Surface protolytic property characterization of hydroxyapatite and titanium dioxide nanoparticles

. 2019 Jul 11 ; 9 (38) : 21989-21995. [epub] 20190715

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35518862

We provide characterization data of hydroxyapatite (nHAp) and titanium dioxide (nTiO2) nanoparticles as potential materials for ion sorption, e.g. in targeted therapy, barrier materials for waste repositories or photovoltaics. The study is focused on the determination of the values of protonation and ion exchange constants and site densities (∑SOH, ∑X; [mol kg-1]) of nTiO2 and nHAp for further Ra kinetics and sorption experiments. These data are very important for further investigation of the materials, which can be used e.g. as drug delivery systems or in engineered barriers of deep geological repositories. The characterization was based on the evaluation of the dependence of titrating agent consumption on pH. Titration results were evaluated on the basis of several model combinations, however the combination of the Chemical Equilibrium Model (CEM) and Ion Exchange Model (IExM) fits best to the experimental titration curves. However, the differences between the two sorbents were relatively large. Due to stability in a broad pH range and available surface sites, nTiO2 seems to have a wide application range. The applicability of nHAp is not so wide because of its dissolution under pH 5. Both sorbents are virtually able to sorb cationic species on deprotonated edge and layer sites with different capacities, which can be important for sorption and decontaminating applications.

Zobrazit více v PubMed

Jones T. and Egerton T. A., Titanium Compounds, Inorganic, in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New York, 2000

LeGeros R. Z., Ito A., Ishikawa A., Sakae T. and LeGeros J. P., in Advanced Biomaterials: Fundamentals, Processing, and Applications, The American Ceramic Society, Ohio, 2010, ch. 2, pp. 19–52

Pappus S. A. Ekka B. Sahu S. Sabat D. Dash D. Mishra M. J. Nanopart. Res. 2017;19(4):136. doi: 10.1007/s11051-017-3824-8. DOI

Bogatu C. Perniu D. Sau C. Iorga O. Cosnita M. Duta A. Ceram. Int. 2017;43(11):7963–7969. doi: 10.1016/j.ceramint.2017.03.054. DOI

Corami A. Mignardi S. Ferrini V. J. Hazard. Mater. 2007;146(1–2):164–170. doi: 10.1016/j.jhazmat.2006.12.003. PubMed DOI

Handley-Sidhu S. Mullan T. K. Grail Q. Albadarneh M. Ohnuki T. Macaskie L. E. Sci. Rep. 2016;6(1):23361. doi: 10.1038/srep23361. PubMed DOI PMC

Reddy L. Venkata P. Kavitha B. Anil P. Reddy K. Kim K. H. Environ. Res. 2017;154:296–303. doi: 10.1016/j.envres.2017.01.018. PubMed DOI

He H. Wu B. Yang C. Int. J. Environ. Sci. Technol. 2018;15 doi: 10.1007/s13762-018-2148-2. DOI

Cędrowska E. Pruszynski M. Majkowska-Pilip A. Męczyńska-Wielgosz S. Bruchertseifer F. Morgenstern A. Bilewicz A. J. Nanopart. Res. 2018;20(3):83. doi: 10.1007/s11051-018-4181-y. PubMed DOI PMC

Duan D. Liu H. Xu Y. Han Y. Xu M. Zhang Z. Liu Z. ACS Appl. Mater. Interfaces. 2018;10(6):5278–5286. doi: 10.1021/acsami.7b17902. PubMed DOI

Rajeswari A. Vimalnath K. V. Sarma H. D. Shetty P. Mohammed S. K. Nuwad J. Chakraborty S. Dash A. Appl. Radiat. Isot. 2017;116:85–91. doi: 10.1016/j.apradiso.2016.07.022. PubMed DOI

Vimalnath K. V. Chakraborty S. Rajeswari A. Sarma H. D. Nuwad J. Pandey U. Kamaleshwaran K. Shinto A. Dash A. Nucl. Med. Biol. 2015;42(5):455–464. doi: 10.1016/j.nucmedbio.2015.01.006. PubMed DOI

Wu X. Qin W. Wang S. Jiang Z. Guo Y. Xie Z. Rare Met. 2006;25(6):169–172. doi: 10.1016/S1001-0521(07)60067-9. DOI

Mazierski P. Mikolajczyk A. Bajorowicz B. Malankowska A. Zaleska-Medynska A. Nadolna J. Appl. Catal., B. 2018;233:301–317. doi: 10.1016/j.apcatb.2018.04.019. DOI

Mondal S. Dorozhkin S. V. Pal U. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2018;10:e1504. PubMed

Kaygili O. Keser S. Dorozhkin S. V. Yakuphanoglu F. Al-Ghamdi A. A. Kirbag S. Sertkaya D. Ates T. Canan Gursoy N. J. Inorg. Organomet. Polym. 2014;24:1001–1008. doi: 10.1007/s10904-014-0074-4. DOI

Kozempel J. Vlk M. Malková E. Bajzíková A. Bárta J. Santos-Oliveira R. Malta Rossi A. J. Radioanal. Nucl. Chem. 2015;304:443–447. doi: 10.1007/s10967-014-3615-y. DOI

Kozempel J. Mokhodoeva O. Vlk M. Molecules. 2018;23(3):581. doi: 10.3390/molecules23030581. PubMed DOI PMC

Ferraz M. P. Monteiro F. J. Manuel C. M. J. Appl. Biomater. Funct. Mater. 2004;2(2):74–80. PubMed

Koutsopoulos S. J. Biomed. Mater. Res. 2002;62(4):600–612. doi: 10.1002/jbm.10280. PubMed DOI

Malekshahi Byranvand M. Nemati Kharat A. Fatholahi L. Malekshahi Beiranvand Z. J. Nanostruct. 2013;3:1–9.

Mital Gupta S. Tripathi M. Cent. Eur. J. Chem. 2012;10(2):279–294.

Esposti L. D., Tampieri A. and Iafisco M., in Nanotechnologies in Preventive and Regenerative Medicine, ed. V. Uskokovic, Elsevier, New York, 2017, ch. 6.3, pp. 465–486

Zhou W. Zheng J. Adv. Mat. Res. 2012;503/504:688–691.

Chakraborty S. Vimalnath K. V. Rajeswari A. Sarma H. D. Shinto A. Radhakrishnan E. R. Dash A. J. Radioanal. Nucl. Chem. 2017;302(2):875–881. doi: 10.1007/s10967-014-3309-5. DOI

Xie J. Lee S. Chen X. Adv. Drug Delivery Rev. 2010;62(11):1064–1079. doi: 10.1016/j.addr.2010.07.009. PubMed DOI PMC

Sakmar M., Vlk M., Suchankova P., Kukleva E., Kozempel J., Hruby M. and Lobaz V., presented in part at 13th international Symposium on the Synthesis and Application of Isotopically Labelled Compounds, Prague, June, 2018

Micolova P., Kukleva E., Nykl P., Sakmar M., Vlk M., Nespesna L. and Kozempel J., presented in part at 22nd International Symposium on Radiopharmaceutical Sciences, Dresden, May, 2017

Xofigo – summary of product characteristics, http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002653/WC500156172.pdf, accessed January 2018

Mirzadeh S. Appl. Radiat. Isot. 1998;49(4):345–349. doi: 10.1016/S0969-8043(97)00175-9. PubMed DOI

Kukleva E. Kozempel J. Vlk M. Micolova P. Vopalka D. J. Radioanal. Nucl. Chem. 2014;304(1):263–266. doi: 10.1007/s10967-014-3432-3. DOI

Mokhodoeva O. Guseva L. Dogadkin N. J. Radioanal. Nucl. Chem. 2014;304(1):449–453. doi: 10.1007/s10967-014-3777-7. DOI

Filipská H. Štamberg K. Acta Polytech. 2005;45(5):11–18.

Lützenkirchen J., Surface complexation modelling, Academic Press, Elsevier Ltd., London, 2006

RES3T/Rossendorf Expert System for Surface and Sorption Thermodynamics, https://www.hzdr.de/db/res3t.login, accessed January 2018 PubMed

Sandrine B. Ange N. Didier B. A. Eric C. Patrick S. J. Hazard. Mater. 2007;139(3):443–446. doi: 10.1016/j.jhazmat.2006.02.039. PubMed DOI

HR Inorganics I. – Minerals database – FTIR, Thermo Scientific™ OMNIC™, USA

ICDD PDF-2 database, Version 2013, ISDD, USA

Lábár J. L. Ultramicroscopy. 2005;103:237–249. doi: 10.1016/j.ultramic.2004.12.004. PubMed DOI

Kraus W. Nolze G. J. Appl. Crystallogr. 1996;29:301–303. doi: 10.1107/S0021889895014920. DOI

Crystallography Open Database—an open-access collection of crystal structures, http://www.crystallography.net/cod/search.html, accessed May 2018 PubMed PMC

Ivanova T. Harizanova A. Solid State Ionics. 2001;138:227–232. doi: 10.1016/S0167-2738(00)00798-0. DOI

Ingham B. and Toney M. F., Chapter 1: X-ray diffraction for characterizing metallic films, in Metallic Films for Electronic, Optical and Magnetic Application, ed. K. Barmak and K. Coffey, Elsevier, New York, 2014, pp. 3–38

Fultz B. and Howe J., Transmission electron microscopy and diffractometry of materials, Springer, Berlin, 3rd edn, 2008

Gallo J. Slouf M. Goodman S. B. J. Biomed. Mater. Res., Part B. 2010;94B(1):171–177. PubMed

Slouf M. Ostafinska A. Nevoralova M. Fortelny I. Polym. Test. 2015;42:8–16. doi: 10.1016/j.polymertesting.2014.12.012. DOI

Fulín P. Pokorný D. Slouf M. Lapčíková M. Pavlova E. Zolotarevová E. Acta Chir. Orthop. Traumatol. Cech. 2011;78(2):131–137. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Preparation and Surface Characterization of Cerium Dioxide for Separation of 68Ge/68Ga and Other Medicinal Radionuclides

. 2023 Feb 21 ; 16 (5) : . [epub] 20230221

Study of 213Bi and 211Pb Recoils Release from 223Ra Labelled TiO2 Nanoparticles

. 2022 Dec 30 ; 16 (1) : . [epub] 20221230

Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology

. 2022 Apr 25 ; 7 (1) : 8. [epub] 20220425

Powder Nano-Beam Diffraction in Scanning Electron Microscope: Fast and Simple Method for Analysis of Nanoparticle Crystal Structure

. 2021 Apr 09 ; 11 (4) : . [epub] 20210409

Hydroxyapatite and Titanium Dioxide Nanoparticles: Radiolabelling and In Vitro Stability of Prospective Theranostic Nanocarriers for 223Ra and 99mTc

. 2020 Aug 20 ; 10 (9) : . [epub] 20200820

Determination, Modeling and Evaluation of Kinetics of 223Ra Sorption on Hydroxyapatite and Titanium Dioxide Nanoparticles

. 2020 Apr 19 ; 13 (8) : . [epub] 20200419

Study of 223Ra uptake mechanism on hydroxyapatite and titanium dioxide nanoparticles as a function of pH

. 2020 Jan 22 ; 10 (7) : 3659-3666. [epub] 20200122

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...