Recurrence of Graves' Disease: What Genetics of HLA and PTPN22 Can Tell Us
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34887833
PubMed Central
PMC8650699
DOI
10.3389/fendo.2021.761077
Knihovny.cz E-zdroje
- Klíčová slova
- Graves’ disease, HLA variants, PTPN22 gene, genetic predictors, treatment,
- MeSH
- alely MeSH
- dospělí MeSH
- frekvence genu genetika MeSH
- genetická predispozice k nemoci genetika MeSH
- Gravesova nemoc genetika MeSH
- haplotypy genetika MeSH
- lidé MeSH
- MHC antigeny I. třídy genetika MeSH
- recidiva MeSH
- retrospektivní studie MeSH
- tyrosinfosfatasa nereceptorového typu 22 genetika MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- MHC antigeny I. třídy MeSH
- PTPN22 protein, human MeSH Prohlížeč
- tyrosinfosfatasa nereceptorového typu 22 MeSH
BACKGROUND: Approximately half of patients diagnosed with Graves' disease (GD) relapse within two years of thyreostatic drug withdrawal. It is then necessary to decide whether to reintroduce conservative treatment that can have serious side effects, or to choose a radical approach. Familial forms of GD indicate a significant genetic component. Our aim was to evaluate the practical benefits of HLA and PTPN22 genetic testing for the assessment of disease recurrence risk in the Czech population. METHODS: In 206 patients with GD, exon 2 in the HLA genes DRB1, DQA1, DQB1 and rs2476601 in the gene PTPN22 were sequenced. RESULTS: The risk HLA haplotype DRB1*03-DQA1*05-DQB1*02 was more frequent in our GD patients than in the general European population. During long-term retrospective follow-up (many-year to lifelong perspective), 87 patients relapsed and 26 achieved remission lasting over 2 years indicating a 23% success rate for conservative treatment of the disease. In 93 people, the success of conservative treatment could not be evaluated (thyroidectomy immediately after the first attack or ongoing antithyroid therapy). Of the examined genes, the HLA-DQA1*05 variant reached statistical significance in terms of the ability to predict relapse (p=0.03). Combinations with either both other HLA risk genes forming the risk haplotype DRB1*03-DQA1*05-DQB1*02 or with the PTPN22 SNP did not improve the predictive value. CONCLUSION: the DQA1*05 variant may be a useful prognostic marker in patients with an unclear choice of treatment strategy.
Department of Clinical Endocrinology Institute of Endocrinology Prague Czechia
Department of Molecular Endocrinology Institute of Endocrinology Prague Czechia
Department of Steroids and Proteohormones Institute of Endocrinology Prague Czechia
Zobrazit více v PubMed
Ross DS, Burch HB, Cooper DS, Greenlee MC, Laurberg P, Maia AL, et al. . 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid (2016) 26:1343–421. doi: 10.1089/thy.2016.0229 PubMed DOI
Kahaly GJ, Bartalena L, Hegedüs L, Leenhardt L, Poppe K, Pearce SH. 2018 European Thyroid Association Guideline for the Management of Graves’ Hyperthyroidism. Eur Thyroid J (2018) 7:167–86. doi: 10.1159/000490384 PubMed DOI PMC
Brix TH, Kyvik KO, Christensen K, Hegedüs L. Evidence for a Major Role of Heredity in Graves’ Disease: A Population-Based Study of Two Danish Twin Cohorts. J Clin Endocrinol Metab (2001) 86:930–4. doi: 10.1210/jcem.86.2.7242 PubMed DOI
Gough SC. The Genetics of Graves’ Disease. Endocrinol Metab Clin North Am (2000) 29:255–66. doi: 10.1016/s0889-8529(05)70130-4 PubMed DOI
Vos XG, Endert E, Zwinderman AH, Tijssen JG, Wiersinga WM. Predicting the Risk of Recurrence Before the Start of Antithyroid Drug Therapy in Patients With Graves’ Hyperthyroidism. J Clin Endocrinol Metab (2016) 101:1381–9. doi: 10.1210/jc.2015-3644 PubMed DOI
Effraimidis G, Tijssen JG, Brosschot JF, Wiersinga WM. Involvement of Stress in the Pathogenesis of Autoimmune Thyroid Disease: A Prospective Study. Psychoneuroendocrinology (2012) 37:1191–8. doi: 10.1016/j.psyneuen.2011.12.009 PubMed DOI
Vita R, Lapa D, Trimarchi F, Benvenga S. Stress Triggers the Onset and the Recurrences of Hyperthyroidism in Patients With Graves’ Disease. Endocrine (2015) 48:254–63. doi: 10.1007/s12020-014-0289-8 PubMed DOI
Falgarone G, Heshmati HM, Cohen R, Reach G. Mechanisms in Endocrinology. Role of Emotional Stress in the Pathophysiology of Graves’ Disease. Eur J Endocrinol (2012) 168:R13–8. doi: 10.1530/EJE-12-0539 PubMed DOI
Effraimidis G, Wiersinga WM. Mechanisms in Endocrinology: Autoimmune Thyroid Disease: Old and New Players. Eur J Endocrinol (2014) 170:R241–52. doi: 10.1530/EJE-14-0047 PubMed DOI
Pedersen IB, Knudsen N, Carlé A, Vejbjerg P, Jørgensen T, Perrild H, et al. . A Cautious Iodization Programme Bringing Iodine Intake to a Low Recommended Level is Associated With an Increase in the Prevalence of Thyroid Autoantibodies in the Population. Clin Endocrinol (Oxf) (2011) 75:120–6. doi: 10.1111/j.1365-2265.2011.04008.x PubMed DOI
Alexander EK, Pearce EN, Brent GA, Brown RS, Chen H, Dosiou C, et al. . 2017 Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid (2017) 27:315–89. doi: 10.1089/thy.2016.0457 PubMed DOI
Astl J, Šterzl I. Activation of Helicobacter Pylori Causes Either Autoimmune Thyroid Diseases or Carcinogenesis in the Digestive Tract. Physiol Res (2015) 64:S291–301. doi: 10.33549/physiolres.933118 PubMed DOI
Vejrazkova D, Vcelak J, Vaclavikova E, Vankova M, Zajickova K, Duskova M, et al. . Genetic Predictors of the Development and Recurrence of Graves’ Disease. Physiol Res (2018) 67:S431–9. doi: 10.33549/physiolres.934018 PubMed DOI
The IPD-IMGT/HLA Alignment Tool. Available at: https://www.ebi.ac.uk/ipd/imgt/hla/align.html (Accessed on 30. 11. 2020).
The Allele Frequencies Webside. Available at: http://www.allelefrequencies.net/ (Accessed on 30. 11. 2020).
Figshare Data Repository. Available at: https://figshare.com (Accessed on 16. 9. 2021).
NCBI Sequence Read Archive (SRA) Data Repository. Available at: https://www.ncbi.nlm.nih.gov/sra (Accessed on 27. 10. 2021).
Wang B, Shao X, Song R, Xu D, Zhang JA. The Emerging Role of Epigenetics in Autoimmune Thyroid Diseases. Front Immunol (2017) 8:396. doi: 10.3389/fimmu.2017.00396 PubMed DOI PMC
Imgenberg-Kreuz J, Carlsson Almlöf J, Leonard D, Alexsson A, Nordmark G, Eloranta ML, et al. . DNA Methylation Mapping Identifies Gene Regulatory Effects in Patients With Systemic Lupus Erythematosus. Ann Rheum Dis (2018) 77:736–43. doi: 10.1136/annrheumdis-2017-212379 PubMed DOI PMC
Wiersinga WM. Graves’ Disease: Can It Be Cured? Endocrinol Metab (Seoul) (2019) 34:29–38. doi: 10.3803/EnM.2019.34.1.29 PubMed DOI PMC
Liu J, Fu J, Duan Y, Wang G. Predictive Value of Gene Polymorphisms on Recurrence After the Withdrawal of Antithyroid Drugs in Patients With Graves’ Disease. Front Endocrinol (Lausanne) (2017) 8:258. doi: 10.3389/fendo.2017.00258 PubMed DOI PMC
Azizi F, Amouzegar A, Tohidi M, Hedayati M, Khalili D, Cheraghi L, et al. . Increased Remission Rates After Long-Term Methimazole Therapy in Patients With Graves’ Disease: Results of a Randomized Clinical Trial. Thyroid (2019) 29:1192–200. doi: 10.1089/thy.2019.0180 PubMed DOI
Tomer Y. Mechanisms of Autoimmune Thyroid Diseases: From Genetics to Epigenetics. Annu Rev Pathol (2014) 9:147–56. doi: 10.1146/annurev-pathol-012513-104713 PubMed DOI PMC
Tomer Y, Davies TF. Searching for the Autoimmune Thyroid Disease Susceptibility Genes: From Gene Mapping to Gene Function. Endocr Rev (2003) 24:694–717. doi: 10.1210/er.2002-0030 PubMed DOI
Simmonds MJ, Howson JM, Heward JM, Cordell HJ, Foxall H, Carr-Smith J, et al. . Regression Mapping of Association Between the Human Leukocyte Antigen Region and Graves Disease. Am J Hum Genet (2005) 76:157–63. doi: 10.1086/426947 PubMed DOI PMC
Stanford SM, Bottini N. PTPN22: The Archetypal non-HLA Autoimmunity Gene. Nat Rev Rheumatol (2014) 10:602–11. doi: 10.1038/nrrheum.2014.109 PubMed DOI PMC
Velaga MR, Wilson V, Jennings CE, Owen CJ, Herington S, Donaldson PT, et al. . The Codon 620 Tryptophan Allele of the Lymphoid Tyrosine Phosphatase (LYP) Gene is a Major Determinant of Graves’ Disease. J Clin Endocrinol Metab (2004) 89:5862–5. doi: 10.1210/jc.2004-1108 PubMed DOI
Skórka A, Bednarczuk T, Bar-Andziak E, Nauman J, Ploski R. Lymphoid Tyrosine Phosphatase (PTPN22/LYP) Variant and Graves’ Disease in a Polish Population: Association and Gene Dose-Dependent Correlation With Age of Onset. Clin Endocrinol (Oxf) (2005) 62:679–82. doi: 10.1111/j.1365-2265.2005.02279.x PubMed DOI
Zhebrun D, Kudryashova Y, Babenko A, Maslyansky A, Kunitskaya N, Popcova D, et al. . Association of PTPN22 1858t/T Genotype With Type 1 Diabetes, Graves’ Disease But Not With Rheumatoid Arthritis in Russian Population. Aging (Albany NY) (2011) 3:368–73. doi: 10.18632/aging.100305 PubMed DOI PMC
Nabi G, Akhter N, Wahid M, Bhatia K, Mandal RK, Dar SA, et al. . Meta-Analysis Reveals PTPN22 1858c/T Polymorphism Confers Susceptibility to Rheumatoid Arthritis in Caucasian But Not in Asian Population. Autoimmunity (2016) 49:197–210. doi: 10.3109/08916934.2015.1134514 PubMed DOI
Smyth D, Cooper JD, Collins JE, Heward JM, Franklyn JA, Howson JM, et al. . Replication of an Association Between the Lymphoid Tyrosine Phosphatase Locus (LYP/PTPN22) With Type 1 Diabetes, and Evidence for its Role as a General Autoimmunity Locus. Diabetes (2004) 53:3020–3. doi: 10.2337/diabetes.53.11.3020 PubMed DOI
Burkhardt H, Hüffmeier U, Spriewald B, Böhm B, Rau R, Kallert S, et al. . Association Between Protein Tyrosine Phosphatase 22 Variant R620W in Conjunction With the HLA-DRB1 Shared Epitope and Humoral Autoimmunity to an Immunodominant Epitope of Cartilage-Specific Type II Collagen in Early Rheumatoid Arthritis. Arthritis Rheum (2006) 54:82–9. doi: 10.1002/art.21498 PubMed DOI
Totaro MC, Tolusso B, Napolioni V, Faustini F, Canestri S, Mannocci A, et al. . PTPN22 1858c>T Polymorphism Distribution in Europe and Association With Rheumatoid Arthritis: Case-Control Study and Meta-Analysis. PloS One (2011) 6:e24292. doi: 10.1371/journal.pone.0024292 PubMed DOI PMC
Burn GL, Svensson L, Sanchez-Blanco C, Saini M, Cope AP. Why is PTPN22 a Good Candidate Susceptibility Gene for Autoimmune Disease? FEBS Lett (2011) 585:3689–98. doi: 10.1016/j.febslet.2011.04.032 PubMed DOI
Miao J, Zhao YJ, Wang S, Jiang XH, Zhao ZF, Gu LQ, et al. . Prognostic Factors in the Relapse of Graves Disease. Zhonghua Nei Ke Za Zhi (2008) 47:185–8. PubMed
Liu J, Fu J, Xu Y, Wang G. Antithyroid Drug Therapy for Graves’ Disease and Implications for Recurrence. Int J Endocrinol (2017) 2017:3813540. doi: 10.1155/2017/3813540 PubMed DOI PMC
Shi H, Sheng R, Hu Y, Liu X, Jiang L, Wang Z, et al. . Risk Factors for the Relapse of Graves’ Disease Treated With Antithyroid Drugs: A Systematic Review and Meta-Analysis. Clin Ther (2020) 42:662–675.e4. doi: 10.1016/j.clinthera.2020.01.022 PubMed DOI
Babenko A, Popkova D, Freylihman O, Solncev V, Kostareva A, Grineva E. Thr92Ala Polymorphism of Human Type 2 Deiodinase Gene (Hd2) Affects the Development of Graves’ Disease, Treatment Efficiency, and Rate of Remission. Clin Dev Immunol (2012) 2012:340542. doi: 10.1155/2012/340542 PubMed DOI PMC