Emerging frontiers in androgen receptor research for prostate Cancer: insights from the 2nd international androgen receptor Symposium
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu kongresy
PubMed
39014480
PubMed Central
PMC11253403
DOI
10.1186/s13046-024-03125-5
PII: 10.1186/s13046-024-03125-5
Knihovny.cz E-zdroje
- Klíčová slova
- AR, Androgen deprivation therapy, NR3C4, PCa, PSMA,
- MeSH
- androgenní receptory * metabolismus genetika MeSH
- lidé MeSH
- nádory prostaty * metabolismus terapie genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- kongresy MeSH
- Názvy látek
- androgenní receptory * MeSH
- AR protein, human MeSH Prohlížeč
Continued exploration of the androgen receptor (AR) is crucial, as it plays pivotal roles in diverse diseases such as prostate cancer (PCa), serving as a significant therapeutic focus. Therefore, the Department of Urology Dresden hosted an international meeting for scientists and clinical oncologists to discuss the newest advances in AR research. The 2nd International Androgen Receptor Symposium was held in Dresden, Saxony, Germany, from 26-27.04.2024, organised by Dr. Holger H.H. Erb. Following the format of the first meeting, more than 35 scientists from 8 countries attended the event to discuss recent developments, research challenges, and identification of venues in AR research. An important new feature was the involvement of PhD students and young investigators, acknowledging the high scientific quality of their work. The symposium included three covers: new advances from clinical research, basic and translational research, and novel strategies to target AR. Moreover, based on its increasing clinical relevance, a PSMA theranostic mini-symposium was added at the end of the AR symposium to allow the audience to discuss the newest advances in PSMA theranostic. This report focuses on the highlights and discussions of the meeting.
Department of Translational Imaging in Oncology National Center for Tumor Diseases Dresden Germany
Department of Urology Medical University of Innsbruck Innsbruck Austria
Department of Urology Saarland University Homburg Saar Germany
Division of Oncogenomics Oncode Institute The Netherlands Cancer Institute Amsterdam The Netherlands
German Cancer Consortium Heidelberg Germany
Institute of Cancer Research Sutton Surrey UK
Institute of Human Genetics Jena University Hospital Friedrich Schiller University Jena Germany
MRC Oxford Institute for Radiation Oncology Department of Oncology University of Oxford Oxford UK
Zobrazit více v PubMed
Mehralivand S, Thomas C, Puhr M, Claessens F, van de Merbel AF, Dubrovska A et al. New advances of the androgen receptor in prostate cancer: report from the 1st International Androgen Receptor Symposium. J Transl Med. 2024;22(1):71. PubMed PMC
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021. PubMed
Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Pineros M, Znaor A et al. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021. PubMed
Isaacs JT. Resolving the Coffey Paradox: what does the androgen receptor do in normal vs. malignant prostate epithelial cells? Am J Clin Experimental Urol. 2018;6(2):55–61. PubMed PMC
Pisano C, Tucci M, Di Stefano RF, Turco F, Scagliotti GV, Di Maio M, et al. Interactions between androgen receptor signaling and other molecular pathways in prostate cancer progression: current and future clinical implications. Crit Rev Oncol Hematol. 2021;157:103185. doi: 10.1016/j.critrevonc.2020.103185. PubMed DOI
Beier AK, Puhr M, Stope MB, Thomas C, Erb HHH. Metabolic changes during prostate cancer development and progression. J Cancer Res Clin Oncol. 2023;149(5):2259–70. doi: 10.1007/s00432-022-04371-w. PubMed DOI PMC
Uo T, Sprenger CC, Plymate SR. Androgen receptor signaling and metabolic and Cellular Plasticity during Progression to Castration resistant prostate Cancer. Front Oncol. 2020;10:580617. doi: 10.3389/fonc.2020.580617. PubMed DOI PMC
Polkinghorn WR, Parker JS, Lee MX, Kass EM, Spratt DE, Iaquinta PJ, et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov. 2013;3(11):1245–53. doi: 10.1158/2159-8290.CD-13-0172. PubMed DOI PMC
Shiota M, Yokomizo A, Naito S. Pro-survival and anti-apoptotic properties of androgen receptor signaling by oxidative stress promote treatment resistance in prostate cancer. Endocrine-related Cancer. 2012;19. PubMed
Schiewer MJ, Augello MA, Knudsen KE. The AR dependent cell cycle: mechanisms and cancer relevance. Mol Cell Endocrinol. 2012;352(1–2):34–45. doi: 10.1016/j.mce.2011.06.033. PubMed DOI PMC
Cornford P, van den Bergh RCN, Briers E, Van den Broeck T, Brunckhorst O, Darraugh J et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on prostate Cancer-2024 update. Part I: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2024. PubMed
Cornford P, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate Cancer. Part II-2020 update: treatment of relapsing and metastatic prostate Cancer. Eur Urol. 2021;79(2):263–82. doi: 10.1016/j.eururo.2020.09.046. PubMed DOI
Hodges C. Studies on prostatic cancer I. the effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1941;1(4):293–7. PubMed
Santer FR, Erb HH, McNeill RV. Therapy escape mechanisms in the malignant prostate. Sem Cancer Biol. 2015;35:133–44. doi: 10.1016/j.semcancer.2015.08.005. PubMed DOI
Claessens F, Helsen C, Prekovic S, Van den Broeck T, Spans L, Van Poppel H, et al. Emerging mechanisms of enzalutamide resistance in prostate cancer. Nat Rev Urol. 2014;11(12):712–6. doi: 10.1038/nrurol.2014.243. PubMed DOI
Gravis G, Fizazi K, Joly F, Oudard S, Priou F, Esterni B, et al. Androgen-deprivation therapy alone or with docetaxel in non-castrate metastatic prostate cancer (GETUG-AFU 15): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14(2):149–58. doi: 10.1016/S1470-2045(12)70560-0. PubMed DOI
Thomas C, Baunacke M, Erb HHH, Füssel S, Erdmann K, Putz J et al. Systemic triple therapy in metastatic hormone-sensitive prostate Cancer (mHSPC): ready for Prime Time or still to be. Explored? Cancers. 2021;14(1). PubMed PMC
Wang L, Paller CJ, Hong H, De Felice A, Alexander GC, Brawley O. Comparison of systemic treatments for metastatic castration-sensitive prostate Cancer: a systematic review and network Meta-analysis. JAMA Oncol. 2021;7(3):412–20. doi: 10.1001/jamaoncol.2020.6973. PubMed DOI PMC
Mandel P, Hoeh B, Wenzel M, Preisser F, Tian Z, Tilki D, et al. Triplet or Doublet Therapy in metastatic hormone-sensitive prostate Cancer patients: a systematic review and network Meta-analysis. Eur Urol Focus. 2023;9(1):96–105. doi: 10.1016/j.euf.2022.08.007. PubMed DOI
Hussain M, Kocherginsky M, Agarwal N, Adra N, Zhang J, Paller C, et al. BRCAAway: a randomized phase 2 trial of abiraterone, olaparib, or abiraterone + olaparib in patients with metastatic castration-resistant prostate cancer (mCRPC) bearing homologous recombination-repair mutations (HRRm) J Clin Oncol. 2024;42:19. doi: 10.1200/JCO.2024.42.4_suppl.19. PubMed DOI
Hofman MS, Emmett L, Sandhu S, Iravani A, Joshua AM, Goh JC, et al. [< sup > 177 Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet. 2021;397(10276):797–804. doi: 10.1016/S0140-6736(21)00237-3. PubMed DOI
Sartor O, de Bono J, Chi KN, Fizazi K, Herrmann K, Rahbar K, et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate Cancer. N Engl J Med. 2021;385(12):1091–103. doi: 10.1056/NEJMoa2107322. PubMed DOI PMC
Hofman MS, Emmett L, Sandhu S, Iravani A, Buteau JP, Joshua AM, et al. Overall survival with [(177)Lu]Lu-PSMA-617 versus cabazitaxel in metastatic castration-resistant prostate cancer (TheraP): secondary outcomes of a randomised, open-label, phase 2 trial. Lancet Oncol. 2024;25(1):99–107. doi: 10.1016/S1470-2045(23)00529-6. PubMed DOI
Buteau J, Martin A, Emmett L, Iravani A, Sandhu S, Joshua A, et al. PSMA PET and FDG PET as predictors of response and prognosis in a randomized phase 2 trial of 177 Lu-PSMA-617 (LuPSMA) versus cabazitaxel in metastatic, castration-resistant prostate cancer (mCRPC) progressing after docetaxel (TheraP ANZUP 1603) J Clin Oncol. 2022;40:10. doi: 10.1200/JCO.2022.40.6_suppl.010. DOI
Chen Q-H, Munoz E, Ashong D. Insight into recent advances in degrading androgen receptor for castration-resistant prostate Cancer. Cancers [Internet]. 2024; 16(3). PubMed PMC
Gao X, Iii H, Vuky J, Dreicer R, Sartor A, Sternberg C, et al. Phase 1/2 study of ARV-110, an androgen receptor (AR) PROTAC degrader, in metastatic castration-resistant prostate cancer (mCRPC) J Clin Oncol. 2022;40:17. doi: 10.1200/JCO.2022.40.6_suppl.017. DOI
Petrylak D, Garmezy B, Shen J, Kalebasty A, Sartor O, Dreicer R, et al. 1803P phase I/II study of bavdegalutamide, a PROTAC androgen receptor (AR) degrader in metastatic castration-resistant prostate cancer (mCRPC): Radiographic progression-free survival (rPFS) in patients (pts) with AR ligand-binding domain (LBD) mutations. Ann Oncol. 2023;34:S973–4. doi: 10.1016/j.annonc.2023.09.2751. DOI
Petrylak D, Stewart T, Gao X, Berghorn E, Lu H, Chan E, et al. A phase 2 expansion study of ARV-766, a PROTACandrogen receptor (AR) degrader, in metastatic castration-resistant prostate cancer (mCRPC) J Clin Oncol. 2023;41:TPS290–TPS. doi: 10.1200/JCO.2023.41.6_suppl.TPS290. DOI
Bernard-Tessier A, Mulier G, Nay P, Baldini C, Albiges L, Colomba E, et al. Androgen receptor (AR) mutations in men with metastatic castration-resistant prostate cancer (mCRPC): incidence and natural history. J Clin Oncol. 2023;41:221. doi: 10.1200/JCO.2023.41.6_suppl.221. DOI
Antonarakis E, Zhang N, Saha J, Nevalaita L, Shell S, Garratt C et al. REAL-WORLD ASSESSMENT OF AR-LBD MUTATIONS IN METASTATIC CASTRATION-RESISTANT PROSTATE CANCER2023.
Crippa A, De Laere B, Discacciati A, Larsson B, Connor JT, Gabriel EE, et al. The ProBio trial: molecular biomarkers for advancing personalized treatment decision in patients with metastatic castration-resistant prostate cancer. Trials. 2020;21(1):579. doi: 10.1186/s13063-020-04515-8. PubMed DOI PMC
Kreuz M, Otto DJ, Fuessel S, Blumert C, Bertram C, Bartsch S, et al. ProstaTrend-A Multivariable Prognostic RNA expression score for aggressive prostate Cancer. Eur Urol. 2020;78(3):452–9. doi: 10.1016/j.eururo.2020.06.001. PubMed DOI
Ebersbach C, Beier A-MK, Hönscheid P, Sperling C, Jöhrens K, Baretton GB et al. Influence of systemic therapy on the expression and activity of selected STAT proteins in prostate Cancer tissue. Life. 2022;12(2). PubMed PMC
Ebersbach C, Beier A-MK, Thomas C, Erb HHH. Impact of STAT proteins in Tumor Progress and Therapy Resistance in Advanced and metastasized prostate Cancer. Cancers. 2021;13(19):4854. doi: 10.3390/cancers13194854. PubMed DOI PMC
Puhr M, Hoefer J, Eigentler A, Ploner C, Handle F, Schaefer G, et al. The glucocorticoid receptor is a key player for prostate Cancer cell survival and a target for Improved Antiandrogen Therapy. Clin cancer Research: Official J Am Association Cancer Res. 2018;24(4):927–38. doi: 10.1158/1078-0432.CCR-17-0989. PubMed DOI
Erb HH, Bodenbender J, Handle F, Diehl T, Donix L, Tsaur I, et al. Assessment of STAT5 as a potential therapy target in enzalutamide-resistant prostate cancer. PLoS ONE. 2020;15(8):e0237248. doi: 10.1371/journal.pone.0237248. PubMed DOI PMC
Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J, Balbas MD, et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell. 2013;155(6):1309–22. doi: 10.1016/j.cell.2013.11.012. PubMed DOI PMC
Desai K, Serritella AV, Stadler WM, O’Donnell PH, Sweis RF, Szmulewitz RZ. Phase I trial of enzalutamide (Enz) plus the glucocorticoid receptor antagonist relacorilant (rela) for patients with metastatic castration resistant prostate cancer. J Clin Oncol. 2023;41(16suppl):5062. doi: 10.1200/JCO.2023.41.16_suppl.5062. DOI
Serritella AV, Shevrin D, Heath EI, Wade JL, Martinez E, Anderson A, et al. Phase I/II trial of Enzalutamide and Mifepristone, a glucocorticoid receptor antagonist, for metastatic castration-resistant prostate Cancer. Clin cancer Research: Official J Am Association Cancer Res. 2022;28(8):1549–59. doi: 10.1158/1078-0432.CCR-21-4049. PubMed DOI PMC
Abida W, Hahn AW, Shore N, Agarwal N, Sieber P, Smith MR, et al. Phase I study of ORIC-101, a glucocorticoid receptor antagonist, in combination with Enzalutamide in patients with metastatic castration-resistant prostate Cancer progressing on Enzalutamide. Clin cancer Research: Official J Am Association Cancer Res. 2024;30(6):1111–20. doi: 10.1158/1078-0432.CCR-23-3508. PubMed DOI PMC
Morris MJ, Linch MD, Crabb SJ, Beer TM, Heath EI, Gordon MS, et al. Phase 1 efficacy and pharmacodynamic results of exicorilant + enzalutamide in patients with metastatic castration-resistant prostate cancer. J Clin Oncol. 2023;41(6suppl):145. doi: 10.1200/JCO.2023.41.6_suppl.145. PubMed DOI
Eigentler A, Handle F, Schanung S, Degen A, Hackl H, Erb HHH, et al. Glucocorticoid treatment influences prostate cancer cell growth and the tumor microenvironment via altered glucocorticoid receptor signaling in prostate fibroblasts. Oncogene. 2024;43(4):235–47. doi: 10.1038/s41388-023-02901-5. PubMed DOI PMC
Linxweiler J, Hajili T, Körbel C, Berchem C, Zeuschner P, Müller A, et al. Cancer-associated fibroblasts stimulate primary tumor growth and metastatic spread in an orthotopic prostate cancer xenograft model. Sci Rep. 2020;10(1):12575. doi: 10.1038/s41598-020-69424-x. PubMed DOI PMC
Taurozzi AJ, Beekharry R, Wantoch M, Labarthe M-C, Walker HF, Seed RI, et al. Spontaneous development of Epstein-Barr virus associated human lymphomas in a prostate cancer xenograft program. PLoS ONE. 2017;12(11):e0188228. doi: 10.1371/journal.pone.0188228. PubMed DOI PMC
Saar M, Körbel C, Linxweiler J, Jung V, Hasenfus A, Stöckle M et al. Orthotopic tumorgrafts in nude mice: a new method to study human prostate cancer. Prostate. 2015;13. PubMed
Sailer V, von Amsberg G, Duensing S, Kirfel J, Lieb V, Metzger E, et al. Experimental in vitro, ex vivo and in vivo models in prostate cancer research. Nat Rev Urol. 2023;20(3):158–78. doi: 10.1038/s41585-022-00677-z. PubMed DOI
ERB HHH, OSTER MA, GELBRICH N, CAMMANN C, THOMAS C, MUSTEA A, et al. Enzalutamide-induced proteolytic degradation of the androgen receptor in prostate Cancer cells is mediated only to a limited extent by the Proteasome System. Anticancer Res. 2021;41(7):3271–9. doi: 10.21873/anticanres.15113. PubMed DOI
Siciliano T, Simons IH, Beier A-MK, Ebersbach C, Aksoy C, Seed RI, et al. A systematic comparison of Antiandrogens identifies androgen receptor protein Stability as an Indicator for Treatment Response. Life. 2021;11(9):874. doi: 10.3390/life11090874. PubMed DOI PMC
Siciliano T, Sommer U, Beier AK, Stope MB, Borkowetz A, Thomas C, et al. The androgen hormone-Induced increase in Androgen receptor protein expression is caused by the autoinduction of the androgen receptor translational activity. Curr Issues Mol Biol. 2022;44(2):597–608. doi: 10.3390/cimb44020041. PubMed DOI PMC
Zaalberg A, Pottendorfer E, Zwart W, Bergman AM. It takes two to Tango: the interplay between prostate Cancer and its Microenvironment from an epigenetic perspective. Cancers [Internet]. 2024; 16(2). PubMed PMC
Linder S, Hoogstraat M, Stelloo S, Eickhoff N, Schuurman K, de Barros H, et al. Drug-Induced Epigenomic Plasticity reprograms Circadian Rhythm Regulation to drive prostate Cancer toward androgen independence. Cancer Discov. 2022;12(9):2074–97. doi: 10.1158/2159-8290.CD-21-0576. PubMed DOI PMC
Niu Y, Altuwaijri S, Lai K-P, Wu C-T, Ricke WA, Messing EM et al. Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proceedings of the National Academy of Sciences. 2008;105(34):12182-7. PubMed PMC
Calabrese EJ. Androgens: biphasic dose responses. Crit Rev Toxicol. 2001;31(4–5):517–22. doi: 10.1080/20014091111794. PubMed DOI
Atri Roozbahani G, Kokal-Ribaudo M, Heidari Horestani M, Pungsrinont T, Baniahmad A. The protein composition of exosomes released by prostate cancer cells is distinctly regulated by androgen receptor-antagonists and -agonist to stimulate growth of target cells. Cell Communication Signal. 2024;22(1):219. doi: 10.1186/s12964-024-01584-z. PubMed DOI PMC
Mirzakhani K, Kallenbach J, Rasa SMM, Ribaudo F, Ungelenk M, Ehsani M, et al. The androgen receptor-lncRNASAT1-AKT-p15 axis mediates androgen-induced cellular senescence in prostate cancer cells. Oncogene. 2022;41(7):943–59. doi: 10.1038/s41388-021-02060-5. PubMed DOI PMC
Melnyk JE, Steri V, Nguyen HG, Hwang YC, Gordan JD, Hann B, et al. Targeting a splicing-mediated drug resistance mechanism in prostate cancer by inhibiting transcriptional regulation by PKCβ1. Oncogene. 2022;41(11):1536–49. doi: 10.1038/s41388-022-02179-z. PubMed DOI PMC
Van Goubergen J, Handle F, Cronauer MV, Santer FR. Abstract 2692: identification of functional single nucleotide polymorphisms in cryptic exon 3 of the androgen receptor gene. Cancer Res. 2022;82(12Supplement):2692. doi: 10.1158/1538-7445.AM2022-2692. PubMed DOI
Goubergen J, Handle F, Cronauer MV, Santer F. Identification of functional single nucleotide polymorphisms in cryptic exon 3 of the androgen receptor gene. Eur Urol Open Sci. 2022;44:S183. doi: 10.1016/S2666-1683(22)01947-4. DOI
Van Goubergen J, Perina M, Handle F, Morales E, Kremer A, Schmidt O et al. Die Spleißapparat-Komponente SRSF9 reguliert in einer rs5918762-abhängigen Weise die Expression von ARV7 [Abstractbook]. 2024 [cited 2024 02/06/2024]. https://www.egms.de/static/en/meetings/urobay2024/24urobay29.shtml
Chou J, Quigley DA, Robinson TM, Feng FY, Ashworth A. Transcription-Associated cyclin-dependent kinases as targets and biomarkers for Cancer Therapy. Cancer Discov. 2020;10(3):351–70. doi: 10.1158/2159-8290.CD-19-0528. PubMed DOI
Rescigno P, Gurel B, Pereira R, Crespo M, Rekowski J, Rediti M, et al. Characterizing CDK12-Mutated prostate cancers. Clin Cancer Res. 2021;27(2):566–74. doi: 10.1158/1078-0432.CCR-20-2371. PubMed DOI PMC
Gondane A, Itkonen HM. Revealing the history and mystery of RNA-Seq. Curr Issues Mol Biol. 2023;45(3):1860–74. doi: 10.3390/cimb45030120. PubMed DOI PMC
Sun R, Wei T, Ding D, Zhang J, Chen S, He HH, et al. CYCLIN K down-regulation induces androgen receptor gene intronic polyadenylation, variant expression and PARP inhibitor vulnerability in castration-resistant prostate cancer. Proc Natl Acad Sci U S A. 2022;119(39):e2205509119. doi: 10.1073/pnas.2205509119. PubMed DOI PMC
Liang J, Gondane A, Itkonen HM. CDK12-inactivation-induced MYC signaling causes dependency on the splicing kinase SRPK1. Mol Oncol. 2024. PubMed PMC
Pallasaho G, Duveau. Thomas, Loda, Itkonen. Compromised CDK12 activity causes dependency on the non-essential spliceosome components. bioRxiv2021.
Chen EX, Hotte S, Hirte H, Siu LL, Lyons J, Squires M, et al. A phase I study of cyclin-dependent kinase inhibitor, AT7519, in patients with advanced cancer: NCIC clinical trials Group IND 177. Br J Cancer. 2014;111(12):2262–7. doi: 10.1038/bjc.2014.565. PubMed DOI PMC
Mahadevan D, Plummer R, Squires MS, Rensvold D, Kurtin S, Pretzinger C, et al. A phase I pharmacokinetic and pharmacodynamic study of AT7519, a cyclin-dependent kinase inhibitor in patients with refractory solid tumors. Ann Oncol. 2011;22(9):2137–43. doi: 10.1093/annonc/mdq734. PubMed DOI
Hu Q, Poulose N, Girmay S, Heleva A, Doultsinos D, Gondane A, et al. Inhibition of CDK9 activity compromises global splicing in prostate cancer cells. RNA Biol. 2021;18(sup2):722–9. doi: 10.1080/15476286.2021.1983287. PubMed DOI PMC
Gondane A, Poulose N, Walker S, Mills IG, Itkonen HM. O-GlcNAc transferase maintains metabolic homeostasis in response to CDK9 inhibition. Glycobiology. 2022;32(9):751–9. PubMed PMC
Itkonen HM, Poulose N, Steele RE, Martin SES, Levine ZG, Duveau DY, et al. Inhibition of O-GlcNAc transferase renders prostate Cancer cells dependent on CDK9. Mol Cancer Res. 2020;18(10):1512–21. doi: 10.1158/1541-7786.MCR-20-0339. PubMed DOI PMC
Yalala S, Gondane A, Poulose N, Liang J, Mills IG, Itkonen HM. CDK9 inhibition activates innate immune response through viral mimicry. Faseb j. 2024;38(8):e23628. doi: 10.1096/fj.202302375R. PubMed DOI
Barfeld SJ, Urbanucci A, Itkonen HM, Fazli L, Hicks JL, Thiede B, et al. c-Myc antagonises the transcriptional activity of the androgen receptor in prostate Cancer Affecting Key Gene Networks. EBioMedicine. 2017;18:83–93. doi: 10.1016/j.ebiom.2017.04.006. PubMed DOI PMC
Pernigoni N, Zagato E, Calcinotto A, Troiani M, Mestre RP, Calì B, et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science. 2021;374(6564):216–24. doi: 10.1126/science.abf8403. PubMed DOI
Sharp A, Coleman I, Yuan W, Sprenger C, Dolling D, Rodrigues DN, et al. Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. J Clin Invest. 2019;129(1):192–208. doi: 10.1172/JCI122819. PubMed DOI PMC
Calcinotto A, Spataro C, Zagato E, Di Mitri D, Gil V, Crespo M, et al. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature. 2018;559(7714):363–9. doi: 10.1038/s41586-018-0266-0. PubMed DOI PMC
Guo C, Sharp A, Gurel B, Crespo M, Figueiredo I, Jain S, et al. Targeting myeloid chemotaxis to reverse prostate cancer therapy resistance. Nature. 2023;623(7989):1053–61. doi: 10.1038/s41586-023-06696-z. PubMed DOI PMC
Liu C, Lou W, Yang JC, Liu L, Armstrong CM, Lombard AP, et al. Proteostasis by STUB1/HSP70 complex controls sensitivity to androgen receptor targeted therapy in advanced prostate cancer. Nat Commun. 2018;9(1):4700. doi: 10.1038/s41467-018-07178-x. PubMed DOI PMC
Ferraldeschi R, Welti J, Powers MV, Yuan W, Smyth T, Seed G, et al. Second-generation HSP90 inhibitor Onalespib blocks mRNA splicing of androgen receptor variant 7 in prostate Cancer cells. Cancer Res. 2016;76(9):2731–42. doi: 10.1158/0008-5472.CAN-15-2186. PubMed DOI PMC
Nappi L, Aguda AH, Nakouzi NA, Lelj-Garolla B, Beraldi E, Lallous N, et al. Ivermectin inhibits HSP27 and potentiates efficacy of oncogene targeting in tumor models. J Clin Invest. 2020;130(2):699–714. doi: 10.1172/JCI130819. PubMed DOI PMC
Shrestha L, Bolaender A, Patel HJ, Taldone T. Heat shock protein (HSP) Drug Discovery and Development: Targeting Heat Shock proteins in Disease. Curr Top Med Chem. 2016;16(25):2753–64. doi: 10.2174/1568026616666160413141911. PubMed DOI PMC
Sommer U, Siciliano T, Ebersbach C, Beier A-MK, Stope MB, Jöhrens K, et al. Impact of androgen receptor activity on prostate-specific membrane Antigen expression in prostate Cancer cells. Int J Mol Sci. 2022;23(3):1046. doi: 10.3390/ijms23031046. PubMed DOI PMC
Peters SMB, Prive BM, de Bakker M, de Lange F, Jentzen W, Eek A, et al. Intra-therapeutic dosimetry of [(177)Lu]Lu-PSMA-617 in low-volume hormone-sensitive metastatic prostate cancer patients and correlation with treatment outcome. Eur J Nucl Med Mol Imaging. 2022;49(2):460–9. doi: 10.1007/s00259-021-05471-4. PubMed DOI PMC
Violet J, Jackson P, Ferdinandus J, Sandhu S, Akhurst T, Iravani A, et al. Dosimetry of < sup > 177 Lu-PSMA-617 in metastatic castration-resistant prostate Cancer: correlations between Pretherapeutic Imaging and whole-body tumor dosimetry with treatment outcomes. J Nucl Med. 2019;60(4):517–23. doi: 10.2967/jnumed.118.219352. PubMed DOI
Mah LJ, El-Osta A, Karagiannis TC. γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia. 2010;24(4):679–86. doi: 10.1038/leu.2010.6. PubMed DOI
Cornelissen B, Kersemans V, Darbar S, Thompson J, Shah K, Sleeth K, et al. Imaging DNA damage in vivo using gammaH2AX-targeted immunoconjugates. Cancer Res. 2011;71(13):4539–49. doi: 10.1158/0008-5472.CAN-10-4587. PubMed DOI PMC
Marinescu IM, Rogg M, Spohn S, von Büren M, Kamps M, Jilg CA, et al. Ex vivo γH2AX assay for tumor radiosensitivity in primary prostate cancer patients and correlation with clinical parameters. Radiat Oncol. 2022;17(1):163. doi: 10.1186/s13014-022-02131-1. PubMed DOI PMC
O’Neill E, Mosley M, Cornelissen B. Imaging DNA damage response by γH2AX in vivo predicts treatment response to Lutetium-177 radioligand therapy and suggests senescence as a therapeutically desirable outcome. Theranostics. 2023;13(4):1302–10. doi: 10.7150/thno.82101. PubMed DOI PMC
Reissig F, Bauer D, Zarschler K, Novy Z, Bendova K, Ludik M-C et al. Towards Targeted Alpha Therapy with Actinium-225: Chelators for Mild Condition Radiolabeling and Targeting PSMA—A Proof of Concept Study. Cancers [Internet]. 2021; 13(8). PubMed PMC
Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, et al. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-resistant prostate Cancer. J Nucl Med. 2016;57(12):1941–4. doi: 10.2967/jnumed.116.178673. PubMed DOI
Usmani S, Rasheed R, Al Kandari F, Marafi F, Naqvi SAR. 225Ac prostate-specific membrane Antigen Posttherapy α imaging: comparing 2 and 3 photopeaks. Clin Nucl Med. 2019;44(5):401–3. doi: 10.1097/RLU.0000000000002525. PubMed DOI
Michler E, Kästner D, Brogsitter C, Pretze M, Hartmann H, Freudenberg R, et al. First-in-human SPECT/CT imaging of [212Pb]Pb-VMT-α-NET in a patient with metastatic neuroendocrine tumor. Eur J Nucl Med Mol Imaging. 2024;51(5):1490–2. doi: 10.1007/s00259-023-06529-1. PubMed DOI PMC
Emmett L, Buteau J, Papa N, Moon D, Thompson J, Roberts MJ, et al. The Additive Diagnostic Value of prostate-specific membrane Antigen Positron Emission Tomography Computed Tomography to Multiparametric Magnetic Resonance Imaging Triage in the diagnosis of prostate Cancer (PRIMARY): a prospective Multicentre Study. Eur Urol. 2021;80(6):682–9. doi: 10.1016/j.eururo.2021.08.002. PubMed DOI
Hofman MS, Lawrentschuk N, Francis RJ, Tang C, Vela I, Thomas P, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet. 2020;395(10231):1208–16. doi: 10.1016/S0140-6736(20)30314-7. PubMed DOI
Horsley PJ, Koo CM, Eade T, Hsiao E, Emmett L, Brown C, et al. Mapping of local recurrences after Radical Prostatectomy using 68-Gallium-prostate-specific membrane Antigen Positron Emission Tomography/Computed tomography: implications for Postprostatectomy Radiation Therapy Clinical Target volumes. Int J Radiat Oncol Biol Phys. 2023;115(1):106–17. doi: 10.1016/j.ijrobp.2022.05.044. PubMed DOI
Emmett L, Subramaniam S, Crumbaker M, Nguyen A, Joshua AM, Weickhardt A, et al. [(177)Lu]Lu-PSMA-617 plus enzalutamide in patients with metastatic castration-resistant prostate cancer (ENZA-p): an open-label, multicentre, randomised, phase 2 trial. Lancet Oncol. 2024;25(5):563–71. doi: 10.1016/S1470-2045(24)00135-9. PubMed DOI
Suman S, Parghane RV, Joshi A, Prabhash K, Talole S, Basu S, Combined. (177) Lu-PSMA-617 PRLT and abiraterone acetate versus (177) Lu-PSMA-617 PRLT monotherapy in metastatic castration-resistant prostate cancer: An observational study comparing the response and durability. The Prostate. 2021;81(15):1225-34. PubMed
Schuurman T, Witteveen P, Wall E, Passier J, Huitema A, Amant F et al. Tamoxifen and pregnancy: an absolute contraindication? Breast Cancer Res Treat. 2019;175. PubMed
Puhr M, Eigentler A, Handle F, Hackl H, Ploner C, Heidegger I, et al. Targeting the glucocorticoid receptor signature gene Mono Amine Oxidase-A enhances the efficacy of chemo- and anti-androgen therapy in advanced prostate cancer. Oncogene. 2021;40(17):3087–100. doi: 10.1038/s41388-021-01754-0. PubMed DOI PMC