Towards Targeted Alpha Therapy with Actinium-225: Chelators for Mild Condition Radiolabeling and Targeting PSMA-A Proof of Concept Study

. 2021 Apr 20 ; 13 (8) : . [epub] 20210420

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33923965

Grantová podpora
LM2018133 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund

Currently, targeted alpha therapy is one of the most investigated topics in radiopharmaceutical cancer management. Especially, the alpha emitter 225Ac has excellent nuclear properties and is gaining increasing popularity for the treatment of various tumor entities. We herein report on the synthesis of two universal 225Ac-chelators for mild condition radiolabeling and binding to conjugate molecules of pharmacological interest via the copper-mediated click chemistry. A convenient radiolabeling procedure was investigated as well as the complex stability proved for both chelators and two PSMA (prostate-specific membrane antigen)-targeting model radioconjugates. Studies regarding affinity and cell survival were performed on LNCaP cells followed by biodistribution studies, which were performed using LNCaP tumor-bearing mice. High efficiency radiolabeling for all conjugates was demonstrated. Cell binding studies revealed a fourfold lower cell affinity for the PSMA radioconjugate with one targeting motif compared to the radioconjugate owing two targeting motifs. Additionally, these differences were verified by in vitro cell survival evaluation and biodistribution studies, both showing a higher cell killing efficiency for the same dose, a higher tumor uptake (15%ID/g) and a rapid whole body clearance after 24 h. The synthesized chelators will overcome obstacles of lacking stability and worse labeling needs regarding 225Ac complexation using the DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid) chelator. Moreover, the universal functionalization expands the coverage of these chelators in combination with any sensitive bio(macro)molecule, thus improving treatment of any addressable tumor target.

Zobrazit více v PubMed

Nayak T., Norenberg J., Anderson T., Atcher R. A comparison of high- versus low-linear energy transfer somatostatin receptor targeted radionuclide therapy in vitro. Cancer Biother. Radiopharm. 2005;20:52–57. doi: 10.1089/cbr.2005.20.52. PubMed DOI

Zalutsky M.R., Reardon D.A., Pozzi O.R., Vaidyanathan G., Bigner D.D. Targeted alpha-particle radiotherapy with 211At-labeled monoclonal antibodies. Nucl. Med. Biol. 2007;34:779–785. doi: 10.1016/j.nucmedbio.2007.03.007. PubMed DOI PMC

Zalutsky M.R., Pruszynski M. Astatine-211: Production and availability. Curr. Radiopharm. 2011;4:177–185. doi: 10.2174/1874471011104030177. PubMed DOI PMC

Vaidyanathan G., Zalutsky M.R. Applications of 211At and 223Ra in targeted alpha-particle radiotherapy. Curr. Radiopharm. 2011;4:283–294. doi: 10.2174/1874471011104040283. PubMed DOI PMC

Choi J., Vaidyanathan G., Koumarianou E., Kang C.M., Zalutsky M.R. Astatine-211 labeled anti-HER2 5F7 single domain antibody fragment conjugates: Radiolabeling and preliminary evaluation. Nucl. Med. Biol. 2018;56:10–20. doi: 10.1016/j.nucmedbio.2017.09.003. PubMed DOI PMC

Thiele N.A., Wilson J.J. Actinium-225 for Targeted α Therapy: Coordination Chemistry and Current Chelation Approaches. Cancer Biother. Radiopharm. 2018;33:336–348. doi: 10.1089/cbr.2018.2494. PubMed DOI PMC

Roscher M., Bakos G., Benešová M. Atomic Nanogenerators in Targeted Alpha Therapies: Curie’s Legacy in Modern Cancer Management. Pharmaceuticals. 2020;13:76. doi: 10.3390/ph13040076. PubMed DOI PMC

Kratochwil C., Giesel F.L., Bruchertseifer F., Mier W., Apostolidis C., Boll R., Murphy K., Haberkorn U., Morgenstern A. ²¹³Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: A first-in-human experience. Eur. J. Nucl. Med. Mol. Imaging. 2014;41:2106–2119. doi: 10.1007/s00259-014-2857-9. PubMed DOI PMC

Kratochwil C., Schmidt K., Afshar-Oromieh A., Bruchertseifer F., Rathke H., Morgenstern A., Haberkorn U., Giesel F.L. Targeted alpha therapy of mCRPC: Dosimetry estimate of 213Bismuth-PSMA-617. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:31–37. doi: 10.1007/s00259-017-3817-y. PubMed DOI PMC

Poeppel T.D., Handkiewicz-Junak D., Andreeff M., Becherer A., Bockisch A., Fricke E., Geworski L., Heinzel A., Krause B.J., Krause T., et al. EANM guideline for radionuclide therapy with radium-223 of metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:824–845. doi: 10.1007/s00259-017-3900-4. PubMed DOI

Gott M., Steinbach J., Mamat C. The radiochemical and radiopharmaceutical applications of radium. Open Chem. 2016;14:118–129. doi: 10.1515/chem-2016-0011. DOI

Steinberg J., Bauer D., Reissig F., Köckerling M., Pietzsch H.-J., Mamat C. Modified Calix[4]crowns as Molecular Receptors for Barium. ChemistryOpen. 2018;7:432–438. doi: 10.1002/open.201800019. PubMed DOI PMC

Bauer D., Gott M., Steinbach J., Mamat C. Chelation of heavy group 2 (radio)metals by p-tert-butylcalix[4]arene-1,3-crown-6 and logK determination via NMR. Spectrochim. Acta A. 2018;199:50–56. doi: 10.1016/j.saa.2018.03.029. PubMed DOI

Bauer D., Blumberg M., Köckerling M., Mamat C. A Comparative Evaluation of Calix[4]arene-1,3-crown-6 as a Ligand for Selected Divalent Cations of Radiopharmaceutical Interest. RSC Adv. 2019;9:32357–32366. doi: 10.1039/C9RA07293D. PubMed DOI PMC

Abou D.S., Thiele N.A., Gutsche N.T., Villmer A., Zhang H., Woods J.J., Baidoo K.E., Escorcia F.E., Wilson J.J., Thorek D.L.J. Towards the stable chelation of radium for biomedical applications with an 18-membered macrocyclic ligand. Chem. Sci. 2021;12:3733–3742. doi: 10.1039/D0SC06867E. PubMed DOI PMC

Reissig F., Bauer D., Pietzsch H.-J., Steinbach J., Mamat C. Synthesis and functionalization of radium-doped barium sulfate nanoparticles. J. Med. Imag. Radiat. Sci. 2019;50:S38. doi: 10.1016/j.jmir.2019.03.117. DOI

Reissig F., Zarschler K., Hübner R., Pietzsch H.-J., Kopka K., Mamat C. Sub-10 nm barium sulfate nanoparticles as universal radionuclide carriers for theranostic applications and targeted alpha therapy. ChemistryOpen. 2020;9:797–805. doi: 10.1002/open.202000126. PubMed DOI PMC

Bilewicz A., Cedrowska E., Gaweda W., Bruchertseifer F., Morgenstern A. Barium ferrite magnetic nanoparticles labeled with 223Ra: A new potential magnetic radiobioconjugate for targeted alpha therapy. J. Label. Compds. Radiopharm. 2019;62:103. doi: 10.1002/jlcr.3724. DOI

Vasiliev A.N., Severin A., Lapshina E., Chernykh E., Ermolaev S., Kalmykov S. Hydroxyapatite particles as carriers for 223Ra. J. Radioanal. Nucl. Chem. 2017;311:1503–1509. doi: 10.1007/s10967-016-5007-y. DOI

Suchánková P., Kukleva E., Štamberg K., Nykl P., Vlk M., Kozempel J. Study of 223Ra uptake mechanism on hydroxyapatite and titanium dioxide nanoparticles as a function of pH. RSC Adv. 2020;10:3659–3666. doi: 10.1039/C9RA08953E. PubMed DOI PMC

Gott M., Yang P., Kortz U., Stephan H., Pietzsch H.-J., Mamat C. Evaluation of Barium and Radium Polyoxopalladates for Radiopharmaceutical Applications. Chem. Commun. 2019;55:7631–7634. doi: 10.1039/C9CC02587A. PubMed DOI

Hagemann U.B., Ellingsen C., Schuhmacher J., Kristian A., Mobergslien A., Cruciani V., Wickstroem K., Schatz C.A., Kneip C., Golfier S., et al. Mesothelin-Targeted Thorium-227 Conjugate (MSLN-TTC): Preclinical Evaluation of a New Targeted Alpha Therapy for Mesothelin-Positive Cancers. Clin. Cancer Res. 2019;25:4723–4734. doi: 10.1158/1078-0432.CCR-18-3476. PubMed DOI

Levy M.Y., Cicic D., Bergonio G., Berger M. Trial in Progress: Phase I Study of Actinium-225 (225Ac)-Lintuzumab in Patients with Refractory Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2017;17:S329–S330. doi: 10.1016/j.clml.2017.07.141. DOI

Kratochwil C., Bruchertseifer F., Giesel F.L., Weis M., Verburg F.A., Mottaghy F., Kopka K., Apostolidis C., Haberkorn U., Morgenstern A. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016;57:1941–1944. doi: 10.2967/jnumed.116.178673. PubMed DOI

Thiele N.A., Brown V., Kelly J.M., Amor-Coarasa A., Jermilova U., MacMillan S.N., Nikolopoulou A., Ponnala S., Ramogida C.F., Robertson A.K.H., et al. An Eighteen-Membered Macrocyclic Ligand for Actinium-225 Targeted Alpha Therapy. Angew. Chem. Int. Ed. Engl. 2017;56:14712–14717. doi: 10.1002/anie.201709532. PubMed DOI

Roca-Sabio A., Mato-Iglesias M., Esteban-Gómez D., de Blas A., Rodríguez-Blas T., Platas-Iglesias C. The effect of ring size variation on the structure and stability of lanthanide(III) complexes with crown ethers containing picolinate pendants. Dalton Trans. 2011;40:384–392. doi: 10.1039/C0DT00746C. PubMed DOI

Kelly J.M., Amor-Coarasa A., Ponnala S., Nikolopoulou A., Williams C., Jr., Thiele N.A., Schlyer D., Wilson J.J., DiMagno S.G., Babich J.W. A Single Dose of 225Ac-RPS-074 Induces a Complete Tumor Response in an LNCaP Xenograft Model. J. Nucl. Med. 2019;60:649–655. doi: 10.2967/jnumed.118.219592. PubMed DOI

Thirumurugan P., Dariusz Matosiuk D., Jozwiak K. Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem. Rev. 2013;113:4905–4979. doi: 10.1021/cr200409f. PubMed DOI

Roca-Sabio A., Mato-Iglesias M., Esteban-Gómez D., Tóth E., de Blas A., Platas-Iglesias C., Rodríguez-Blas T. Macrocyclic receptor exhibiting unprecedented selectivity for light lanthanides. J. Am. Chem. Soc. 2009;131:3331–3341. doi: 10.1021/ja808534w. PubMed DOI

Kozempel J., Mokhodoeva O., Vlk M. Progress in Targeted Alpha-Particle Therapy. What We Learned about Recoils Release from In Vivo Generators. Molecules. 2018;23:581. doi: 10.3390/molecules23030581. PubMed DOI PMC

de Kruijff R.M., Wolterbeek H.T., Denkova A.G. A Critical Review of Alpha Radionuclide Therapy-How to Deal with Recoiling Daughters? Pharmaceuticals. 2015;8:321–336. doi: 10.3390/ph8020321. PubMed DOI PMC

Yang H., Zhang C., Yuan Z., Rodriguez-Rodriguez C., Robertson A., Radchenko V., Perron R., Gendron D., Causey P., Gao F., et al. Synthesis and Evaluation of a Macrocyclic Actinium-225 Chelator, Quality Control and In Vivo Evaluation of 225 Ac-crown-αMSH Peptide. Chem. Eur. J. 2020;26:11435–11440. doi: 10.1002/chem.202002999. PubMed DOI

Schäfer M., Bauder-Wüst U., Leotta K., Zoller F., Mier W., Haberkorn U., Eisenhut M., Eder M. A dimerized urea-based inhibitor of the prostate-specific membrane antigen for 68Ga-PET imaging of prostate cancer. EJNMMI Res. 2012;2:23. doi: 10.1186/2191-219X-2-23. PubMed DOI PMC

Frei A., Fischer E., Childs B.C., Holland J.P., Alberto R. Two is better than one: Difunctional high-affinity PSMA probes based on a [CpM(CO)3] (M = Re/99mTc) scaffold. Dalton Trans. 2019;48:14600–14605. doi: 10.1039/C9DT02506E. PubMed DOI

Mammen M., Choi S.K., Whitesides G.M. Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew. Chem. Int. Ed. Engl. 1998;37:2754–2794. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3. PubMed DOI

Silver D.A., Pellicer I., Fair W.R., Heston W.D., Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 1997;3:81–85. PubMed

O’Keefe D.S., Bacich D.J., Heston W.D. Comparative analysis of prostate-specific membrane antigen (PSMA) versus a prostate-specific membrane antigen-like gene. Prostate. 2004;58:200–210. doi: 10.1002/pros.10319. PubMed DOI

Kinoshita Y., Kuratsukuri K., Landas S., Imaida K., Rovito P.M., Jr., Wang C.Y., Haas G.P. Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J. Surg. 2006;30:628–636. doi: 10.1007/s00268-005-0544-5. PubMed DOI

Eder M., Schäfer M., Bauder-Wüst U., Haberkorn U., Eisenhut M., Kopka K. Preclinical evaluation of a bispecific low-molecular heterodimer targeting both PSMA and GRPR for improved PET imaging and therapy of prostate cancer. Prostate. 2014;74:659–668. doi: 10.1002/pros.22784. PubMed DOI

Dam J.H., Olsen B.B., Baun C., Høilund-Carlsen P.F., Thisgaard H. A PSMA Ligand Labeled with Cobalt-55 for PET Imaging of Prostate Cancer. Mol. Imaging Biol. 2017;19:915–922. doi: 10.1007/s11307-017-1121-7. PubMed DOI

Benešová M., Schäfer M., Bauder-Wüst U., Afshar-Oromieh A., Kratochwil C., Mier W., Haberkorn U., Kopka K., Eder M. Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. J. Nucl. Med. 2015;56:914–920. doi: 10.2967/jnumed.114.147413. PubMed DOI

Weineisen M., Schottelius M., Simecek J., Baum R.P., Yildiz A., Beykan S., Kulkarni H.R., Lassmann M., Klette I., Eiber M., et al. 68Ga- and 177Lu-Labeled PSMA I&T: Optimization of a PSMA-Targeted Theranostic Concept and First Proof-of-Concept Human Studies. J. Nucl. Med. 2015;56:1169–1176. doi: 10.2967/jnumed.115.158550. PubMed DOI

Wurzer A., Parzinger M., Konrad M., Beck R., Günther T., Felber V., Färber S., Di Carlo D., Wester H.J. Preclinical comparison of four [18F, natGa]rhPSMA-7 isomers: Influence of the stereoconfiguration on pharmacokinetics. EJNMMI Res. 2020;10:149. doi: 10.1186/s13550-020-00740-z. PubMed DOI PMC

Hanna J.R., Allan C., Lawrence C., Meyer O., Wilson N.D., Hulme A.N. Optimizing the Readout of Lanthanide-DOTA Complexes for the Detection of Ligand-Bound Copper(I) Molecules. 2017;22:802. doi: 10.3390/molecules22050802. PubMed DOI PMC

Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI

Taylor R.M., Severns V., Brown D.C., Bisoffi M., Sillerud L.O. Prostate cancer targeting motifs: Expression of ανβ3, neurotensin receptor 1, prostate specific membrane antigen, and prostate stem cell antigen in human prostate cancer cell lines and xenografts. Prostate. 2012;72:523–532. doi: 10.1002/pros.21454. PubMed DOI PMC

Kirchhoff F., Debarbieux F., Kronland-Martinet C., Cojocaru G.R., Popa-Wagner A. Combined two-photon laser-scanning microscopy and spectral microCT X-ray imaging to characterize the cellular signature and evolution of microstroke foci. Rom. J. Morphol. Embryol. 2012;53:671–675. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...