Progress in Targeted Alpha-Particle Therapy. What We Learned about Recoils Release from In Vivo Generators

. 2018 Mar 05 ; 23 (3) : . [epub] 20180305

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29510568

This review summarizes recent progress and developments as well as the most important pitfalls in targeted alpha-particle therapy, covering single alpha-particle emitters as well as in vivo alpha-particle generators. It discusses the production of radionuclides like 211At, 223Ra, 225Ac/213Bi, labelling and delivery employing various targeting vectors (small molecules, chelators for alpha-emitting nuclides and their biomolecular targets as well as nanocarriers), general radiopharmaceutical issues, preclinical studies, and clinical trials including the possibilities of therapy prognosis and follow-up imaging. Special attention is given to the nuclear recoil effect and its impacts on the possible use of alpha emitters for cancer treatment, proper dose estimation, and labelling chemistry. The most recent and important achievements in the development of alpha emitters carrying vectors for preclinical and clinical use are highlighted along with an outlook for future developments.

Zobrazit více v PubMed

Song H., Senthamizhchelvan S., Hobbs R.F., Sgouros G. Alpha Particle Emitter Radiolabeled Antibody for Metastatic Cancer: What Can We Learn from Heavy Ion Beam Radiobiology? Antibodies. 2012;1:124–148. doi: 10.3390/antib1020124. DOI

Borchardt P.E., Yuan R.R., Miederer M., McDevitt M.R., Scheinberg D.A. Targeted Actinium-225 In Vivo Generators for Therapy of Ovarian Cancer. Cancer Res. 2003;63:5084–5090. PubMed

Jaggi J.S., Kappel B.J., McDevitt M.R., Sgouros G., Flombaum C.D., Cabassa C., Scheinberg D.A. Efforts to control the errant products of a targeted in vivo generator. Cancer Res. 2005;65:4888–4895. doi: 10.1158/0008-5472.CAN-04-3096. PubMed DOI

Kratochwil C., Bruchertseifer F., Giesel F.L., Weis M., Verburg F.A., Mottaghy F., Kopka K., Apostolidis C., Habekorn U., Morgenstern A. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016;57:1941–1944. doi: 10.2967/jnumed.116.178673. PubMed DOI

Kratochwil C., Bruchertseifer F., Rathke H., Bronzel M., Apostolidis C., Weichert W., Haberkorn U., Giesel F.L., Morgenstern A. Targeted α-Therapy of Metastatic Castration-Resistant Prostate Cancer with 225Ac-PSMA-617: Dosimetry Estimate and Empiric Dose Finding. J. Nucl. Med. 2017;58:1624–1631. doi: 10.2967/jnumed.117.191395. PubMed DOI

Woodward J., Kennel S.J., Stuckey A., Osborne D., Wall J., Rondinone A.J., Standaert R.F., Mirzadeh S. LaPO4 nanoparticles doped with actinium-225 that partially sequester daughter radionuclides. Bioconj. Chem. 2011;22:766–776. doi: 10.1021/bc100574f. PubMed DOI

Kozempel J., Vlk M. Nanoconstructs in Targeted Alpha-Therapy. Rec. Pat. Nanomed. 2014;4:71–76. doi: 10.2174/1877912305666150102000549. DOI

Mokhodoeva O., Vlk M., Málková E., Kukleva E., Mičolová P., Štamberg K., Šlouf M., Dzhenloda R., Kozempel J. Study of Ra-223 uptake mechanism by Fe3O4 nanoparticles: Towards new prospective theranostic SPIONs. J. Nanopart. Res. 2016;18:301. doi: 10.1007/s11051-016-3615-7. DOI

Piotrowska A., Leszczuk E., Bruchertseifer F., Morgenstern A., Bilewicz A. Functionalized NaA nanozeolites labeled with Ra-224,Ra-225 for targeted alpha therapy. J. Nanopart. Res. 2013;15:2082. doi: 10.1007/s11051-013-2082-7. PubMed DOI PMC

Máthé D., Szigeti K., Hegedűs N., Horváth I., Veres D.S., Kovács B., Szűcs Z. Production and in vivo imaging of 203Pb as a surrogate isotope for in vivo 212Pb internal absorbed dose studies. Appl. Radiat. Isot. 2016;114:1–6. doi: 10.1016/j.apradiso.2016.04.015. PubMed DOI

Wick R.R. History and current uses of 224Ra in ankylosing spondylitis and other diseases. Environ. Int. 1993;19:467–473. doi: 10.1016/0160-4120(93)90272-J. DOI

Nedrow J.R., Josefsson A., Park S., Back T., Hobbs R.F., Brayton C., Bruchertseifer F., Morgenstern A., Sgouros G. Pharmacokinetics, microscale distribution, and dosimetry of alpha-emitter-labeled anti-PD-L1 antibodies in an immune competent transgenic breast cancer model. EJNMI Res. 2017;7:57. doi: 10.1186/s13550-017-0303-2. PubMed DOI PMC

Al Darwish R., Staudacher A.H., Li Y., Brown M.P., Bezak E. Development of a transmission alpha particle dosimetry technique using A549 cells and a Ra-223 source for targeted alpha therapy. Med. Phys. 2016;43:6145–6153. doi: 10.1118/1.4965805. PubMed DOI

Ackerman N.L., Graves E.E. The Potential for Cerenkov luminescence imaging of alpha emitting isotopes. Phys. Med. Biol. 2012;57:771–783. doi: 10.1088/0031-9155/57/3/771. PubMed DOI PMC

Jaggi J.S., Seshan S.V., McDevitt M.R., Sgouros G., Hyjek E., Scheinberg D.A. Mitigation of radiation nephropathy after internal α-particle irradiation of kidneys. Int. J. Radiat. Oncol. Biol. Phys. 2006;64:1503–1512. doi: 10.1016/j.ijrobp.2005.11.036. PubMed DOI

Dekempeneer Y., Keyaerts M., Krasniqi A., Puttemans J., Muyldermans S., Lahoutte T., D’huyvetter M., Devoogdt N. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. Expert Opin. Biol. Ther. 2016;16:1035–1047. doi: 10.1080/14712598.2016.1185412. PubMed DOI PMC

Kozempel J., Vlk M., Malková E., Bajzíková A., Bárta J., Santos-Oliveira R., Malta Rossi A. Prospective carriers of 223Ra for targeted alpha particle therapy. J. Radioanal. Nucl. Chem. 2015;304:443–447. doi: 10.1007/s10967-014-3615-y. DOI

Kreyling W.G., Holzwarth U., Haberl N., Kozempel J., Hirn S., Wenk A., Schleh C., Schäffler M., Lipka J., Semmler-Behnke M., et al. Quantitative biokinetics of titanium dioxide nanoparticles after intravenous injection in rats: Part 1. Nanotoxicology. 2017;11:434–442. doi: 10.1080/17435390.2017.1306892. PubMed DOI

Jekunen A., Kairemo K., Karnani P. In Vivo Modulators of Antibody Kinetics. Acta Oncol. 1996;35:267–271. doi: 10.3109/02841869609101640. PubMed DOI

McAlister D.R., Horwitz E.P. Chromatographic generator systems for the actinides and natural decay series elements. Radiochim. Acta. 2017;99:151–159. doi: 10.1524/ract.2011.1804. DOI

Sobolev A.S., Aliev R.A., Kalmykov S.N. Radionuclides emitting short-range particles and modular nanotransporters for their delivery to target cancer cells. Russ. Chem. Rev. 2016;85:1011–1032. doi: 10.1070/RCR4601. DOI

Steinber E.P., Stehney A.F., Stearns C., Spaletto I. Production of 149Tb in gold by high-energy protons and its use as an intensity monitor. Nucl. Phys. A. 1968;113:265–271. doi: 10.1016/0375-9474(68)90405-3. DOI

Beyer G.J., Čomor J.J., Daković M., Soloviev D., Tamburella C., Hagebo E., Allan B., Dmitriev S.N., Zaitseva N.G., Starodub G.Y., et al. Production routes of the alpha emitting 149Tb for medical application. Radiochim. Acta. 2002;90:247–252. doi: 10.1524/ract.2002.90.5_2002.247. DOI

Lebeda O., Jiran R., Ráliš J., Štursa J. A new internal target system for production of At-211 on the cyclotron U-120M. Appl. Radiat. Isot. 2005;63:49–53. doi: 10.1016/j.apradiso.2005.02.006. PubMed DOI

Zalutsky M.R., Pruszynski M. Astatine-211: Production and Availability. Curr. Radiopharm. 2011;4:177–185. doi: 10.2174/1874471011104030177. PubMed DOI PMC

Morgenstern A., Apostolidis C., Molinet R., Luetzenkirchen K. Method for Producing Actinium-225. Dec 28, 2005. EP1610346 A1.

Apostolidis C., Molinet R., Rasmussen G., Morgenstern A. Production of Ac-225 from Th-229 for targeted alpha therapy. Anal. Chem. 2005;77:6288–6291. doi: 10.1021/ac0580114. PubMed DOI

Griswold J.R., Medvedev D.G., Engle J.W., Copping R., Fitzsimmons J.M., Radchenko V., Cooley J.C., Fassbender M.E., Denton D.L., Murphy K.E., et al. Large scale accelerator production of 225Ac: Effective cross sections for 78-192 MeV protons incident on Th-232 targets. Appl. Radiat. Isot. 2016;118:366–374. doi: 10.1016/j.apradiso.2016.09.026. PubMed DOI

Larsen R., Henriksen G. The Preparation and Use of Radium-223 to Target Calcified Tissues for Pain Palliation, Bone Cancer Therapy, and Bone Surface Conditioning. Jul 13, 2000. WO 2000/40275.

Henriksen G., Hoff P., Alstad J., Larsen R.H. 223Ra for endoradiotherapeutic applications prepared from an immobilized 227Ac/227Th source. Radiochim. Acta. 2001;89:661–666. doi: 10.1524/ract.2001.89.10.661. DOI

Guseva L.I., Tikhomirova G.S., Dogadkin N.N. Anion-exchange separation of radium from alkaline-earth metals and actinides in aqueous-methanol solutions of HNO3. 227Ac-223Ra generator. Radiochemistry. 2004;46:58–62. doi: 10.1023/B:RACH.0000024637.39523.e4. DOI

Shishkin D.N., Kupitskii S.V., Kuznetsov S.A. Extraction generator of 223Ra for nuclear medicine. Radiochemistry. 2011;53:343–345. doi: 10.1134/S1066362211040126. DOI

Schwarz U., Daniels R. Novel Radiotherapeutic Formulations Containing 224Ra and a Method for Their Production. Feb 28, 2002. WO 2002/015943.

Šebesta F., Starý J. A generator for preparation of carrier-free 224Ra. J. Radioanal. Chem. 1974;21:151–155. doi: 10.1007/BF02520857. DOI

Larsen R.H. Radiopharmaceutical Solutions with Advantageous Properties. Sep 1, 2016. WO 2016/135200.

Ziegler J.F. SRIM-2013 Code. [(accessed on 11 November 2017)]; Available online: http://www.srim.org/

Frenvik J.O., Dyrstad K., Kristensen S., Ryan O.B. Development of separation technology for the removal of radium-223 from targeted thorium conjugate formulations. Part I: Purification of decayed thorium-227 on cation exchange columns. Drug Dev. Ind. Pharm. 2017;43:225–233. doi: 10.1080/03639045.2016.1234484. PubMed DOI

Frenvik J.O., Dyrstad K., Kristensen S., Ryan O.B. Development of separation technology for the removal of radium-223 from targeted thorium conjugate formulations. Part II: Purification of targeted thorium conjugates on cation exchange columns. Drug Dev. Ind. Pharm. 2017;43:1440–1449. doi: 10.1080/03639045.2017.1318906. PubMed DOI

Ivanov K.P., Kalinina M.K., Levkovich Y.I. Blood flow velocity in capillaries of brain and muscles and its physiological significance. Microvasc. Res. 1981;22:143–155. doi: 10.1016/0026-2862(81)90084-4. PubMed DOI

Maheshwari V., Dearling J.L.J., Treves S.T., Packard A.B. Measurement of the rate of copper(II) exchange for 64Cu complexes of bifunctional chelators. Inorg. Chim. Acta. 2012;393:318–323. doi: 10.1016/j.ica.2012.07.012. DOI

Chakravarty R., Chakraborty S., Ram R., Vatsa R., Bhusari P., Shukla J., Mittal B.R., Dash A. Detailed evaluation of different 68Ge/68Ga generators: An attempt toward achieving efficient 68Ga radiopharmacy. J. Label. Compd. Radiopharm. 2016;59:87. doi: 10.1002/jlcr.3371. PubMed DOI

Notni J., Plutnar J., Wester H.J. Bone-seeking TRAP conjugates: Surprising observations and their implications on the development of gallium-68-labeled bisphosphonates. EJNMMI Res. 2012;2:13. doi: 10.1186/2191-219X-2-13. PubMed DOI PMC

Holub J., Meckel M., Kubíček V., Rösch F., Hermann P. Gallium(III) complexes of NOTA-bis (phosphonate) conjugates as PET radiotracers for bone imaging. Contrast Media Mol. Imaging. 2015;10:122–134. doi: 10.1002/cmmi.1606. PubMed DOI

Chang C.A., Liu Y.L., Chen C.Y., Chou X.M. Ligand Preorganization in Metal Ion Complexation:  Molecular Mechanics/Dynamics, Kinetics, and Laser-Excited Luminescence Studies of Trivalent Lanthanide Complex Formation with Macrocyclic Ligands TETA and DOTA. Inorg. Chem. 2001;40:3448–3455. doi: 10.1021/ic001325j. PubMed DOI

Chan H.S., de Blois E., Konijnenberg M., Morgenstern A., Bruchertseifer F., Breeman W., de Jong M. Optimizing labeling conditions of 213Bi-somatostatin analogs for receptor-mediated processes in preclinical models. J. Nucl. Med. 2014;55(Suppl. 1):1179.

Ryan O.B., Cuthbertson A., Herstad G., Grant D., Bjerke R.M. Development of effective chelators for Th-227 to be used in targeted thorium conjugates; Proceedings of the 10th International Symposium on Targeted Alpha Therapy; Kanazawa, Japan. 30 May–1 June 2017; p. 57.

Notni J., Pohle K., Wester H.J. Comparative gallium-68 labeling of TRAP-, NOTA-, and DOTA-peptides: Practical consequences for the future of gallium68-PET. EJNMMI Res. 2012;2:28. doi: 10.1186/2191-219X-2-28. PubMed DOI PMC

Simeček J., Hermann P., Wester H.J., Notni J. How is 68Ga-labeling of macrocyclic chelators influenced by metal ion contaminants in 68Ge/68Ga generator eluates? ChemMedChem. 2013;8:95–103. doi: 10.1002/cmdc.201200471. PubMed DOI

Kratochwil C., Giesel F.L., Bruchertseifer F., Mier W., Apostolidis C., Boll R., Murphy K., Haberkom U., Morgenstern A. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: A first-in-human experience. Eur. J. Nucl. Med. Mol. Imaging. 2014;41:2106–2119. doi: 10.1007/s00259-014-2857-9. PubMed DOI PMC

Sathekge M., Knoesen O., Meckel M., Modiselle M., Vorster M., Marx S. 213Bi-PSMA-617 targeted alpha-radionuclide therapy in metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging. 2017;44:1099–1100. doi: 10.1007/s00259-017-3657-9. PubMed DOI PMC

Müller C., Reber J., Haller S., Dorrer H., Köster U., Johnston K., Zhernosekov K., Türler A., Schibli R. Folate Receptor Targeted Alpha-Therapy Using Terbium-149. Pharmaceuticals. 2014;7:353–365. doi: 10.3390/ph7030353. PubMed DOI PMC

Müller C., Vermeulen C., Köster U., Johnston K., Türler A., Schibli R., Van der Meulen N.P. Alpha-PET with terbium-149: Evidence and perspectives for radiotheragnostics. EJNMMI Radiopharm. Chem. 2016;1:5. doi: 10.1186/s41181-016-0008-2. PubMed DOI PMC

Beyer G.J., Miederer M., Vranješ-Durić S., Čomor J.J., Künzi G., Hartley O., Senekowitsch-Schmidtke R., Soloviev D., Buchegger F. The ISOLDE Collaboration. Targeted alpha therapy in vivo: Direct evidence for single cancer cell kill using 149Tb-rituximab. Eur. J. Nucl. Med. Mol. Imaging. 2004;31:547–554. doi: 10.1007/s00259-003-1413-9. PubMed DOI

Hartman K.B., Hamlin D.K., Wilbur D.S., Wilson L.J. 211AtCl@US-Tube Nanocapsules: A New Concept in Radiotherapeutic-Agent Design. Small. 2007;3:1496–1499. doi: 10.1002/smll.200700153. PubMed DOI

Kučka J., Hrubý M., Koňák Č., Kozempel J., Lebeda O. Astatination of nanoparticles containing silver as possible carriers of 211At. Appl. Radiat. Isot. 2006;64:201–206. doi: 10.1016/j.apradiso.2005.07.021. PubMed DOI

Leszczuk E., Piotrowska A., Bilewicz A. Modified TiO2 nanoparticles as carries for At-211. J. Label. Compd. Radiopharm. 2013;56:S242.

Dziawer L., Koźmiński P., Męczyńska-Wielgosz S., Pruszyński M., Łyczko M., Wąs B., Celichowski G., Grobeny J., Jastrzębsky J., Bilewicz A. Gold nanoparticle bioconjugates labelled with 211At for targeted alpha therapy. RSC Adv. 2017;7:41024–41032. doi: 10.1039/C7RA06376H. DOI

Chang M.-Y., Seideman J., Sofou S. Enhanced Loading Efficiency and Retention of 225Ac in Rigid Liposomes for Potential Targeted Therapy of Micrometastases. Bioconj. Chem. 2008;19:1274–1282. doi: 10.1021/bc700440a. PubMed DOI

Maeda H., Bharate G.Y., Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 2009;71:409–419. doi: 10.1016/j.ejpb.2008.11.010. PubMed DOI

Bae Y.H., Park K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release. 2011;153:198–205. doi: 10.1016/j.jconrel.2011.06.001. PubMed DOI PMC

Baidoo K.E., Yong K., Brechbiel M.W. Molecular Pathways: Targeted α-Particle Radiation Therapy. Clin. Cancer Res. 2013;19:530–537. doi: 10.1158/1078-0432.CCR-12-0298. PubMed DOI PMC

De Kruijff R.M., Wolterbeek H.T., Denkova A.G. A Critical Review of Alpha Radionuclide Therapy—How to Deal with Recoiling Daughters? Pharmaceuticals. 2015;8:321–336. doi: 10.3390/ph8020321. PubMed DOI PMC

Chan H.S., Konijnenberg M.W., de Blois E., Koelewijn S., Baum R.P., Morgenstern A., Bruchertseifer F., Breeman W.A., de Jong M. Influence of tumour size on the efficacy of targeted alpha therapy with 213Bi-[DOTA0,Tyr3]-octreotate. EJNMMI Res. 2016;6:6–15. doi: 10.1186/s13550-016-0162-2. PubMed DOI PMC

Song E.Y., Abbas Rizvi S.M., Qu C.F., Raja C., Brechbiel M.W., Morgenstern A., Apostolidis C., Allen B.J. Pharmacokinetics and toxicity of 213Bi-labeled PAI2 in preclinical targeted alpha therapy for cancer. Cancer Biol. Ther. 2007;6:898–904. doi: 10.4161/cbt.6.6.4097. PubMed DOI

Nedrow J.R., Josefsson A., Park S., Hobbs R.F., Bruchertseifer F., Morgenstern A., Sgouros G. Reducing renal uptake of free 213Bi associated with the decay of 225Ac-labeled radiopharmaceuticals; Proceedings of the 10th International Symposium on Targeted Alpha Therapy; Kanazawa, Japan. 30 May–1 June 2017; p. 67.

Hanadate S., Washiyama K., Yoshimoto M., Matsumoto H., Tsuji A., Higashi T., Yoshii Y. Oral administration of barium sulfate reduces radiation exposure to the large intestine during alpha therapy with radium-223 dichloride. J. Nucl. Med. 2017;58(Suppl. l):1030.

Edem P.E., Fonslet J., Kjaer A., Herth M., Severin G. In Vivo Radionuclide Generators for Diagnostics and Therapy. Bioinorg. Chem. Appl. 2016:6148357. doi: 10.1155/2016/6148357. PubMed DOI PMC

Hindorf C., Chittenden S., Aksnes A.K., Parker C., Flux G.D. Quantitative imaging of 223Ra-chloride (Alpharadin) for targeted alpha-emitting radionuclide therapy of bone metastases. Nucl. Med. Commun. 2012;33:726–732. doi: 10.1097/MNM.0b013e328353bb6e. PubMed DOI

Robertson A.K.H., Ramogida C.F., Rodriguez-Rodriguez C., Blinder S., Kunz P., Sossi V., Schaffer P. Multi-isotope SPECT imaging of the Ac-225 decay chain: Feasibility studies. Phys. Med. Biol. 2017;62:4406–4420. doi: 10.1088/1361-6560/aa6a99. PubMed DOI

Bäck T., Jacobsson L. The α-Camera: A Quantitative Digital Autoradiography Technique Using a Charge-Coupled Device for Ex Vivo High-Resolution Bioimaging of α-Particles. J. Nucl. Med. 2010;51:1616–1623. doi: 10.2967/jnumed.110.077578. PubMed DOI

Altman M.B., Wang S.J., Whitlock J.L., Roeske J.C. Cell detection in phase-contrast images used for alpha-particle track-etch dosimetry: A semi-automated approach. Phys. Med. Biol. 2005;50:305–318. doi: 10.1088/0031-9155/50/2/009. PubMed DOI

Muggiolu G., Pomorski M., Claverie G., Berthet G., Mer-Calfati C., Saada S., Devès G., Simon M., Seznec H., Barberet P. Single α-particle irradiation permits real-time visualization of RNF8 accumulation at DNA damaged sites. Sci. Rep. 2017;7:41764. doi: 10.1038/srep41764. PubMed DOI PMC

Gholami Y., Zhu X., Fulton R., Meikle S., El-Fakhri G., Kuncic Z. Stochastic simulation of radium-223 dichloride therapy at the sub-cellular level. Phys. Med. Biol. 2015;60:6087–6096. doi: 10.1088/0031-9155/60/15/6087. PubMed DOI

Roeske J.C., Stinchcomb T.G. The average number of alpha-particle hits to the cell nucleus required to eradicate a tumour cell population. Phys. Med. Biol. 2006;51:N179–N186. doi: 10.1088/0031-9155/51/9/N02. PubMed DOI

Lazarov E., Arazi L., Efrati M., Cooks T., Schmidt M., Keisari Y., Kelson I. Comparative in vitro microdosimetric study of murine- and human-derived cancer cells exposed to alpha particles. Radiat. Res. 2012;177:280–287. doi: 10.1667/RR2664.1. PubMed DOI

Batra V., Ranieri P., Makvandi M., Tsang M., Hou C., Li Y., Vaidyanathan G., Pryma D.A., Maris J.M. Development of meta-[211At]astatobenzylguanidine ([211At]MABG) as an alpha particle emitting systemic targeted radiotherapeutic for neuroblastoma. Cancer Res. 2015;75(Suppl. 15):1610. doi: 10.1158/1538-7445.AM2015-1610. DOI

Ohshima Y., Watanabe S., Tsuji A., Nagatsu K., Sakashima T., Sugiyama A., Harada Y., Waki A., Yoshinaga K., Ishioka N. Therapeutic efficacy of α-emitter meta-211At-astato-benzylguanidine (MABG) in a pheochromocytoma model. J. Nucl. Med. 2016;57(Suppl. 2):468.

Vaidyanathan G., Affleck D.J., Alston K.L., Zhao X.-G., Hens M., Hunter D.H., Babich J., Zalutsky M.R. A Kit Method for the High Level Synthesis of [211At]MABG. Bioorg. Med. Chem. 2007;15:3430–3436. doi: 10.1016/j.bmc.2007.03.016. PubMed DOI PMC

Nonnekens J., Chatalic K.L.S., Molkenboer-Kuenen J.D.M., Beerens C.E.M.T., Bruchertseifer F., Morgenstern A., Veldhoven-Zweistra J., Schottelius M., Wester H.-J., van Gent D.C., et al. 213Bi-Labeled Prostate-Specific Membrane Antigen-Targeting Agents Induce DNA Double-Strand Breaks in Prostate Cancer Xenografts. Cancer Biother. Radiopharm. 2017;32:67–73. doi: 10.1089/cbr.2016.2155. PubMed DOI

Krolicki L., Bruchertseifer F., Kunikowska J., Koziara H., Królicki B., Jakuciński M., Pawlak D., Apostolidis C., Rola R., Merlo A., et al. Targeted alpha therapy of glioblastoma multiforme: Clinical experience with 213Bi- and 225Ac-Substance P; Proceedings of the 10th International Symposium on Targeted Alpha Therapy; Kanazawa, Japan. 30 May–1 June 2017; p. 24.

Cordier D., Krolicki L., Morgenstern A., Merlo A. Targeted Radiolabeled Compounds in Glioma Therapy. Semin. Nucl. Med. 2016;46:243–249. doi: 10.1053/j.semnuclmed.2016.01.009. PubMed DOI

Marcu L., Bezak E., Allen B.J. Global comparison of targeted alpha vs targeted beta therapy for cancer: In vitro, in vivo and clinical trials. Crit. Rev. Oncol. Hematol. 2018;123:7–20. doi: 10.1016/j.critrevonc.2018.01.001. PubMed DOI

Aghevlian S., Boyle A.J., Reilly R.M. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. Adv. Drug Deliv. Rev. 2017;109:102–118. doi: 10.1016/j.addr.2015.12.003. PubMed DOI

Berger M., Jurcic J., Scheinberg D. Efficacy of Ac-225-labeled anti-CD33 antibody in acute myeloid leukemia (AML) correlates with peripheral blast count; Proceedings of the 10th International Symposium on Targeted Alpha Therapy; Kanazawa, Japan. 30 May–1 June 2017; p. 22.

Actinium Pharmaceuticals Provides Update on Actimab-A Phase 2 Clinical Trial for Patients with Acute Myeloid Leukemia. [(accessed on 31 December 2017)]; Available online: https://ir.actiniumpharma.com/press-releases/detail/247.

Autenrieth M.E., Horn T., Kurtz F., Nguyen K., Morgenstern A., Bruchertseifer F., Schwaiger M., Blechert M., Seidl C., Senekowitsch-Schmidtke R., et al. Intravesical radioimmunotherapy of carcinoma in situ of the urinary bladder after BCG failure. Urol. A. 2017;56:40–43. doi: 10.1007/s00120-016-0273-4. PubMed DOI

Tworowska I., Stallons T., Saidi A., Wagh N., Rojas-Quijano F., Jurek P., Kiefer G., Torgue J., Delpassand E. Pb203-AR-RMX conjugates for image-guided TAT of neuroendocrine tumors (NETs); Proceedings of the American Association for Cancer Research Annual Meeting 2017; Washington, DC, USA. 1–5 April 2017; DOI

RadioMedix and AREVA Med Announce Initiation of Phase 1 Clinical Trial of AlphaMedixTM, a Targeted Alpha Therapy for Patients with Neuroendocrine Tumors. [(accessed on 31 December 2017)]; Available online: http://radiomedix.com/news/radiomedix-and-areva-med-announce-initiation-of-phase-1-clinical-trial-of-alphamedixtm-a-targeted-alpha-therapy-for-patients-with-neuroendocrine-tumors.

Dadachova E., Morgenstern A., Bruchertseifer F., Rickles. D.J. Radioimmunotherapy with novel IgG to melanin and its comparison with immunotherapy. J. Nucl. Med. 2017;58(Suppl. 1):1036.

Boudousq V., Bobyk L., Busson M., Garambois V., Jarlier M., Charalambatou P., Pèlegrin A., Paillas S., Chouin N., Quenet F., et al. Comparison between Internalizing Anti-HER2 mAbs and Non-Internalizing Anti-CEA mAbs in Alpha-Radioimmunotherapy of Small Volume Peritoneal Carcinomatosis Using 212Pb. PLoS ONE. 2013;8:e69613. doi: 10.1371/journal.pone.0069613. PubMed DOI PMC

Ballangrud Å.M., Yang W.-H., Palm S., Enmon R., Borchardt P.E., Pellegrini V.A., McDevitt M.R., Scheinberg D.A., Sgouros G. Alpha-Particle Emitting Atomic Generator (Actinium-225)-Labeled Trastuzumab (Herceptin) Targeting of Breast Cancer Spheroids. Clin. Cancer Res. 2004;10:4489–4497. doi: 10.1158/1078-0432.CCR-03-0800. PubMed DOI

Boskovitz A., McLendon R.E., Okamura T., Sampson J.H., Bigner D.D., Zalutsky M.R. Treatment of HER2-positive breast carcinomatous meningitis with intrathecal administration of α-particle-emitting 211At-labeled trastuzumab. Nucl. Med. Biol. 2009;36:659–669. doi: 10.1016/j.nucmedbio.2009.04.003. PubMed DOI PMC

Pruszyński M., D’Huyvetter M., Cędrowska E., Lahoutte T., Bruchertseifer F., Morgenstern A. Preclinical evaluation of anti-HER2 2Rs15d nanobody labeled with 225Ac; Proceedings of the 10th International Symposium on Targeted Alpha Therapy; Kanazawa, Japan. 30 May–1 June 2017; p. 34.

Dekempeneer Y., D’Huyvetter M., Aneheim E., Xavier C., Lahoutte T., Bäck T., Jensen H., Caveliers V., Lindegren S. Preclinical evaluation of astatinated nanobodies for targeted alpha therapy; Proceedings of the 10th International Symposium on Targeted Alpha Therapy; Kanazawa, Japan. 30 May–1 June 2017; p. 35.

Puentes L., Xu K., Hou C., Mach R.H., Maris J.M., Pryma D.A., Makvandi M. Targeting PARP-1 to deliver alpha-particles to cancer chromatin; Proceedings of the American Association for Cancer Research Annual Meeting 2017; Washington, DC, USA. 1–5 April 2017; DOI

Carrasquillo J.A. Alpha Radionuclide Therapy: Principles and Applications to NETs. In: Pacak K., Taïeb D., editors. Diagnostic and Therapeutic Nuclear Medicine for Neuroendocrine Tumors. Humana Press; Cham, Switzerland: 2017. pp. 429–445.

Norain A., Dadachova E. Targeted Radionuclide Therapy of Melanoma. Semin. Nucl. Med. 2016;46:250–259. doi: 10.1053/j.semnuclmed.2015.12.005. PubMed DOI

Basu S., Banerjee S. Envisaging an alpha therapy programme in the atomic energy establishments: The priorities and the nuances. Eur. J. Nucl. Med. Mol. Imaging. 2017;44:1244–1246. doi: 10.1007/s00259-017-3686-4. PubMed DOI

Koziorowski J., Stanciu A.E., Gomez-Vallejo V., Llop J. Radiolabeled nanoparticles for cancer diagnosis and therapy. Anticancer Agents Med. Chem. 2017;17:333–354. doi: 10.2174/1871520616666160219162902. PubMed DOI

Beeler E., Gabani P., Singh O.M. Implementation of nanoparticles in therapeutic radiation oncology. J. Nanopart. Res. 2017;19:179. doi: 10.1007/s11051-017-3882-y. DOI

Drude N., Tienken L., Mottaghy F.M. Theranostic and nanotheranostic probes in nuclear medicine. Methods. 2017;130:14–22. doi: 10.1016/j.ymeth.2017.07.004. PubMed DOI

McLaughlin M.F., Robertson D., Pevsner P.H., Wall J.S., Mirzadeh S., Kennel S.J. LnPO4 Nanoparticles Doped with Ac-225 and Sequestered Daughters for Targeted Alpha Therapy. Cancer Biother. Radiopharm. 2014;29:34–41. doi: 10.1089/cbr.2013.1546. PubMed DOI

Rojas J.V., Woodward J.D., Chen N., Rondinone A.J., Castano C.H., Mirzadeh S. Synthesis and characterization of lanthanum phosphate nanoparticles as carriers for Ra-223 and Ra-225 for targeted alpha therapy. Nucl. Med. Biol. 2015;42:614–620. doi: 10.1016/j.nucmedbio.2015.03.007. PubMed DOI

Salberg G., Larsen R. Alpha-Emitting Hydroxyapatite Particles. Sep 1, 2015. WO 2005/079867.

Westrøm S., Bønsdorff T.B., Bruland Ø., Larsen R. Therapeutic Effect of α-Emitting Ra-Labeled Calcium Carbonate Microparticles in Mice with Intraperitoneal Ovarian Cancer. Transl. Oncol. 2018;11:259–267. doi: 10.1016/j.tranon.2017.12.011. PubMed DOI PMC

Ostrowski S., Majkowska-Pilip A., Bilewicz A., Dobrowolski J.C. On AunAt clusters as potential astatine carriers. RSC Adv. 2017;7:35854–35857. doi: 10.1039/C7RA05224C. DOI

Piotrowska A., Męczyńska-Wielgosz S., Majkowska-Pilip A., Koźmiński P., Wójciuk G., Cędrowska E., Bruchertseifer F., Morgenstern A., Kruszewski M., Bilewicz A. Nanozeolite bioconjugates labeled with 223Ra for targeted alpha therapy. Nucl. Med. Biol. 2017;47:10–18. doi: 10.1016/j.nucmedbio.2016.11.005. PubMed DOI

De Kruijff R.M., Drost K., Thijssen L., Morgenstern A., Bruchertseifer F., Lathouwers D., Wolterbeek H.T., Denkova A.G. Improved 225Ac daughter retention in LnPO4 containing polymersomes. Appl. Radiat. Isot. 2017;128:183–189. doi: 10.1016/j.apradiso.2017.07.030. PubMed DOI

Zhu C., Bandekar A., Sempkowski M., Banerjee S.R., Pomper M.G., Bruchertseifer F., Morgenstern A., Sofou S. Nanoconjugation of PSMA-targeting ligands enhances perinuclear localization and improves efficacy of delivered alpha-particle emitters against tumor endothelial analogues. Mol. Cancer Ther. 2016;15:106–113. doi: 10.1158/1535-7163.MCT-15-0207. PubMed DOI PMC

Zhu C., Sempkowski M., Holleran T., Linz T., Bertalan T., Josefsson A., Bruchertseifer F., Morgenstern A., Sofou S. Alpha-particle radiotherapy: For large solid tumors diffusion trumps targeting. Biomaterials. 2017;130:67–75. doi: 10.1016/j.biomaterials.2017.03.035. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...