Surface protolytic property characterization of hydroxyapatite and titanium dioxide nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35518862
PubMed Central
PMC9066438
DOI
10.1039/c9ra03698a
PII: c9ra03698a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We provide characterization data of hydroxyapatite (nHAp) and titanium dioxide (nTiO2) nanoparticles as potential materials for ion sorption, e.g. in targeted therapy, barrier materials for waste repositories or photovoltaics. The study is focused on the determination of the values of protonation and ion exchange constants and site densities (∑SOH, ∑X; [mol kg-1]) of nTiO2 and nHAp for further Ra kinetics and sorption experiments. These data are very important for further investigation of the materials, which can be used e.g. as drug delivery systems or in engineered barriers of deep geological repositories. The characterization was based on the evaluation of the dependence of titrating agent consumption on pH. Titration results were evaluated on the basis of several model combinations, however the combination of the Chemical Equilibrium Model (CEM) and Ion Exchange Model (IExM) fits best to the experimental titration curves. However, the differences between the two sorbents were relatively large. Due to stability in a broad pH range and available surface sites, nTiO2 seems to have a wide application range. The applicability of nHAp is not so wide because of its dissolution under pH 5. Both sorbents are virtually able to sorb cationic species on deprotonated edge and layer sites with different capacities, which can be important for sorption and decontaminating applications.
Zobrazit více v PubMed
Jones T. and Egerton T. A., Titanium Compounds, Inorganic, in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New York, 2000
LeGeros R. Z., Ito A., Ishikawa A., Sakae T. and LeGeros J. P., in Advanced Biomaterials: Fundamentals, Processing, and Applications, The American Ceramic Society, Ohio, 2010, ch. 2, pp. 19–52
Pappus S. A. Ekka B. Sahu S. Sabat D. Dash D. Mishra M. J. Nanopart. Res. 2017;19(4):136. doi: 10.1007/s11051-017-3824-8. DOI
Bogatu C. Perniu D. Sau C. Iorga O. Cosnita M. Duta A. Ceram. Int. 2017;43(11):7963–7969. doi: 10.1016/j.ceramint.2017.03.054. DOI
Corami A. Mignardi S. Ferrini V. J. Hazard. Mater. 2007;146(1–2):164–170. doi: 10.1016/j.jhazmat.2006.12.003. PubMed DOI
Handley-Sidhu S. Mullan T. K. Grail Q. Albadarneh M. Ohnuki T. Macaskie L. E. Sci. Rep. 2016;6(1):23361. doi: 10.1038/srep23361. PubMed DOI PMC
Reddy L. Venkata P. Kavitha B. Anil P. Reddy K. Kim K. H. Environ. Res. 2017;154:296–303. doi: 10.1016/j.envres.2017.01.018. PubMed DOI
He H. Wu B. Yang C. Int. J. Environ. Sci. Technol. 2018;15 doi: 10.1007/s13762-018-2148-2. DOI
Cędrowska E. Pruszynski M. Majkowska-Pilip A. Męczyńska-Wielgosz S. Bruchertseifer F. Morgenstern A. Bilewicz A. J. Nanopart. Res. 2018;20(3):83. doi: 10.1007/s11051-018-4181-y. PubMed DOI PMC
Duan D. Liu H. Xu Y. Han Y. Xu M. Zhang Z. Liu Z. ACS Appl. Mater. Interfaces. 2018;10(6):5278–5286. doi: 10.1021/acsami.7b17902. PubMed DOI
Rajeswari A. Vimalnath K. V. Sarma H. D. Shetty P. Mohammed S. K. Nuwad J. Chakraborty S. Dash A. Appl. Radiat. Isot. 2017;116:85–91. doi: 10.1016/j.apradiso.2016.07.022. PubMed DOI
Vimalnath K. V. Chakraborty S. Rajeswari A. Sarma H. D. Nuwad J. Pandey U. Kamaleshwaran K. Shinto A. Dash A. Nucl. Med. Biol. 2015;42(5):455–464. doi: 10.1016/j.nucmedbio.2015.01.006. PubMed DOI
Wu X. Qin W. Wang S. Jiang Z. Guo Y. Xie Z. Rare Met. 2006;25(6):169–172. doi: 10.1016/S1001-0521(07)60067-9. DOI
Mazierski P. Mikolajczyk A. Bajorowicz B. Malankowska A. Zaleska-Medynska A. Nadolna J. Appl. Catal., B. 2018;233:301–317. doi: 10.1016/j.apcatb.2018.04.019. DOI
Mondal S. Dorozhkin S. V. Pal U. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2018;10:e1504. PubMed
Kaygili O. Keser S. Dorozhkin S. V. Yakuphanoglu F. Al-Ghamdi A. A. Kirbag S. Sertkaya D. Ates T. Canan Gursoy N. J. Inorg. Organomet. Polym. 2014;24:1001–1008. doi: 10.1007/s10904-014-0074-4. DOI
Kozempel J. Vlk M. Malková E. Bajzíková A. Bárta J. Santos-Oliveira R. Malta Rossi A. J. Radioanal. Nucl. Chem. 2015;304:443–447. doi: 10.1007/s10967-014-3615-y. DOI
Kozempel J. Mokhodoeva O. Vlk M. Molecules. 2018;23(3):581. doi: 10.3390/molecules23030581. PubMed DOI PMC
Ferraz M. P. Monteiro F. J. Manuel C. M. J. Appl. Biomater. Funct. Mater. 2004;2(2):74–80. PubMed
Koutsopoulos S. J. Biomed. Mater. Res. 2002;62(4):600–612. doi: 10.1002/jbm.10280. PubMed DOI
Malekshahi Byranvand M. Nemati Kharat A. Fatholahi L. Malekshahi Beiranvand Z. J. Nanostruct. 2013;3:1–9.
Mital Gupta S. Tripathi M. Cent. Eur. J. Chem. 2012;10(2):279–294.
Esposti L. D., Tampieri A. and Iafisco M., in Nanotechnologies in Preventive and Regenerative Medicine, ed. V. Uskokovic, Elsevier, New York, 2017, ch. 6.3, pp. 465–486
Zhou W. Zheng J. Adv. Mat. Res. 2012;503/504:688–691.
Chakraborty S. Vimalnath K. V. Rajeswari A. Sarma H. D. Shinto A. Radhakrishnan E. R. Dash A. J. Radioanal. Nucl. Chem. 2017;302(2):875–881. doi: 10.1007/s10967-014-3309-5. DOI
Xie J. Lee S. Chen X. Adv. Drug Delivery Rev. 2010;62(11):1064–1079. doi: 10.1016/j.addr.2010.07.009. PubMed DOI PMC
Sakmar M., Vlk M., Suchankova P., Kukleva E., Kozempel J., Hruby M. and Lobaz V., presented in part at 13th international Symposium on the Synthesis and Application of Isotopically Labelled Compounds, Prague, June, 2018
Micolova P., Kukleva E., Nykl P., Sakmar M., Vlk M., Nespesna L. and Kozempel J., presented in part at 22nd International Symposium on Radiopharmaceutical Sciences, Dresden, May, 2017
Xofigo – summary of product characteristics, http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002653/WC500156172.pdf, accessed January 2018
Mirzadeh S. Appl. Radiat. Isot. 1998;49(4):345–349. doi: 10.1016/S0969-8043(97)00175-9. PubMed DOI
Kukleva E. Kozempel J. Vlk M. Micolova P. Vopalka D. J. Radioanal. Nucl. Chem. 2014;304(1):263–266. doi: 10.1007/s10967-014-3432-3. DOI
Mokhodoeva O. Guseva L. Dogadkin N. J. Radioanal. Nucl. Chem. 2014;304(1):449–453. doi: 10.1007/s10967-014-3777-7. DOI
Filipská H. Štamberg K. Acta Polytech. 2005;45(5):11–18.
Lützenkirchen J., Surface complexation modelling, Academic Press, Elsevier Ltd., London, 2006
RES3T/Rossendorf Expert System for Surface and Sorption Thermodynamics, https://www.hzdr.de/db/res3t.login, accessed January 2018 PubMed
Sandrine B. Ange N. Didier B. A. Eric C. Patrick S. J. Hazard. Mater. 2007;139(3):443–446. doi: 10.1016/j.jhazmat.2006.02.039. PubMed DOI
HR Inorganics I. – Minerals database – FTIR, Thermo Scientific™ OMNIC™, USA
ICDD PDF-2 database, Version 2013, ISDD, USA
Lábár J. L. Ultramicroscopy. 2005;103:237–249. doi: 10.1016/j.ultramic.2004.12.004. PubMed DOI
Kraus W. Nolze G. J. Appl. Crystallogr. 1996;29:301–303. doi: 10.1107/S0021889895014920. DOI
Crystallography Open Database—an open-access collection of crystal structures, http://www.crystallography.net/cod/search.html, accessed May 2018 PubMed PMC
Ivanova T. Harizanova A. Solid State Ionics. 2001;138:227–232. doi: 10.1016/S0167-2738(00)00798-0. DOI
Ingham B. and Toney M. F., Chapter 1: X-ray diffraction for characterizing metallic films, in Metallic Films for Electronic, Optical and Magnetic Application, ed. K. Barmak and K. Coffey, Elsevier, New York, 2014, pp. 3–38
Fultz B. and Howe J., Transmission electron microscopy and diffractometry of materials, Springer, Berlin, 3rd edn, 2008
Gallo J. Slouf M. Goodman S. B. J. Biomed. Mater. Res., Part B. 2010;94B(1):171–177. PubMed
Slouf M. Ostafinska A. Nevoralova M. Fortelny I. Polym. Test. 2015;42:8–16. doi: 10.1016/j.polymertesting.2014.12.012. DOI
Fulín P. Pokorný D. Slouf M. Lapčíková M. Pavlova E. Zolotarevová E. Acta Chir. Orthop. Traumatol. Cech. 2011;78(2):131–137. PubMed
Study of 213Bi and 211Pb Recoils Release from 223Ra Labelled TiO2 Nanoparticles
Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology