A single NLR gene confers resistance to leaf and stripe rust in wheat

. 2024 Nov 15 ; 15 (1) : 9925. [epub] 20241115

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39548072
Odkazy

PubMed 39548072
PubMed Central PMC11568145
DOI 10.1038/s41467-024-54068-6
PII: 10.1038/s41467-024-54068-6
Knihovny.cz E-zdroje

Nucleotide-binding leucine-rich repeat (NLR) disease resistance genes typically confer resistance against races of a single pathogen. Here, we report that Yr87/Lr85, an NLR gene from Aegilops sharonensis and Aegilops longissima, confers resistance against both P. striiformis tritici (Pst) and Puccinia triticina (Pt) that cause stripe and leaf rust, respectively. Yr87/Lr85 confers resistance against Pst and Pt in wheat introgression as well as transgenic lines. Comparative analysis of Yr87/Lr85 and the cloned Triticeae NLR disease resistance genes shows that Yr87/Lr85 contains two distinct LRR domains and that the gene is only found in Ae. sharonensis and Ae. longissima. Allele mining and phylogenetic analysis indicate multiple events of Yr87/Lr85 gene flow between the two species and presence/absence variation explaining the majority of resistance to wheat leaf rust in both species. The confinement of Yr87/Lr85 to Ae. sharonensis and Ae. longissima and the resistance in wheat against Pst and Pt highlight the potential of these species as valuable sources of disease resistance genes for wheat improvement.

Zobrazit více v PubMed

Khan, M. H., Bukhari, A., Dar, Z. A. & Rizvi, S. M. Status and strategies in breeding for rust resistance in wheat. Agric. Sci.04, 292–301 (2013).

Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol.3, 430–439 (2019). PubMed

Periyannan, S., Milne, R. J., Figueroa, M., Lagudah, E. S. & Dodds, P. N. An overview of genetic rust resistance: From broad to specific mechanisms. PLoS Pathog.13, 100638 (2017). PubMed PMC

Dinh, H. X., Singh, D., Periyannan, S., Park, R. F. & Pourkheirandish, M. Molecular genetics of leaf rust resistance in wheat and barley. Theor. Appl Genet.133, 2035–2050 (2020). PubMed

Ali, S. et al. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici. PLoS Pathog.10, 1003903 (2014). PubMed PMC

Hovmøller, M. S. et al. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol.65, 402–411 (2016).

McDonald, B. A. & Stukenbrock, E. H. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philos. Trans. R. Soc. B371, 20160026 (2016). PubMed PMC

Prank, M., Kenaley, S. C., Bergstrom, G. C., Acevedo, M. & Mahowald, N. M. Climate change impacts the spread potential of wheat stem rust, a significant crop disease. Environ. Res. Lett.14, 124053 (2019).

Hafeez, A. N. et al. Creation and judicious application of a wheat resistance gene atlas. Mol. Plant14, 1053–1070 (2021). PubMed

Cavalet-Giorsa, E. et al. Origin and evolution of the bread wheat D genome. Nature633, 848–855 (2024). PubMed PMC

Knight, E. et al. Mapping the ‘breaker’ element of the gametocidal locus proximal to a block of sub-telomeric heterochromatin on the long arm of chromosome 4Ssh of Aegilops sharonensis. Theor. Appl Genet.128, 1049–1059 (2015). PubMed PMC

Pont, C. et al. Tracing the ancestry of modern bread wheats. Nat. Genet.51, 905–911 (2019). PubMed

Tsujimoto, H. & Tsunewaki, K. Gametocidal genes in wheat and its relatives. I. Genetic analyses in common wheat of a gametocidal gene derived from Aegilops speltoides. Can. J. Genet Cytol.26, 78–84 (1984).

Sánchez-Martín, J. et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol.17, 1–7 (2016). PubMed PMC

Steuernagel, B. et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol.34, 652–655 (2016). PubMed

Arora, S. et al. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol.37, 139–143 (2019). PubMed

Gaurav, K. et al. Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat. Biotechnol.40, 422–431 (2022). PubMed PMC

Thind, A. K. et al. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol.35, 793–796 (2017). PubMed

Wang, Y. & Koo, D. An unusual tandem kinase fusion protein confers leaf rust resistance in wheat. Nat. Genet.55, 914–920 (2023). PubMed PMC

Walkowiak, S. et al. Multiple wheat genomes reveal global variation in modern breeding. Nature588, 277–283 (2020). PubMed PMC

Athiyannan, N., Aouini, L., Wang, Y. & Krattinger, S. G. Unconventional R proteins in the botanical tribe Triticeae. Essays Biochem.66, 561–569 (2022). PubMed

Mapuranga, J. et al. Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. Front. Plant Sci.13, 951095 (2022). PubMed PMC

Lolle, S., Stevens, D. & Coaker, G. Plant NLR-triggered immunity: from receptor activation to downstream signaling. Curr. Opin. Immunol.62, 99–105 (2020). PubMed PMC

Yu, G. et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat. Commun.13, 1607 (2022). PubMed PMC

Klymiuk, V., Coaker, G., Fahima, T. & Pozniak, C. J. Tandem protein kinases emerge as new regulators of plant immunity. Mol. Plant Microbe Interact.34, 1094–1102 (2021). PubMed PMC

Li, H. et al. Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein. Nat. Commun.15, 2449 (2024). PubMed PMC

Debernardi, J. M. et al. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol.38, 1274–1279 (2020). PubMed PMC

Hayta, S., Smedley, M. A., Clarke, M., Forner, M. & Harwood, W. A. An efficient agrobacterium-mediated transformation protocol for hexaploid and tetraploid wheat. Curr. Protoc.1, 58 (2021). PubMed

Wang, K. et al. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat. Plants8, 110–117 (2022). PubMed

Kishii, M. An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci.10, 585 (2019). PubMed PMC

Millet, E. Exploitation of Aegilops species of section Sitopsis for wheat improvement. Isr. J. Plant Sci.55, 277–287 (2007).

Scott, J. C., Manisterski, J., Sela, H., Ben-Yehuda, P. & Steffenson, B. J. Resistance of Aegilops species from Israel to widely virulent African and Israeli races of the wheat stem rust pathogen. Plant Dis.98, 1309–1320 (2014). PubMed

Anikster, Y., Manisterski, J., Long, D. L. & Leonard, K. J. Resistance to leaf rust, stripe rust, and stem rust in Aegilops spp. in Israel. Plant Dis.89, 303–308 (2005). PubMed

Huang, L. et al. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics164, 655–664 (2003). PubMed PMC

Olivera, P. D., Kolmer, J. A., Anikster, Y. & Steffenson, B. J. Resistance of Sharon goatgrass (Aegilops sharonensis) to fungal diseases of wheat. Plant Dis.91, 942–950 (2007). PubMed

Millet, E. et al. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.). Genome57, 309–316 (2014). PubMed

Khazan, S. et al. Reducing the size of an alien segment carrying leaf rust and stripe rust resistance in wheat. BMC Plant Biol.20, 1–13 (2020). PubMed PMC

Steuernagel, B., Vrána, J., Karafiátová, M., Wulff, B. B. H. & Doležel, J. Rapid gene isolation using MutChromSeq. Methods Mol. Biol.1659, 231–243 (2017). PubMed

Ni, F. et al. Sequencing trait-associated mutations to clone wheat rust-resistance gene YrNAM. Nat. Commun.14, 4353 (2023). PubMed PMC

Lee, W. S., Rudd, J. J. & Kanyuka, K. Virus induced gene silencing (VIGS) for functional analysis of wheat genes involved in Zymoseptoria tritici susceptibility and resistance. Fungal Genet. Biol.79, 84–88 (2015). PubMed PMC

Sela, H. et al. Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (Triticum dicoccoides) LR10 coiled-coil (CC) and leucine-rich repeat (LRR) domains. Mol. Plant Pathol.13, 276–287 (2012). PubMed PMC

Sukarta, O. C. A., Slootweg, E. J. & Goverse, A. Structure-informed insights for NLR functioning in plant immunity. Semin. Cell Biol.56, 134–149 (2016). PubMed

Rhoads, A. & Au, K. F. PacBio sequencing and its applications. Genom. Proteom. Bioinform.13, 278–289 (2015). PubMed PMC

Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods15, 461–468 (2018). PubMed PMC

Kiselev, K. V. et al. Influence of the 135 bp intron on stilbene synthase VaSTS11 transgene expression in cell cultures of grapevine and different plant generations of Arabidopsis thaliana. Horticulturae9, 513 (2023).

Meyberg, M. Selective staining of fungal hyphae in parasitic and symbiotic plant-fungus associations. Histochemistry88, 197–199 (1988). PubMed

Bailey, P. C. et al. Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. Genome Biol.19, 1–18 (2018). PubMed PMC

Zhou, Y. et al. Allele mining for blast-resistance gene at Pi5 locus in rice. Plant. Stress12, 100465 (2024).

Akpinar, B. et al. The complete genome sequence of elite bread wheat cultivar, ‘Sonmez’. F1000Research11, 614 (2022). PubMed PMC

Sato, K. et al. Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ’Fielder. DNA Res.28, 8 (2021). PubMed PMC

Zhou, Y. et al. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nat. Plants7, 774–786 (2021). PubMed

Li, L. F. et al. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome. Mol. Plant15, 488–503 (2022). PubMed

Page, R. et al. Genome-wide association mapping of rust resistance in Aegilops longissima. Front. Plant Sci.14, 1196486 (2023). PubMed PMC

Olivera, P. D., Anikster, Y. & Steffenson, B. J. Genetic diversity and population structure in Aegilops sharonensis. Crop Sci.50, 636–648 (2010).

Fukuoka, S. et al. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science325, 998–1001 (2009). PubMed

Zhao, H. et al. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat. Commun.9, 2039 (2018). PubMed PMC

Krattinger, S. G. et al. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science323, 1360–1363 (2009). PubMed

Moore, J. W. et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet.47, 1494–1498 (2015). PubMed

Narusaka, M., Hatakeyama, K., Shirasu, K. & Narusaka, Y. Arabidopsis dual resistance proteins, both RPS4 and RRS1, are required for resistance to bacterial wilt in transgenic Brassica crops. Plant Signal Behav.9, 29130 (2014). PubMed PMC

Milligan, S. B. et al. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell10, 1307–1319 (1998). PubMed PMC

Rossi, M. et al. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc. Natl Acad. Sci. USA95, 9750–9754 (1998). PubMed PMC

Nombela, G., Williamson, V. M. & Muñiz, M. The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol. Plant Microbe Interact.16, 645–649 (2003). PubMed

Schultink, A., Qi, T., Lee, A., Steinbrenner, A. D. & Staskawicz, B. Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1. Plant J.92, 787–795 (2017). PubMed

Li, W., Deng, Y., Ning, Y., He, Z. & Wang, G. L. Exploiting broad-spectrum disease resistance in crops: from molecular dissection to breeding. Annu. Rev. Plant Biol.71, 575–603 (2020). PubMed

Brabham, H. J. et al. Barley MLA3 recognizes the host-specificity effector Pwl2 from Magnaporthe oryzae. Plant Cell36, 447–470 (2022). PubMed PMC

Bettgenhaeuser, J. et al. The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics. Nat. Commun.12, 6915 (2021). PubMed PMC

Brabham, H. J. et al. Rapid discovery of functional NLRs using the signature of high expression, high-throughput transformation, and large-scale phenotyping. Cell. Preprint at 10.2139/ssrn.4446759 (2023).

McIntosh, R. A. Nature of induced mutations affecting disease reaction in wheat. Induced mutations against plant disease. Vol. 9, 551–564 (International Atomic Energy Agency (IAEA), 1977).

Marais, G. F., McCallum, B. & Marais, A. S. Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica149, 373–380 (2006).

Sánchez-Martín, J. & Keller, B. NLR immune receptors and diverse types of non-NLR proteins control race-specific resistance in Triticeae. Curr. Opin. Plant Biol.62, 102053 (2021). PubMed

Dinglasan, E., Periyannan, S. & Hickey, L. T. Harnessing adult-plant resistance genes to deploy durable disease resistance in crops. Essays Biochem.66, 571–580 (2022). PubMed PMC

Ellis, J. G., Lagudah, E. S., Spielmeyer, W. & Dodds, P. N. The past, present and future of breeding rust resistant wheat. Front. Plant Sci.5, 641 (2014). PubMed PMC

Chen, S., Zhang, W., Bolus, S., Rouse, M. N. & Dubcovsky, J. Identification and characterization of wheat stem rust resistance gene Sr21 effective against the Ug99 race group at high temperature. PLoS Genet.14, 1007287 (2018). PubMed PMC

McIntosh, R. A. & Luig, N. H. Linkage of genes for reaction to Puccinia graminis f. sp. tritici and P. recondita in selkirk wheat and related cultivars. Aust. J. Biol. Sci.26, 1145–1152 (1973).

Zhang, W. et al. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc. Natl Acad. Sci. USA114, 9483–9492 (2017). PubMed PMC

Nakano, M. & Mukaihara, T. The type III effector RipB from Ralstonia solanacearum RS1000 acts as a major avirulence factor in Nicotiana benthamiana and other Nicotiana species. Mol. Plant Pathol.20, 1237–1251 (2019). PubMed PMC

Faris, J. D. et al. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc. Natl Acad. Sci. USA107, 13544–13549 (2010). PubMed PMC

Avni, R. et al. Genome sequences of three Aegilops species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement. Plant J.110, 179–192 (2022). PubMed PMC

Kovaka, S., Ou, S., Jenike, K. M. & Schatz, M. C. Approaching complete genomes, transcriptomes and epi-omes with accurate long-read sequencing. Nat. Methods20, 12–16 (2023). PubMed PMC

Long, D. & Kolmer, J. A North American system of nomenclature for Puccinia triticina. Phytopathology79, 525–529 (1986).

Roelfs, A. P. An international system of nomenclature for Puccinia graminis f. sp. tritici. Phytopathology78, 526–533 (1988).

Wan, A. & Chen, X. Virulence characterization of Puccinia striiformis f. sp. tritici using a new set of Yr single-gene line differentials in the United States in 2010. Plant Dis.98, 1534–1542 (2014). PubMed

Ben-David, R. et al. Differentiation among Blumeria graminis f. sp. tritici isolates originating from wild versus domesticated Triticum species in Israel. Phytopathology106, 861–870 (2016). PubMed

Huang, S., Steffenson, B. J., Sela, H. & Stinebaugh, K. Resistance of Aegilops longissima to the rusts of wheat. Plant Dis.102, 1124–1135 (2018). PubMed

Zadoks, J. C., Chang, T. T. & Konzak, C. F. A decimal code for the growth stages of cereals. Weed Res.14, 415–421 (1974).

Šimková, H., Číhalíková, J., Vrána, J., Lysák, M. & Doležel, J. Preparation of HMW DNA from plant nuclei and chromosomes isolated from root tips. Biol. Plant46, 369–373 (2003).

Giorgi, D. et al. FISHIS: fluorescence In Situ Hybridization in suspension and chromosome flow sorting made easy. PLoS One8, 57994 (2013). PubMed PMC

Molnár, I. et al. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J.88, 452–467 (2016). PubMed

Zhang, Y., Zhu, M. L. & Dai, S. L. Analysis of karyotype diversity of 40 Chinese chrysanthemum cultivars. J. Syst. Evol.51, 335–352 (2013).

Badaeva, E. D., Friebe, B. & Gill, B. S. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome39, 293–306 (1996). PubMed

Šimková, H. et al. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genom.9, 1–9 (2008). PubMed PMC

Hummel, A. W. et al. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol. J.16, 1275–1282 (2018). PubMed PMC

Zimin, A. V. et al. The MaSuRCA genome assembler. Bioinformatics29, 2669–2677 (2013). PubMed PMC

Jackman, S. D. et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res.27, 768–777 (2017). PubMed PMC

Wicker, T., Matthews, D. E. & Keller, B. TREP: a database for Triticeae repetitive elements. Trends Plant Sci.7, 561–562 (2002).

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics25, 1754–1760 (2009). PubMed PMC

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics25, 2078–2079 (2009). PubMed PMC

Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol.29, 24–26 (2011). PubMed PMC

Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics21, 1859–1875 (2005). PubMed

Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma.10, 1–9 (2009). PubMed PMC

Appels, R. et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science361, 7191 (2018). PubMed

Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull.19, 11–15 (1987).

Sharma, D. et al. An efficient method for extracting next-generation sequencing quality RNA from liver tissue of recalcitrant animal species. J. Cell Physiol.234, 14405–14412 (2019). PubMed

Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res.29, 45 (2001). PubMed PMC

Collier, R. et al. Accurate measurement of transgene copy number in crop plants using droplet digital PCR. Plant J.90, 1014–1025 (2017). PubMed

Giroux, M. J. & Morris, C. F. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor. Appl. Genet.95, 857–864 (1997).

Li, Z., Hansen, J. L., Liu, Y., Zemetra, R. S. & Berger, P. H. Using real-time PCR to determine transgene copy number in wheat. Plant Mol. Biol. Rep.22, 179–188 (2004).

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120 (2014). PubMed PMC

Andrews, S. et al. FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359 (2012). PubMed PMC

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics29, 15–21 (2013). PubMed PMC

Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma.12, 1–16 (2011). PubMed PMC

RcoreTeam. R.: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

Bateman, A. et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res.49, 480–489 (2021). PubMed PMC

Steuernagel, B. et al. The NLR-annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol.183, 468–482 (2020). PubMed PMC

Bailey, T. L. & Gribskov, M. Combining evidence using p-values: application to sequence homology searches. Bioinformatics14, 48–54 (1998). PubMed

Martin, E. C. et al. NLRscape: an atlas of plant NLR proteins. Nucleic Acids Res.51, 1470–1482 (2022). PubMed PMC

Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. Europe PMC Funders Group The Phyre2 web portal for protein modelling, prediction and analysis. Nat. Protoc.10, 845–858 (2015). PubMed PMC

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature596, 583–589 (2021). PubMed PMC

van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol.42, 243–246 (2024). PubMed PMC

De Beukelaer, H., Davenport, G. F. & Fack, V. Core Hunter 3: flexible core subset selection. BMC Bioinforma.19, 1–12 (2018). PubMed PMC

Edgar, R. C. M. U. S. C. L. E. Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res.32, 1792–1797 (2004). PubMed PMC

Martin, D. P. et al. RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol.7, 087 (2021). PubMed PMC

Yuan, C. et al. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS One6, 26468 (2011). PubMed PMC

Zhang, R. et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat. Plants5, 480–485 (2019). PubMed

Liu, Z. & Friesen, T. DAB staining and visualization of hydrogen peroxide in wheat leaves. Bio-protocol2, 309 (2012). PubMed PMC

Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol.37, 1155–1162 (2019). PubMed PMC

Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science323, 133–138 (2009). PubMed

Marone, M. P., Singh, H. C., Pozniak, C. J. & Mascher, M. A technical guide to TRITEX, a computational pipeline for chromosome-scale sequence assembly of plant genomes. Plant Methods18, 128 (2022). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...