A single NLR gene confers resistance to leaf and stripe rust in wheat
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
39548072
PubMed Central
PMC11568145
DOI
10.1038/s41467-024-54068-6
PII: 10.1038/s41467-024-54068-6
Knihovny.cz E-zdroje
- MeSH
- Aegilops genetika mikrobiologie MeSH
- alely MeSH
- Basidiomycota * patogenita fyziologie MeSH
- fylogeneze * MeSH
- geneticky modifikované rostliny genetika MeSH
- listy rostlin * mikrobiologie genetika MeSH
- nemoci rostlin * mikrobiologie genetika imunologie MeSH
- NLR proteiny * genetika MeSH
- odolnost vůči nemocem * genetika MeSH
- pšenice * genetika mikrobiologie imunologie MeSH
- Puccinia * patogenita MeSH
- rostlinné geny MeSH
- rostlinné proteiny * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- NLR proteiny * MeSH
- rostlinné proteiny * MeSH
Nucleotide-binding leucine-rich repeat (NLR) disease resistance genes typically confer resistance against races of a single pathogen. Here, we report that Yr87/Lr85, an NLR gene from Aegilops sharonensis and Aegilops longissima, confers resistance against both P. striiformis tritici (Pst) and Puccinia triticina (Pt) that cause stripe and leaf rust, respectively. Yr87/Lr85 confers resistance against Pst and Pt in wheat introgression as well as transgenic lines. Comparative analysis of Yr87/Lr85 and the cloned Triticeae NLR disease resistance genes shows that Yr87/Lr85 contains two distinct LRR domains and that the gene is only found in Ae. sharonensis and Ae. longissima. Allele mining and phylogenetic analysis indicate multiple events of Yr87/Lr85 gene flow between the two species and presence/absence variation explaining the majority of resistance to wheat leaf rust in both species. The confinement of Yr87/Lr85 to Ae. sharonensis and Ae. longissima and the resistance in wheat against Pst and Pt highlight the potential of these species as valuable sources of disease resistance genes for wheat improvement.
Agricultural Institute Centre for Agricultural Research ELKH Martonvásár Hungary
Departamento de Biología Molecular Universidad de León León Spain
Department of Agronomy and Plant Genetics University of Minnesota St Paul MN USA
Department of Plant Pathology University of Minnesota St Paul MN USA
Field Crops Research Institute Agricultural Research Centre Cairo Egypt
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Institute of Evolution University of Haifa Haifa Israel
John Innes Centre Norwich Research Park Norwich UK
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Seeland Germany
School of Plant Sciences and Food Security Tel Aviv University Tel Aviv Israel
The Institute for Cereal Crops Research Tel Aviv University Tel Aviv Israel
The Sainsbury Laboratory Norwich Research Park Norwich UK
USDA ARS Cereal Disease Laboratory University of Minnesota St Paul MN USA
USDA ARS Western Regional Research Center Crop Improvement and Genetics Research Unit Albany CA USA
Zobrazit více v PubMed
Khan, M. H., Bukhari, A., Dar, Z. A. & Rizvi, S. M. Status and strategies in breeding for rust resistance in wheat.
Savary, S. et al. The global burden of pathogens and pests on major food crops. PubMed DOI
Periyannan, S., Milne, R. J., Figueroa, M., Lagudah, E. S. & Dodds, P. N. An overview of genetic rust resistance: From broad to specific mechanisms. PubMed DOI PMC
Dinh, H. X., Singh, D., Periyannan, S., Park, R. F. & Pourkheirandish, M. Molecular genetics of leaf rust resistance in wheat and barley. PubMed DOI
Ali, S. et al. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici. PubMed DOI PMC
Hovmøller, M. S. et al. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. DOI
McDonald, B. A. & Stukenbrock, E. H. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. PubMed DOI PMC
Prank, M., Kenaley, S. C., Bergstrom, G. C., Acevedo, M. & Mahowald, N. M. Climate change impacts the spread potential of wheat stem rust, a significant crop disease. DOI
Hafeez, A. N. et al. Creation and judicious application of a wheat resistance gene atlas. PubMed DOI
Cavalet-Giorsa, E. et al. Origin and evolution of the bread wheat D genome. PubMed DOI PMC
Knight, E. et al. Mapping the ‘breaker’ element of the gametocidal locus proximal to a block of sub-telomeric heterochromatin on the long arm of chromosome 4Ssh of Aegilops sharonensis. PubMed DOI PMC
Pont, C. et al. Tracing the ancestry of modern bread wheats. PubMed DOI
Tsujimoto, H. & Tsunewaki, K. Gametocidal genes in wheat and its relatives. I. Genetic analyses in common wheat of a gametocidal gene derived from Aegilops speltoides. DOI
Sánchez-Martín, J. et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. PubMed DOI PMC
Steuernagel, B. et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. PubMed DOI
Arora, S. et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. PubMed DOI
Gaurav, K. et al. Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. PubMed DOI PMC
Thind, A. K. et al. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. PubMed DOI
Wang, Y. & Koo, D. An unusual tandem kinase fusion protein confers leaf rust resistance in wheat. PubMed DOI PMC
Walkowiak, S. et al. Multiple wheat genomes reveal global variation in modern breeding. PubMed DOI PMC
Athiyannan, N., Aouini, L., Wang, Y. & Krattinger, S. G. Unconventional R proteins in the botanical tribe Triticeae. PubMed DOI
Mapuranga, J. et al. Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. PubMed DOI PMC
Lolle, S., Stevens, D. & Coaker, G. Plant NLR-triggered immunity: from receptor activation to downstream signaling. PubMed DOI PMC
Yu, G. et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. PubMed DOI PMC
Klymiuk, V., Coaker, G., Fahima, T. & Pozniak, C. J. Tandem protein kinases emerge as new regulators of plant immunity. PubMed DOI PMC
Li, H. et al. Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein. PubMed DOI PMC
Debernardi, J. M. et al. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. PubMed DOI PMC
Hayta, S., Smedley, M. A., Clarke, M., Forner, M. & Harwood, W. A. An efficient agrobacterium-mediated transformation protocol for hexaploid and tetraploid wheat. PubMed DOI
Wang, K. et al. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. PubMed DOI
Kishii, M. An update of recent use of Aegilops species in wheat breeding. PubMed DOI PMC
Millet, E. Exploitation of Aegilops species of section Sitopsis for wheat improvement. DOI
Scott, J. C., Manisterski, J., Sela, H., Ben-Yehuda, P. & Steffenson, B. J. Resistance of Aegilops species from Israel to widely virulent African and Israeli races of the wheat stem rust pathogen. PubMed DOI
Anikster, Y., Manisterski, J., Long, D. L. & Leonard, K. J. Resistance to leaf rust, stripe rust, and stem rust in Aegilops spp. in Israel. PubMed DOI
Huang, L. et al. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. PubMed DOI PMC
Olivera, P. D., Kolmer, J. A., Anikster, Y. & Steffenson, B. J. Resistance of Sharon goatgrass (Aegilops sharonensis) to fungal diseases of wheat. PubMed DOI
Millet, E. et al. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.). PubMed DOI
Khazan, S. et al. Reducing the size of an alien segment carrying leaf rust and stripe rust resistance in wheat. PubMed DOI PMC
Steuernagel, B., Vrána, J., Karafiátová, M., Wulff, B. B. H. & Doležel, J. Rapid gene isolation using MutChromSeq. PubMed DOI
Ni, F. et al. Sequencing trait-associated mutations to clone wheat rust-resistance gene YrNAM. PubMed DOI PMC
Lee, W. S., Rudd, J. J. & Kanyuka, K. Virus induced gene silencing (VIGS) for functional analysis of wheat genes involved in Zymoseptoria tritici susceptibility and resistance. PubMed DOI PMC
Sela, H. et al. Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (Triticum dicoccoides) LR10 coiled-coil (CC) and leucine-rich repeat (LRR) domains. PubMed DOI PMC
Sukarta, O. C. A., Slootweg, E. J. & Goverse, A. Structure-informed insights for NLR functioning in plant immunity. PubMed DOI
Rhoads, A. & Au, K. F. PacBio sequencing and its applications. PubMed DOI PMC
Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. PubMed DOI PMC
Kiselev, K. V. et al. Influence of the 135 bp intron on stilbene synthase VaSTS11 transgene expression in cell cultures of grapevine and different plant generations of Arabidopsis thaliana. DOI
Meyberg, M. Selective staining of fungal hyphae in parasitic and symbiotic plant-fungus associations. PubMed DOI
Bailey, P. C. et al. Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. PubMed DOI PMC
Zhou, Y. et al. Allele mining for blast-resistance gene at Pi5 locus in rice. Plant.
Akpinar, B. et al. The complete genome sequence of elite bread wheat cultivar, ‘Sonmez’. PubMed DOI PMC
Sato, K. et al. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ’Fielder. PubMed DOI PMC
Zhou, Y. et al. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. PubMed DOI
Li, L. F. et al. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome. PubMed DOI
Page, R. et al. Genome-wide association mapping of rust resistance in Aegilops longissima. PubMed DOI PMC
Olivera, P. D., Anikster, Y. & Steffenson, B. J. Genetic diversity and population structure in Aegilops sharonensis. DOI
Fukuoka, S. et al. Loss of function of a proline-containing protein confers durable disease resistance in rice. PubMed DOI
Zhao, H. et al. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. PubMed DOI PMC
Krattinger, S. G. et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. PubMed DOI
Moore, J. W. et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. PubMed DOI
Narusaka, M., Hatakeyama, K., Shirasu, K. & Narusaka, Y. Arabidopsis dual resistance proteins, both RPS4 and RRS1, are required for resistance to bacterial wilt in transgenic Brassica crops. PubMed DOI PMC
Milligan, S. B. et al. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. PubMed DOI PMC
Rossi, M. et al. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. PubMed DOI PMC
Nombela, G., Williamson, V. M. & Muñiz, M. The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. PubMed DOI
Schultink, A., Qi, T., Lee, A., Steinbrenner, A. D. & Staskawicz, B. Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1. PubMed DOI
Li, W., Deng, Y., Ning, Y., He, Z. & Wang, G. L. Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. PubMed DOI
Brabham, H. J. et al. Barley MLA3 recognizes the host-specificity effector Pwl2 from Magnaporthe oryzae. PubMed DOI PMC
Bettgenhaeuser, J. et al. The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics. PubMed DOI PMC
Brabham, H. J. et al. Rapid discovery of functional NLRs using the signature of high expression, high-throughput transformation, and large-scale phenotyping.
McIntosh, R. A. Nature of induced mutations affecting disease reaction in wheat.
Marais, G. F., McCallum, B. & Marais, A. S. Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. DOI
Sánchez-Martín, J. & Keller, B. NLR immune receptors and diverse types of non-NLR proteins control race-specific resistance in Triticeae. PubMed DOI
Dinglasan, E., Periyannan, S. & Hickey, L. T. Harnessing adult-plant resistance genes to deploy durable disease resistance in crops. PubMed DOI PMC
Ellis, J. G., Lagudah, E. S., Spielmeyer, W. & Dodds, P. N. The past, present and future of breeding rust resistant wheat. PubMed DOI PMC
Chen, S., Zhang, W., Bolus, S., Rouse, M. N. & Dubcovsky, J. Identification and characterization of wheat stem rust resistance gene Sr21 effective against the Ug99 race group at high temperature. PubMed DOI PMC
McIntosh, R. A. & Luig, N. H. Linkage of genes for reaction to Puccinia graminis f. sp. tritici and P. recondita in selkirk wheat and related cultivars. DOI
Zhang, W. et al. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. PubMed DOI PMC
Nakano, M. & Mukaihara, T. The type III effector RipB from Ralstonia solanacearum RS1000 acts as a major avirulence factor in Nicotiana benthamiana and other Nicotiana species. PubMed DOI PMC
Faris, J. D. et al. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. PubMed DOI PMC
Avni, R. et al. Genome sequences of three Aegilops species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement. PubMed DOI PMC
Kovaka, S., Ou, S., Jenike, K. M. & Schatz, M. C. Approaching complete genomes, transcriptomes and epi-omes with accurate long-read sequencing. PubMed DOI PMC
Long, D. & Kolmer, J. A North American system of nomenclature for Puccinia triticina. DOI
Roelfs, A. P. An international system of nomenclature for Puccinia graminis f. sp. tritici. DOI
Wan, A. & Chen, X. Virulence characterization of Puccinia striiformis f. sp. tritici using a new set of Yr single-gene line differentials in the United States in 2010. PubMed DOI
Ben-David, R. et al. Differentiation among Blumeria graminis f. sp. tritici isolates originating from wild versus domesticated Triticum species in Israel. PubMed DOI
Huang, S., Steffenson, B. J., Sela, H. & Stinebaugh, K. Resistance of PubMed DOI
Zadoks, J. C., Chang, T. T. & Konzak, C. F. A decimal code for the growth stages of cereals. DOI
Šimková, H., Číhalíková, J., Vrána, J., Lysák, M. & Doležel, J. Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. DOI
Giorgi, D. et al. FISHIS: fluorescence In Situ Hybridization in suspension and chromosome flow sorting made easy. PubMed DOI PMC
Molnár, I. et al. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. PubMed DOI
Zhang, Y., Zhu, M. L. & Dai, S. L. Analysis of karyotype diversity of 40 Chinese chrysanthemum cultivars. DOI
Badaeva, E. D., Friebe, B. & Gill, B. S. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. PubMed DOI
Šimková, H. et al. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. PubMed DOI PMC
Hummel, A. W. et al. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. PubMed DOI PMC
Zimin, A. V. et al. The MaSuRCA genome assembler. PubMed DOI PMC
Jackman, S. D. et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. PubMed DOI PMC
Wicker, T., Matthews, D. E. & Keller, B. TREP: a database for Triticeae repetitive elements. DOI
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. PubMed DOI PMC
Li, H. et al. The Sequence Alignment/Map format and SAMtools. PubMed DOI PMC
Robinson, J. T. et al. Integrative genomics viewer. PubMed DOI PMC
Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. PubMed DOI
Camacho, C. et al. BLAST+: architecture and applications. PubMed DOI PMC
Appels, R. et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. PubMed DOI
Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue.
Sharma, D. et al. An efficient method for extracting next-generation sequencing quality RNA from liver tissue of recalcitrant animal species. PubMed DOI
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT–PCR. PubMed DOI PMC
Collier, R. et al. Accurate measurement of transgene copy number in crop plants using droplet digital PCR. PubMed DOI
Giroux, M. J. & Morris, C. F. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. DOI
Li, Z., Hansen, J. L., Liu, Y., Zemetra, R. S. & Berger, P. H. Using real-time PCR to determine transgene copy number in wheat. DOI
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. PubMed DOI PMC
Andrews, S. et al.
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. PubMed DOI PMC
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. PubMed DOI PMC
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. PubMed DOI PMC
RcoreTeam. R.: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
Bateman, A. et al. UniProt: the universal protein knowledgebase in 2021. PubMed DOI PMC
Steuernagel, B. et al. The NLR-annotator tool enables annotation of the intracellular immune receptor repertoire. PubMed DOI PMC
Bailey, T. L. & Gribskov, M. Combining evidence using p-values: application to sequence homology searches. PubMed DOI
Martin, E. C. et al. NLRscape: an atlas of plant NLR proteins. PubMed DOI PMC
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. Europe PMC Funders Group The Phyre2 web portal for protein modelling, prediction and analysis. PubMed DOI PMC
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. PubMed DOI PMC
van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. PubMed DOI PMC
De Beukelaer, H., Davenport, G. F. & Fack, V. Core Hunter 3: flexible core subset selection. PubMed DOI PMC
Edgar, R. C. M. U. S. C. L. E. Multiple sequence alignment with high accuracy and high throughput. PubMed DOI PMC
Martin, D. P. et al. RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. PubMed DOI PMC
Yuan, C. et al. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PubMed DOI PMC
Zhang, R. et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. PubMed DOI
Liu, Z. & Friesen, T. DAB staining and visualization of hydrogen peroxide in wheat leaves. PubMed DOI PMC
Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. PubMed DOI PMC
Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. PubMed DOI
Marone, M. P., Singh, H. C., Pozniak, C. J. & Mascher, M. A technical guide to TRITEX, a computational pipeline for chromosome-scale sequence assembly of plant genomes. PubMed DOI PMC
Progress and innovations of gene cloning in wheat and its close relatives