Study of 223Ra uptake mechanism on hydroxyapatite and titanium dioxide nanoparticles as a function of pH
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
35492660
PubMed Central
PMC9048583
DOI
10.1039/c9ra08953e
PII: c9ra08953e
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The mechanism of 223Ra uptake on hydroxyapatite and titanium dioxide nanoparticles was studied as a function of pH. Both materials are widely used in food industry and medicine. They offer properties suitable for labelling with medicinal radionuclides, particularly for targeted radionuclide therapy. The selected isotope, 223Ra, is an alpha emitter widely used in targeted alpha particle therapy due to high-dose delivery in very small tissue volume, nevertheless the results are applicable for any radium isotope including 226Ra. The study was performed in the pH range 4.5 to 12 for hydroxyapatite nanoparticles and 2 to 12 for titanium dioxide nanoparticles in Britton-Robinson buffer solution. Both nanomaterials at pH 6 and higher showed that over 95% of the radium has been sorbed. According to the applied chemical equilibrium model, the most important species playing a role in sorption on the edge-sites were RaCO3, RaPO4 -, RaHPO4 and Ra(Ac-)2, and Ra2+ and RaH2PO4 + on layer-sites. All experiments were conducted under free air conditions and no negative impact of CO2 was found. The surface complexation model was found suitable for describing radium uptake by the studied hydroxyapatite and titanium dioxide nanomaterials.
See more in PubMed
U.S. National Library of Medicine, Toxicology Data Network, November 2019, Available on: https://toxnet.nlm.nih.gov/newtoxnet/index.html
Ferraz M. P. Monteiro F. J. Manuel C. M. J. Appl. Biomater. Funct. Mater. 2004;2(2):74–80. PubMed
Koutsopoulos S. J. Biomed. Mater. Res. 2002;62(4):600–612. doi: 10.1002/jbm.10280. PubMed DOI
Kreyling W. Holzwarth U. Haberl N. Kozempel J. Hirn S. Wenk A. Schleh C. Schäffler M. et al. . Nanotoxicology. 2017;11(4):434–442. doi: 10.1080/17435390.2017.1306892. PubMed DOI
Malekshahi Byranvand M. Nemati Kharat A. Fatholahi L. Malekshahi Beiranvand Z. J. Nanostruct. 2013;3:1–9.
Mital Gupta S. Tripathi M. Cent. Eur. J. Chem. 2012;10(2):279–294.
Salvador A. Pascual-Martí M. C. Adell J. R. Requeni A. March J. G. J. Pharm. Biomed. Anal. 2000;22(2):301–306. doi: 10.1016/S0731-7085(99)00286-1. PubMed DOI
Matsumura Y. Maeda H. Cancer Res. 1986;46(12):6387–6392. PubMed
Maeda H. Tsukigawa K. Fang J. Microcirculation. 2016;23(3):173–182. doi: 10.1111/micc.12228. PubMed DOI
Nagy J. A. Chang S.-H. Dvorak A. M. Dvorak H. F. Br. J. Cancer. 2009;100(6):865–869. doi: 10.1038/sj.bjc.6604929. PubMed DOI PMC
Van Butsele K. Jérôme R. Jérôme C. Polymer. 2007;48(26):7431–7443. doi: 10.1016/j.polymer.2007.09.048. DOI
Kozempel J. Vlk M. Málková E. Bajzíková A. Bárta J. Santos-Oliveira R. Malta Rossi A. J. Radioanal. Nucl. Chem. 2014;34(1):443–447. doi: 10.1007/s10967-014-3615-y. DOI
Esposti L. D., Tampieri A. and Iafisco M., in Nanotechnologies in Preventive and Regenerative Medicine, ed. V. Uskokovic, Elsevier, New York, 2017, ch. 6.3, pp. 465–486
Sakmar M., Vlk M., Suchankova P., Kukleva E., Kozempel J., Hruby M. and Lobaz V., presented in part at 13th international symposium on the synthesis and application of isotopically labelled compounds, Prague, June 2018
Micolova P. Kukleva E. Nykl P. Sakmar M. Vlk M. Nespesna L. Kozempel J. J. Labelled Compd. Radiopharm. 2017;60(S1):S283.
Chakraborty S. Vimalnath K. V. Rajeswari A. Sarma H. D. Shinto A. Radhakrishnan E. R. Dash A. J. Radioanal. Nucl. Chem. 2017;302(2):875–881. doi: 10.1007/s10967-014-3309-5. DOI
Sgouros G. Ballangrud A. M. Jurcic J. G. McDevitt M. R. Humm J. L. Erdi E. Y. Mehta B. M. Finn R. D. Larson S. M. Scheinberg D. A. J. Nucl. Med. 1999;40(1):1935–1946. PubMed
Zhou W. Zheng J. Adv. Mater. Res. 2012;503/504:688–691.
Xie J. Lee S. Chen X. Adv. Drug Delivery Rev. 2010;62(11):1064–1079. doi: 10.1016/j.addr.2010.07.009. PubMed DOI PMC
Apostolidis C. Molinet R. McGinley J. Abbas K. Möllenbeck J. Morgenstern A. Appl. Radiat. Isot. 2005;62(3):383–387. doi: 10.1016/j.apradiso.2004.06.013. PubMed DOI
Handley-Sidhu S. Mullan T. K. Grail Q. Albadarneh M. Ohnuki T. Macaskie L. E. Sci. Rep. 2016;6(1):1–8. doi: 10.1038/s41598-016-0001-8. PubMed DOI PMC
Kreyling W. G. Holzwarth U. Schleh C. Kozempel J. Wenk A. Haberl N. Hirn S. Schäffler M. Lipka J. Semmler-Behnke M. Gibson N. Nanotoxicology. 2017;11(4):443–453. doi: 10.1080/17435390.2017.1306893. PubMed DOI
Xie G. Wang C. Sun J. Zhong G. Toxicol. Lett. 2011;205(1):55–61. doi: 10.1016/j.toxlet.2011.04.034. PubMed DOI
Cedrowska E. Pruszynski M. Majkowska-Pilip A. Meczyńska-Wielgosz S. Bruchertseifer F. Morgenstern A. Bilewicz A. J. Nanopart. Res. 2018;20:83. doi: 10.1007/s11051-018-4181-y. doi: 10.1007/s11051-018-4181-y. PubMed DOI PMC
Bassot S. Mallet C. Stammose D. MRS Online Proc. Libr. 2000;663:1081. doi: 10.1557/PROC-663-1081. DOI
Sajih M. Bryan N. D. Livens F. R. Vaughan D. J. Descostes M. Phrommavanh V. Nos J. Morris K. Geochim. Cosmochim. Acta. 2014;146:150–163. doi: 10.1016/j.gca.2014.10.008. DOI
Zachara J. M. Cowan C. E. Resch C. T. Geochim. Cosmochim. Acta. 1991;55(6):1549–1562. doi: 10.1016/0016-7037(91)90127-Q. DOI
European Medicines Agency, Xofigo, June 2019, Available on: https://www.ema.europa.eu/en/medicines/human/EPAR/xofigo
Nilsson S. Srang P. Aksnes A. K. Franzèn L. Olivier P. Pecking A. Staffurth J. Vasanthan S. Andersson C. Bruland Ø. S. Eur. J. Cancer. 2012;48(5):678–686. doi: 10.1016/j.ejca.2011.12.023. PubMed DOI
Mirzadeh S. Appl. Radiat. Isot. 1998;49(4):345–349. doi: 10.1016/S0969-8043(97)00175-9. PubMed DOI
Mokhodoeva O. Guseva L. Dogadkin N. J. Radioanal. Nucl. Chem. 2014;304(1):449–453. doi: 10.1007/s10967-014-3777-7. DOI
Kukleva E. Kozempel J. Vlk M. Micolova P. Vopalka D. J. Radioanal. Nucl. Chem. 2014;304(1):263–266. doi: 10.1007/s10967-014-3432-3. DOI
Guseva L. I. Tikhomirova G. S. Dogadkin N. N. Radiochemistry. 2004;46(1):58–62. doi: 10.1023/B:RACH.0000024637.39523.e4. DOI
WWW, Table of radioactive isotopes: nuclide search, June 2019, Available on: http://nucleardata.nuclear.lu.se/toi/nucSearch.asp
Kukleva E. Suchankova P. Stamberg K. Vlk M. Slouf M. Kozempel J. RSC Adv. 2019;9:21989–21995. doi: 10.1039/C9RA03698A. PubMed DOI PMC
Filipská H. Štamberg K. Acta Polytech. 2005;45(5):11–18.
Wanner H. Albinsson Y. Karnland O. Wieland E. Wersin P. Charlet L. Radiochim. Acta. 1994;66(67):157–162.
ZZ HATCHES-20, Database for radiochemical modelling, May 2019, Available on: https://www.oecd-nea.org/tools/abstract/detail/nea-1210
Dvořák L., Ledvinka T. and Sobotka M., FAMULUS 3.1, 1991, Custom made software, Prague, Czech Republic
Herbelin A. L. and Westall J. C., FITEQL 3.2, Custom made software. Department of Chemistry, Oregon State University, Corvallis, Oregon, USA, 1996
ThermoChimie, Thermodynamic database, August 2019, Available on: https://www.thermochimie-tdb.com
Mokhodoeva O. Vlk M. Málková E. Kukleva E. Mičolová P. Štamberg K. Šlouf M. Dzhenloda R. Kozempel J. J. Nanopart. Res. 2016;18(10):1–12. doi: 10.1007/s11051-016-3615-7. DOI
Momma K., August 2019, Available on: https://jp-minerals.org/vesta/en/
Study of 213Bi and 211Pb Recoils Release from 223Ra Labelled TiO2 Nanoparticles