• This record comes from PubMed

Study of 223Ra uptake mechanism on hydroxyapatite and titanium dioxide nanoparticles as a function of pH

. 2020 Jan 22 ; 10 (7) : 3659-3666. [epub] 20200122

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

The mechanism of 223Ra uptake on hydroxyapatite and titanium dioxide nanoparticles was studied as a function of pH. Both materials are widely used in food industry and medicine. They offer properties suitable for labelling with medicinal radionuclides, particularly for targeted radionuclide therapy. The selected isotope, 223Ra, is an alpha emitter widely used in targeted alpha particle therapy due to high-dose delivery in very small tissue volume, nevertheless the results are applicable for any radium isotope including 226Ra. The study was performed in the pH range 4.5 to 12 for hydroxyapatite nanoparticles and 2 to 12 for titanium dioxide nanoparticles in Britton-Robinson buffer solution. Both nanomaterials at pH 6 and higher showed that over 95% of the radium has been sorbed. According to the applied chemical equilibrium model, the most important species playing a role in sorption on the edge-sites were RaCO3, RaPO4 -, RaHPO4 and Ra(Ac-)2, and Ra2+ and RaH2PO4 + on layer-sites. All experiments were conducted under free air conditions and no negative impact of CO2 was found. The surface complexation model was found suitable for describing radium uptake by the studied hydroxyapatite and titanium dioxide nanomaterials.

See more in PubMed

U.S. National Library of Medicine, Toxicology Data Network, November 2019, Available on: https://toxnet.nlm.nih.gov/newtoxnet/index.html

Ferraz M. P. Monteiro F. J. Manuel C. M. J. Appl. Biomater. Funct. Mater. 2004;2(2):74–80. PubMed

Koutsopoulos S. J. Biomed. Mater. Res. 2002;62(4):600–612. doi: 10.1002/jbm.10280. PubMed DOI

Kreyling W. Holzwarth U. Haberl N. Kozempel J. Hirn S. Wenk A. Schleh C. Schäffler M. et al. . Nanotoxicology. 2017;11(4):434–442. doi: 10.1080/17435390.2017.1306892. PubMed DOI

Malekshahi Byranvand M. Nemati Kharat A. Fatholahi L. Malekshahi Beiranvand Z. J. Nanostruct. 2013;3:1–9.

Mital Gupta S. Tripathi M. Cent. Eur. J. Chem. 2012;10(2):279–294.

Salvador A. Pascual-Martí M. C. Adell J. R. Requeni A. March J. G. J. Pharm. Biomed. Anal. 2000;22(2):301–306. doi: 10.1016/S0731-7085(99)00286-1. PubMed DOI

Matsumura Y. Maeda H. Cancer Res. 1986;46(12):6387–6392. PubMed

Maeda H. Tsukigawa K. Fang J. Microcirculation. 2016;23(3):173–182. doi: 10.1111/micc.12228. PubMed DOI

Nagy J. A. Chang S.-H. Dvorak A. M. Dvorak H. F. Br. J. Cancer. 2009;100(6):865–869. doi: 10.1038/sj.bjc.6604929. PubMed DOI PMC

Van Butsele K. Jérôme R. Jérôme C. Polymer. 2007;48(26):7431–7443. doi: 10.1016/j.polymer.2007.09.048. DOI

Kozempel J. Vlk M. Málková E. Bajzíková A. Bárta J. Santos-Oliveira R. Malta Rossi A. J. Radioanal. Nucl. Chem. 2014;34(1):443–447. doi: 10.1007/s10967-014-3615-y. DOI

Esposti L. D., Tampieri A. and Iafisco M., in Nanotechnologies in Preventive and Regenerative Medicine, ed. V. Uskokovic, Elsevier, New York, 2017, ch. 6.3, pp. 465–486

Sakmar M., Vlk M., Suchankova P., Kukleva E., Kozempel J., Hruby M. and Lobaz V., presented in part at 13th international symposium on the synthesis and application of isotopically labelled compounds, Prague, June 2018

Micolova P. Kukleva E. Nykl P. Sakmar M. Vlk M. Nespesna L. Kozempel J. J. Labelled Compd. Radiopharm. 2017;60(S1):S283.

Chakraborty S. Vimalnath K. V. Rajeswari A. Sarma H. D. Shinto A. Radhakrishnan E. R. Dash A. J. Radioanal. Nucl. Chem. 2017;302(2):875–881. doi: 10.1007/s10967-014-3309-5. DOI

Sgouros G. Ballangrud A. M. Jurcic J. G. McDevitt M. R. Humm J. L. Erdi E. Y. Mehta B. M. Finn R. D. Larson S. M. Scheinberg D. A. J. Nucl. Med. 1999;40(1):1935–1946. PubMed

Zhou W. Zheng J. Adv. Mater. Res. 2012;503/504:688–691.

Xie J. Lee S. Chen X. Adv. Drug Delivery Rev. 2010;62(11):1064–1079. doi: 10.1016/j.addr.2010.07.009. PubMed DOI PMC

Apostolidis C. Molinet R. McGinley J. Abbas K. Möllenbeck J. Morgenstern A. Appl. Radiat. Isot. 2005;62(3):383–387. doi: 10.1016/j.apradiso.2004.06.013. PubMed DOI

Handley-Sidhu S. Mullan T. K. Grail Q. Albadarneh M. Ohnuki T. Macaskie L. E. Sci. Rep. 2016;6(1):1–8. doi: 10.1038/s41598-016-0001-8. PubMed DOI PMC

Kreyling W. G. Holzwarth U. Schleh C. Kozempel J. Wenk A. Haberl N. Hirn S. Schäffler M. Lipka J. Semmler-Behnke M. Gibson N. Nanotoxicology. 2017;11(4):443–453. doi: 10.1080/17435390.2017.1306893. PubMed DOI

Xie G. Wang C. Sun J. Zhong G. Toxicol. Lett. 2011;205(1):55–61. doi: 10.1016/j.toxlet.2011.04.034. PubMed DOI

Cedrowska E. Pruszynski M. Majkowska-Pilip A. Meczyńska-Wielgosz S. Bruchertseifer F. Morgenstern A. Bilewicz A. J. Nanopart. Res. 2018;20:83. doi: 10.1007/s11051-018-4181-y. doi: 10.1007/s11051-018-4181-y. PubMed DOI PMC

Bassot S. Mallet C. Stammose D. MRS Online Proc. Libr. 2000;663:1081. doi: 10.1557/PROC-663-1081. DOI

Sajih M. Bryan N. D. Livens F. R. Vaughan D. J. Descostes M. Phrommavanh V. Nos J. Morris K. Geochim. Cosmochim. Acta. 2014;146:150–163. doi: 10.1016/j.gca.2014.10.008. DOI

Zachara J. M. Cowan C. E. Resch C. T. Geochim. Cosmochim. Acta. 1991;55(6):1549–1562. doi: 10.1016/0016-7037(91)90127-Q. DOI

European Medicines Agency, Xofigo, June 2019, Available on: https://www.ema.europa.eu/en/medicines/human/EPAR/xofigo

Nilsson S. Srang P. Aksnes A. K. Franzèn L. Olivier P. Pecking A. Staffurth J. Vasanthan S. Andersson C. Bruland Ø. S. Eur. J. Cancer. 2012;48(5):678–686. doi: 10.1016/j.ejca.2011.12.023. PubMed DOI

Mirzadeh S. Appl. Radiat. Isot. 1998;49(4):345–349. doi: 10.1016/S0969-8043(97)00175-9. PubMed DOI

Mokhodoeva O. Guseva L. Dogadkin N. J. Radioanal. Nucl. Chem. 2014;304(1):449–453. doi: 10.1007/s10967-014-3777-7. DOI

Kukleva E. Kozempel J. Vlk M. Micolova P. Vopalka D. J. Radioanal. Nucl. Chem. 2014;304(1):263–266. doi: 10.1007/s10967-014-3432-3. DOI

Guseva L. I. Tikhomirova G. S. Dogadkin N. N. Radiochemistry. 2004;46(1):58–62. doi: 10.1023/B:RACH.0000024637.39523.e4. DOI

WWW, Table of radioactive isotopes: nuclide search, June 2019, Available on: http://nucleardata.nuclear.lu.se/toi/nucSearch.asp

Kukleva E. Suchankova P. Stamberg K. Vlk M. Slouf M. Kozempel J. RSC Adv. 2019;9:21989–21995. doi: 10.1039/C9RA03698A. PubMed DOI PMC

Filipská H. Štamberg K. Acta Polytech. 2005;45(5):11–18.

Wanner H. Albinsson Y. Karnland O. Wieland E. Wersin P. Charlet L. Radiochim. Acta. 1994;66(67):157–162.

ZZ HATCHES-20, Database for radiochemical modelling, May 2019, Available on: https://www.oecd-nea.org/tools/abstract/detail/nea-1210

Dvořák L., Ledvinka T. and Sobotka M., FAMULUS 3.1, 1991, Custom made software, Prague, Czech Republic

Herbelin A. L. and Westall J. C., FITEQL 3.2, Custom made software. Department of Chemistry, Oregon State University, Corvallis, Oregon, USA, 1996

ThermoChimie, Thermodynamic database, August 2019, Available on: https://www.thermochimie-tdb.com

Mokhodoeva O. Vlk M. Málková E. Kukleva E. Mičolová P. Štamberg K. Šlouf M. Dzhenloda R. Kozempel J. J. Nanopart. Res. 2016;18(10):1–12. doi: 10.1007/s11051-016-3615-7. DOI

Momma K., August 2019, Available on: https://jp-minerals.org/vesta/en/

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...