A single NLR gene confers resistance to leaf and stripe rust in wheat
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39548072
PubMed Central
PMC11568145
DOI
10.1038/s41467-024-54068-6
PII: 10.1038/s41467-024-54068-6
Knihovny.cz E-zdroje
- MeSH
- Aegilops genetika mikrobiologie MeSH
- alely MeSH
- Basidiomycota * patogenita fyziologie MeSH
- fylogeneze * MeSH
- geneticky modifikované rostliny genetika MeSH
- listy rostlin * mikrobiologie genetika MeSH
- nemoci rostlin * mikrobiologie genetika imunologie MeSH
- NLR proteiny * genetika MeSH
- odolnost vůči nemocem * genetika MeSH
- pšenice * genetika mikrobiologie imunologie MeSH
- Puccinia * patogenita MeSH
- rostlinné geny MeSH
- rostlinné proteiny * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- NLR proteiny * MeSH
- rostlinné proteiny * MeSH
Nucleotide-binding leucine-rich repeat (NLR) disease resistance genes typically confer resistance against races of a single pathogen. Here, we report that Yr87/Lr85, an NLR gene from Aegilops sharonensis and Aegilops longissima, confers resistance against both P. striiformis tritici (Pst) and Puccinia triticina (Pt) that cause stripe and leaf rust, respectively. Yr87/Lr85 confers resistance against Pst and Pt in wheat introgression as well as transgenic lines. Comparative analysis of Yr87/Lr85 and the cloned Triticeae NLR disease resistance genes shows that Yr87/Lr85 contains two distinct LRR domains and that the gene is only found in Ae. sharonensis and Ae. longissima. Allele mining and phylogenetic analysis indicate multiple events of Yr87/Lr85 gene flow between the two species and presence/absence variation explaining the majority of resistance to wheat leaf rust in both species. The confinement of Yr87/Lr85 to Ae. sharonensis and Ae. longissima and the resistance in wheat against Pst and Pt highlight the potential of these species as valuable sources of disease resistance genes for wheat improvement.
Agricultural Institute Centre for Agricultural Research ELKH Martonvásár Hungary
Departamento de Biología Molecular Universidad de León León Spain
Department of Agronomy and Plant Genetics University of Minnesota St Paul MN USA
Department of Plant Pathology University of Minnesota St Paul MN USA
Field Crops Research Institute Agricultural Research Centre Cairo Egypt
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Institute of Evolution University of Haifa Haifa Israel
John Innes Centre Norwich Research Park Norwich UK
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Seeland Germany
School of Plant Sciences and Food Security Tel Aviv University Tel Aviv Israel
The Institute for Cereal Crops Research Tel Aviv University Tel Aviv Israel
The Sainsbury Laboratory Norwich Research Park Norwich UK
USDA ARS Cereal Disease Laboratory University of Minnesota St Paul MN USA
USDA ARS Western Regional Research Center Crop Improvement and Genetics Research Unit Albany CA USA
Zobrazit více v PubMed
Khan, M. H., Bukhari, A., Dar, Z. A. & Rizvi, S. M. Status and strategies in breeding for rust resistance in wheat. Agric. Sci.04, 292–301 (2013).
Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol.3, 430–439 (2019). PubMed
Periyannan, S., Milne, R. J., Figueroa, M., Lagudah, E. S. & Dodds, P. N. An overview of genetic rust resistance: From broad to specific mechanisms. PLoS Pathog.13, 100638 (2017). PubMed PMC
Dinh, H. X., Singh, D., Periyannan, S., Park, R. F. & Pourkheirandish, M. Molecular genetics of leaf rust resistance in wheat and barley. Theor. Appl Genet.133, 2035–2050 (2020). PubMed
Ali, S. et al. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici. PLoS Pathog.10, 1003903 (2014). PubMed PMC
Hovmøller, M. S. et al. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol.65, 402–411 (2016).
McDonald, B. A. & Stukenbrock, E. H. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philos. Trans. R. Soc. B371, 20160026 (2016). PubMed PMC
Prank, M., Kenaley, S. C., Bergstrom, G. C., Acevedo, M. & Mahowald, N. M. Climate change impacts the spread potential of wheat stem rust, a significant crop disease. Environ. Res. Lett.14, 124053 (2019).
Hafeez, A. N. et al. Creation and judicious application of a wheat resistance gene atlas. Mol. Plant14, 1053–1070 (2021). PubMed
Cavalet-Giorsa, E. et al. Origin and evolution of the bread wheat D genome. Nature633, 848–855 (2024). PubMed PMC
Knight, E. et al. Mapping the ‘breaker’ element of the gametocidal locus proximal to a block of sub-telomeric heterochromatin on the long arm of chromosome 4Ssh of Aegilops sharonensis. Theor. Appl Genet.128, 1049–1059 (2015). PubMed PMC
Pont, C. et al. Tracing the ancestry of modern bread wheats. Nat. Genet.51, 905–911 (2019). PubMed
Tsujimoto, H. & Tsunewaki, K. Gametocidal genes in wheat and its relatives. I. Genetic analyses in common wheat of a gametocidal gene derived from Aegilops speltoides. Can. J. Genet Cytol.26, 78–84 (1984).
Sánchez-Martín, J. et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol.17, 1–7 (2016). PubMed PMC
Steuernagel, B. et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol.34, 652–655 (2016). PubMed
Arora, S. et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol.37, 139–143 (2019). PubMed
Gaurav, K. et al. Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat. Biotechnol.40, 422–431 (2022). PubMed PMC
Thind, A. K. et al. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol.35, 793–796 (2017). PubMed
Wang, Y. & Koo, D. An unusual tandem kinase fusion protein confers leaf rust resistance in wheat. Nat. Genet.55, 914–920 (2023). PubMed PMC
Walkowiak, S. et al. Multiple wheat genomes reveal global variation in modern breeding. Nature588, 277–283 (2020). PubMed PMC
Athiyannan, N., Aouini, L., Wang, Y. & Krattinger, S. G. Unconventional R proteins in the botanical tribe Triticeae. Essays Biochem.66, 561–569 (2022). PubMed
Mapuranga, J. et al. Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. Front. Plant Sci.13, 951095 (2022). PubMed PMC
Lolle, S., Stevens, D. & Coaker, G. Plant NLR-triggered immunity: from receptor activation to downstream signaling. Curr. Opin. Immunol.62, 99–105 (2020). PubMed PMC
Yu, G. et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat. Commun.13, 1607 (2022). PubMed PMC
Klymiuk, V., Coaker, G., Fahima, T. & Pozniak, C. J. Tandem protein kinases emerge as new regulators of plant immunity. Mol. Plant Microbe Interact.34, 1094–1102 (2021). PubMed PMC
Li, H. et al. Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein. Nat. Commun.15, 2449 (2024). PubMed PMC
Debernardi, J. M. et al. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol.38, 1274–1279 (2020). PubMed PMC
Hayta, S., Smedley, M. A., Clarke, M., Forner, M. & Harwood, W. A. An efficient agrobacterium-mediated transformation protocol for hexaploid and tetraploid wheat. Curr. Protoc.1, 58 (2021). PubMed
Wang, K. et al. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat. Plants8, 110–117 (2022). PubMed
Kishii, M. An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci.10, 585 (2019). PubMed PMC
Millet, E. Exploitation of Aegilops species of section Sitopsis for wheat improvement. Isr. J. Plant Sci.55, 277–287 (2007).
Scott, J. C., Manisterski, J., Sela, H., Ben-Yehuda, P. & Steffenson, B. J. Resistance of Aegilops species from Israel to widely virulent African and Israeli races of the wheat stem rust pathogen. Plant Dis.98, 1309–1320 (2014). PubMed
Anikster, Y., Manisterski, J., Long, D. L. & Leonard, K. J. Resistance to leaf rust, stripe rust, and stem rust in Aegilops spp. in Israel. Plant Dis.89, 303–308 (2005). PubMed
Huang, L. et al. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics164, 655–664 (2003). PubMed PMC
Olivera, P. D., Kolmer, J. A., Anikster, Y. & Steffenson, B. J. Resistance of Sharon goatgrass (Aegilops sharonensis) to fungal diseases of wheat. Plant Dis.91, 942–950 (2007). PubMed
Millet, E. et al. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.). Genome57, 309–316 (2014). PubMed
Khazan, S. et al. Reducing the size of an alien segment carrying leaf rust and stripe rust resistance in wheat. BMC Plant Biol.20, 1–13 (2020). PubMed PMC
Steuernagel, B., Vrána, J., Karafiátová, M., Wulff, B. B. H. & Doležel, J. Rapid gene isolation using MutChromSeq. Methods Mol. Biol.1659, 231–243 (2017). PubMed
Ni, F. et al. Sequencing trait-associated mutations to clone wheat rust-resistance gene YrNAM. Nat. Commun.14, 4353 (2023). PubMed PMC
Lee, W. S., Rudd, J. J. & Kanyuka, K. Virus induced gene silencing (VIGS) for functional analysis of wheat genes involved in Zymoseptoria tritici susceptibility and resistance. Fungal Genet. Biol.79, 84–88 (2015). PubMed PMC
Sela, H. et al. Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (Triticum dicoccoides) LR10 coiled-coil (CC) and leucine-rich repeat (LRR) domains. Mol. Plant Pathol.13, 276–287 (2012). PubMed PMC
Sukarta, O. C. A., Slootweg, E. J. & Goverse, A. Structure-informed insights for NLR functioning in plant immunity. Semin. Cell Biol.56, 134–149 (2016). PubMed
Rhoads, A. & Au, K. F. PacBio sequencing and its applications. Genom. Proteom. Bioinform.13, 278–289 (2015). PubMed PMC
Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods15, 461–468 (2018). PubMed PMC
Kiselev, K. V. et al. Influence of the 135 bp intron on stilbene synthase VaSTS11 transgene expression in cell cultures of grapevine and different plant generations of Arabidopsis thaliana. Horticulturae9, 513 (2023).
Meyberg, M. Selective staining of fungal hyphae in parasitic and symbiotic plant-fungus associations. Histochemistry88, 197–199 (1988). PubMed
Bailey, P. C. et al. Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. Genome Biol.19, 1–18 (2018). PubMed PMC
Zhou, Y. et al. Allele mining for blast-resistance gene at Pi5 locus in rice. Plant. Stress12, 100465 (2024).
Akpinar, B. et al. The complete genome sequence of elite bread wheat cultivar, ‘Sonmez’. F1000Research11, 614 (2022). PubMed PMC
Sato, K. et al. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ’Fielder. DNA Res.28, 8 (2021). PubMed PMC
Zhou, Y. et al. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nat. Plants7, 774–786 (2021). PubMed
Li, L. F. et al. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome. Mol. Plant15, 488–503 (2022). PubMed
Page, R. et al. Genome-wide association mapping of rust resistance in Aegilops longissima. Front. Plant Sci.14, 1196486 (2023). PubMed PMC
Olivera, P. D., Anikster, Y. & Steffenson, B. J. Genetic diversity and population structure in Aegilops sharonensis. Crop Sci.50, 636–648 (2010).
Fukuoka, S. et al. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science325, 998–1001 (2009). PubMed
Zhao, H. et al. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat. Commun.9, 2039 (2018). PubMed PMC
Krattinger, S. G. et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science323, 1360–1363 (2009). PubMed
Moore, J. W. et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet.47, 1494–1498 (2015). PubMed
Narusaka, M., Hatakeyama, K., Shirasu, K. & Narusaka, Y. Arabidopsis dual resistance proteins, both RPS4 and RRS1, are required for resistance to bacterial wilt in transgenic Brassica crops. Plant Signal Behav.9, 29130 (2014). PubMed PMC
Milligan, S. B. et al. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell10, 1307–1319 (1998). PubMed PMC
Rossi, M. et al. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc. Natl Acad. Sci. USA95, 9750–9754 (1998). PubMed PMC
Nombela, G., Williamson, V. M. & Muñiz, M. The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol. Plant Microbe Interact.16, 645–649 (2003). PubMed
Schultink, A., Qi, T., Lee, A., Steinbrenner, A. D. & Staskawicz, B. Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1. Plant J.92, 787–795 (2017). PubMed
Li, W., Deng, Y., Ning, Y., He, Z. & Wang, G. L. Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annu. Rev. Plant Biol.71, 575–603 (2020). PubMed
Brabham, H. J. et al. Barley MLA3 recognizes the host-specificity effector Pwl2 from Magnaporthe oryzae. Plant Cell36, 447–470 (2022). PubMed PMC
Bettgenhaeuser, J. et al. The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics. Nat. Commun.12, 6915 (2021). PubMed PMC
Brabham, H. J. et al. Rapid discovery of functional NLRs using the signature of high expression, high-throughput transformation, and large-scale phenotyping. Cell. Preprint at 10.2139/ssrn.4446759 (2023).
McIntosh, R. A. Nature of induced mutations affecting disease reaction in wheat. Induced mutations against plant disease. Vol. 9, 551–564 (International Atomic Energy Agency (IAEA), 1977).
Marais, G. F., McCallum, B. & Marais, A. S. Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica149, 373–380 (2006).
Sánchez-Martín, J. & Keller, B. NLR immune receptors and diverse types of non-NLR proteins control race-specific resistance in Triticeae. Curr. Opin. Plant Biol.62, 102053 (2021). PubMed
Dinglasan, E., Periyannan, S. & Hickey, L. T. Harnessing adult-plant resistance genes to deploy durable disease resistance in crops. Essays Biochem.66, 571–580 (2022). PubMed PMC
Ellis, J. G., Lagudah, E. S., Spielmeyer, W. & Dodds, P. N. The past, present and future of breeding rust resistant wheat. Front. Plant Sci.5, 641 (2014). PubMed PMC
Chen, S., Zhang, W., Bolus, S., Rouse, M. N. & Dubcovsky, J. Identification and characterization of wheat stem rust resistance gene Sr21 effective against the Ug99 race group at high temperature. PLoS Genet.14, 1007287 (2018). PubMed PMC
McIntosh, R. A. & Luig, N. H. Linkage of genes for reaction to Puccinia graminis f. sp. tritici and P. recondita in selkirk wheat and related cultivars. Aust. J. Biol. Sci.26, 1145–1152 (1973).
Zhang, W. et al. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc. Natl Acad. Sci. USA114, 9483–9492 (2017). PubMed PMC
Nakano, M. & Mukaihara, T. The type III effector RipB from Ralstonia solanacearum RS1000 acts as a major avirulence factor in Nicotiana benthamiana and other Nicotiana species. Mol. Plant Pathol.20, 1237–1251 (2019). PubMed PMC
Faris, J. D. et al. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc. Natl Acad. Sci. USA107, 13544–13549 (2010). PubMed PMC
Avni, R. et al. Genome sequences of three Aegilops species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement. Plant J.110, 179–192 (2022). PubMed PMC
Kovaka, S., Ou, S., Jenike, K. M. & Schatz, M. C. Approaching complete genomes, transcriptomes and epi-omes with accurate long-read sequencing. Nat. Methods20, 12–16 (2023). PubMed PMC
Long, D. & Kolmer, J. A North American system of nomenclature for Puccinia triticina. Phytopathology79, 525–529 (1986).
Roelfs, A. P. An international system of nomenclature for Puccinia graminis f. sp. tritici. Phytopathology78, 526–533 (1988).
Wan, A. & Chen, X. Virulence characterization of Puccinia striiformis f. sp. tritici using a new set of Yr single-gene line differentials in the United States in 2010. Plant Dis.98, 1534–1542 (2014). PubMed
Ben-David, R. et al. Differentiation among Blumeria graminis f. sp. tritici isolates originating from wild versus domesticated Triticum species in Israel. Phytopathology106, 861–870 (2016). PubMed
Huang, S., Steffenson, B. J., Sela, H. & Stinebaugh, K. Resistance of Aegilops longissima to the rusts of wheat. Plant Dis.102, 1124–1135 (2018). PubMed
Zadoks, J. C., Chang, T. T. & Konzak, C. F. A decimal code for the growth stages of cereals. Weed Res.14, 415–421 (1974).
Šimková, H., Číhalíková, J., Vrána, J., Lysák, M. & Doležel, J. Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol. Plant46, 369–373 (2003).
Giorgi, D. et al. FISHIS: fluorescence In Situ Hybridization in suspension and chromosome flow sorting made easy. PLoS One8, 57994 (2013). PubMed PMC
Molnár, I. et al. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J.88, 452–467 (2016). PubMed
Zhang, Y., Zhu, M. L. & Dai, S. L. Analysis of karyotype diversity of 40 Chinese chrysanthemum cultivars. J. Syst. Evol.51, 335–352 (2013).
Badaeva, E. D., Friebe, B. & Gill, B. S. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome39, 293–306 (1996). PubMed
Šimková, H. et al. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genom.9, 1–9 (2008). PubMed PMC
Hummel, A. W. et al. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol. J.16, 1275–1282 (2018). PubMed PMC
Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics29, 2669–2677 (2013). PubMed PMC
Jackman, S. D. et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res.27, 768–777 (2017). PubMed PMC
Wicker, T., Matthews, D. E. & Keller, B. TREP: a database for Triticeae repetitive elements. Trends Plant Sci.7, 561–562 (2002).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics25, 1754–1760 (2009). PubMed PMC
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics25, 2078–2079 (2009). PubMed PMC
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol.29, 24–26 (2011). PubMed PMC
Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics21, 1859–1875 (2005). PubMed
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma.10, 1–9 (2009). PubMed PMC
Appels, R. et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science361, 7191 (2018). PubMed
Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull.19, 11–15 (1987).
Sharma, D. et al. An efficient method for extracting next-generation sequencing quality RNA from liver tissue of recalcitrant animal species. J. Cell Physiol.234, 14405–14412 (2019). PubMed
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res.29, 45 (2001). PubMed PMC
Collier, R. et al. Accurate measurement of transgene copy number in crop plants using droplet digital PCR. Plant J.90, 1014–1025 (2017). PubMed
Giroux, M. J. & Morris, C. F. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor. Appl. Genet.95, 857–864 (1997).
Li, Z., Hansen, J. L., Liu, Y., Zemetra, R. S. & Berger, P. H. Using real-time PCR to determine transgene copy number in wheat. Plant Mol. Biol. Rep.22, 179–188 (2004).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120 (2014). PubMed PMC
Andrews, S. et al. FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359 (2012). PubMed PMC
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics29, 15–21 (2013). PubMed PMC
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma.12, 1–16 (2011). PubMed PMC
RcoreTeam. R.: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
Bateman, A. et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res.49, 480–489 (2021). PubMed PMC
Steuernagel, B. et al. The NLR-annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol.183, 468–482 (2020). PubMed PMC
Bailey, T. L. & Gribskov, M. Combining evidence using p-values: application to sequence homology searches. Bioinformatics14, 48–54 (1998). PubMed
Martin, E. C. et al. NLRscape: an atlas of plant NLR proteins. Nucleic Acids Res.51, 1470–1482 (2022). PubMed PMC
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. Europe PMC Funders Group The Phyre2 web portal for protein modelling, prediction and analysis. Nat. Protoc.10, 845–858 (2015). PubMed PMC
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature596, 583–589 (2021). PubMed PMC
van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol.42, 243–246 (2024). PubMed PMC
De Beukelaer, H., Davenport, G. F. & Fack, V. Core Hunter 3: flexible core subset selection. BMC Bioinforma.19, 1–12 (2018). PubMed PMC
Edgar, R. C. M. U. S. C. L. E. Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res.32, 1792–1797 (2004). PubMed PMC
Martin, D. P. et al. RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol.7, 087 (2021). PubMed PMC
Yuan, C. et al. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS One6, 26468 (2011). PubMed PMC
Zhang, R. et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat. Plants5, 480–485 (2019). PubMed
Liu, Z. & Friesen, T. DAB staining and visualization of hydrogen peroxide in wheat leaves. Bio-protocol2, 309 (2012). PubMed PMC
Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol.37, 1155–1162 (2019). PubMed PMC
Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science323, 133–138 (2009). PubMed
Marone, M. P., Singh, H. C., Pozniak, C. J. & Mascher, M. A technical guide to TRITEX, a computational pipeline for chromosome-scale sequence assembly of plant genomes. Plant Methods18, 128 (2022). PubMed PMC