1038/nature21366. PubMed DOI

Duan C. Liang L. Li L. Zhang R. Xu Z. P. J. Mater. Chem. B. 2018;6:192–209. doi: 10.1039/C7TB02527K. doi: 10.1039/C7TB02527K. PubMed DOI

Liu C. Zheng X. Dai T. Wang H. Chen X. Chen B. Sun T. Wang F. Chu S. Rao J. Angew. Chem. 2022;61:e202116802. doi: 10.1002/anie.202116802. doi: 10.1002/anie.202116802. PubMed DOI PMC

Xu J. Gulzar A. Yang P. Bi H. Yang D. Gai S. He F. Lin J. Xing B. Jin D. Coord. Chem. Rev. 2019;381:104–134. doi: 10.1016/j.ccr.2018.11.014. doi: 10.1016/j.ccr.2018.11.014. DOI

Chen G. Qiu H. Prasad P. N. Chen X. Chem. Rev. 2014;114:5161–5214. doi: 10.1021/cr400425h. doi: 10.1021/cr400425h. PubMed DOI PMC

Wen S. Zhou J. Zheng K. Bednarkiewicz A. Liu X. Jin D. Nat. Commun. 2018;9:2415. doi: 10.1038/s41467-018-04813-5. doi: 10.1038/s41467-018-04813-5. PubMed DOI PMC

Plohl O. Kraft M. Kovač J. Belec B. Ponikvar-Svet M. Würth C. Lisjak D. Resch-Genger U. Langmuir. 2017;33:553–560. doi: 10.1021/acs.langmuir.6b03907. doi: 10.1021/acs.langmuir.6b03907. PubMed DOI

Bevilacqua P. Nuzzo S. Torino E. Condorelli G. Salvatore M. Grimaldi A. M. Nanomaterials. 2021;11:780. doi: 10.3390/nano11030780. doi: 10.3390/nano11030780. PubMed DOI PMC

Sun Y. Zhang W. Wang B. Xu X. Chou J. Shimoni O. Ung A. T. Jin D. A. Chem. Commun. 2018;54:3851–3854. doi: 10.1039/C8CC00708J. doi: 10.1039/C8CC00708J. PubMed DOI

Sedlmeier A. Gorris H. H. Chem. Soc. Rev. 2015;44:1526–1560. doi: 10.1039/C4CS00186A. doi: 10.1039/C4CS00186A. PubMed DOI

Schork F. J. Luo Y. Smulders W. Russum J. P. Butté A. Fontenot K. Adv. Polym. Sci. 2005;175:129–255. doi: 10.1007/b100115. doi: 10.1007/b100115. DOI

Dai X. Yu L. Zhang Y. Zhang L. Tan J. Macromolecules. 2019;52:7468–7476. doi: 10.1021/acs.macromol.9b01689. doi: 10.1021/acs.macromol.9b01689. DOI

Tiarks F. Landfester K. Antonietti M. Langmuir. 2001;17:908–918. doi: 10.1021/la001276n. doi: 10.1021/la001276n. DOI

Mckenzie A. Hoskins R. Swift T. Grant C. Rimmer S. ACS Appl. Mater. Interfaces. 2017;9:7577–7590. doi: 10.1021/acsami.6b15004. doi: 10.1021/acsami.6b15004. PubMed DOI

Jesson C. P. Cunningham V. J. Smallridge M. J. Armes S. P. Macromolecules. 2018;51:3221–3232. doi: 10.1021/acs.macromol.8b00294. doi: 10.1021/acs.macromol.8b00294. PubMed DOI PMC

De Leonardis P. Cellesi F. Tirelli N. Colloids Surf., A. 2019;580:123734. doi: 10.1016/j.colsurfa.2019.123734. doi: 10.1016/j.colsurfa.2019.123734. DOI

Nothling M. D. Fu Q. Reyhani A. Allison-Logan S. Jung K. Zhu J. Kamigaito M. Boyer C. Qiao G. G. Adv. Sci. 2020;7:2001656. doi: 10.1002/advs.202001656. doi: 10.1002/advs.202001656. PubMed DOI PMC

Allegrezza M. L. Konkolewicz D. ACS Macro Lett. 2021;10:433–446. doi: 10.1021/acsmacrolett.1c00046. doi: 10.1021/acsmacrolett.1c00046. PubMed DOI

Hu Q. Luo Y. Cao X. Chen Z. Huang Y. Niu L. ACS Appl. Mater. Interfaces. 2021;13:54794–54800. doi: 10.1021/acsami.1c17564. doi: 10.1021/acsami.1c17564. PubMed DOI

Piogé S. Tran T. N. McKenzie T. G. Pascual S. Ashokkumar M. Fontaine L. Qiao G. Macromolecules. 2018;51:8862–8869. doi: 10.1021/acs.macromol.8b01606. doi: 10.1021/acs.macromol.8b01606. DOI

Hartlieb M. Macromol. Rapid Commun. 2022;43:2100514. doi: 10.1002/marc.202100514. doi: 10.1002/marc.202100514. PubMed DOI

Colombo C. Monhemius A. J. Plant J. A. Ecotoxicol. Environ. Saf. 2008;71:722–730. doi: 10.1016/j.ecoenv.2007.11.011. doi: 10.1016/j.ecoenv.2007.11.011. PubMed DOI

Barbero N. Barolo C. Viscardi G. World J. Chem. Educ. 2016;4:80–85. doi: 10.12691/wjce-4-4-3. DOI

Kostiv U. Kotelnikov I. Proks V. Šlouf M. Kučka J. Engstová H. Ježek P. Horák D. ACS Appl. Mater. Interfaces. 2016;8:20422–20431. doi: 10.1021/acsami.6b07291. doi: 10.1021/acsami.6b07291. PubMed DOI

Ratcliffe L. P. D. Ryan A. J. Armes S. P. Macromolecules. 2013;46:769–777. doi: 10.1021/ma301909w. doi: 10.1021/ma301909w. DOI

Lovell P. A. Schork F. J. Biomacromolecules. 2020;21:4396–4441. doi: 10.1021/acs.biomac.0c00769. doi: 10.1021/acs.biomac.0c00769. PubMed DOI

Docherty P. J. Derry M. J. Armes S. P. Polym. Chem. 2019;10:603–611. doi: 10.1039/C8PY01584H. doi: 10.1039/C8PY01584H. DOI

Zhang W. D'Agosto F. Boyron O. Rieger J. Charleux B. Macromolecules. 2011;19:7584–7593. doi: 10.1021/ma201515n. doi: 10.1021/ma201515n. DOI

Baddam V. Välinen L. Kucklinga L. Tenhu H. Polym. Chem. 2022;13:3790–3799. doi: 10.1039/D2PY00301E. doi: 10.1039/D2PY00301E. DOI

Fan X. Jia X. Zhang H. Zhang B. Li C. Zhang Q. Langmuir. 2013;29:11730–11741. doi: 10.1021/la402759w. doi: 10.1021/la402759w. PubMed DOI

Gerber O. Pichon B. P. Ihiawakrim D. Florea I. Moldovan S. Ersen O. Begin D. Grenèche J.-M. Lemonnier S. Barraud E. Begin-Colin S. Nanoscale. 2017;9:305–313. doi: 10.1039/C6NR07567C. doi: 10.1039/C6NR07567C. PubMed DOI

Xu D. Wang M. Ge X. Hon-Wah Lam M. Ge X. J. Mater. Chem. 2012;22:5784–5791. doi: 10.1039/C2JM15364E. doi: 10.1039/C2JM15364E. DOI

Penfold N. J. W. Yeow J. Boyer C. Armes S. P. ACS Macro Lett. 2019;8:1029–1054. doi: 10.1021/acsmacrolett.9b00464. doi: 10.1021/acsmacrolett.9b00464. PubMed DOI

Wan J. Fan B. Thang S. H. Chem. Sci. 2022;13:4192–4224. doi: 10.1039/d2sc00762b. doi: 10.1039/D2SC00762B. PubMed DOI PMC

Zetterlund P. B. Saka Y. Okubo M. Macromol. Chem. Phys. 2009;210:140149. doi: 10.1002/macp.200800451. doi: 10.1002/macp.200800451. DOI

Saleh M. I. Rühle B. Wang S. Radnik J. You Y. Resch-Genger U. Sci. Rep. 2020;10:19318. doi: 10.1038/s41598-020-76116-z. doi: 10.1038/s41598-020-76116-z. PubMed DOI PMC

Lisjak D. Plohl O. Vidmar J. Majaron B. Ponikvar-Svet M. Langmuir. 2016;32:8222–8229. doi: 10.1021/acs.langmuir.6b02675. doi: 10.1021/acs.langmuir.6b02675. PubMed DOI

Andresen E. Würth C. Prinz C. Michaelis M. Resch-Genger U. Nanoscale. 2020;12:12589–12601. doi: 10.1039/D0NR02931A. doi: 10.1039/D0NR02931A. PubMed DOI

Lahtinen S. Lyytikäinen A. Päkkilä H. Hömppi E. Perälä N. Lastusaari M. Soukka T. J. Phys. Chem. C. 2017;121:656–665. doi: 10.1021/acs.jpcc.6b09301. doi: 10.1021/acs.jpcc.6b09301. DOI

Estebanez N. González-Béjar M. Pérez-Prieto J. ACS Omega. 2019;4:3012–3019. doi: 10.1021/acsomega.8b03015. doi: 10.1021/acsomega.8b03015. PubMed DOI PMC

Nahorniak M. Patsula V. Mareková D. Matouš P. Shapoval O. Oleksa V. Vosmanská M. Machová Urdzíková L. Jendelová P. Herynek V. Horák D. Int. J. Mol. Sci. 2023;24:2724. doi: 10.3390/ijms24032724. doi: 10.3390/ijms24032724. PubMed DOI PMC

Souri M. Shahvandi M. K. Chiani M. Kashkooli F. M. Farhangi A. Mehrabi M. R. Rahmim A. Savage V. M. Soltani M. Drug Delivery. 2023;30:2186312. doi: 10.1080/10717544.2023.2186312. doi: 10.1080/10717544.2023.2186312. PubMed DOI PMC

Sarkar S. Kundu S. Mater. Today: Proc. 2023 doi: 10.1016/j.matpr.2023.04.200. DOI

ISO 10993-5:2009: Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity, 2009, https://www.iso.org/standard/36406.html

Patrucco E. Ouasti S. Vo C. D. De Leonardis P. Pollicino A. Armes S. P. Scandola M. Tirelli N. Biomacromolecules. 2009;10:3130–3140. doi: 10.1021/bm900856r. doi: 10.1021/bm900856r. PubMed DOI

Suk J. S. Xu Q. Kim N. Hanes J. Ensign L. M. Adv. Drug Delivery Rev. 2016;99:28–51. doi: 10.1016/j.addr.2015.09.012. doi: 10.1016/j.addr.2015.09.012. PubMed DOI PMC

Epoxy Resins: Chemistry and Technology, ed. C. May, CRC Press, 2nd edn, 2018. 10.1201/9780203756713 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...