Progress in Targeted Alpha-Particle Therapy. What We Learned about Recoils Release from In Vivo Generators
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29510568
PubMed Central
PMC6017877
DOI
10.3390/molecules23030581
PII: molecules23030581
Knihovny.cz E-zdroje
- Klíčová slova
- 223Ra, actinium, alpha particle, astatine, bismuth, decay, in vivo generators, nuclear recoil, radium, targeted alpha therapy,
- MeSH
- aktinium chemie terapeutické užití MeSH
- alfa částice terapeutické užití MeSH
- astat chemie terapeutické užití MeSH
- bismut chemie terapeutické užití MeSH
- chelátory chemie farmakokinetika MeSH
- dávka záření MeSH
- heterocyklické sloučeniny monocyklické chemie farmakokinetika MeSH
- heterocyklické sloučeniny chemie farmakokinetika MeSH
- knihovny malých molekul chemie farmakokinetika MeSH
- lidé MeSH
- nádory patologie radioterapie MeSH
- nosiče léků aplikace a dávkování chemie MeSH
- radiofarmaka chemie terapeutické užití MeSH
- radionuklidy chemie terapeutické užití MeSH
- radium chemie terapeutické užití MeSH
- vztah dávky záření a odpovědi MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- 1,4,7-triazacyclononane-N,N',N''-triacetic acid MeSH Prohlížeč
- 1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetraacetic acid MeSH Prohlížeč
- Actinium-225 MeSH Prohlížeč
- aktinium MeSH
- astat MeSH
- Astatine-211 MeSH Prohlížeč
- bismut MeSH
- Bismuth-213 MeSH Prohlížeč
- chelátory MeSH
- heterocyklické sloučeniny monocyklické MeSH
- heterocyklické sloučeniny MeSH
- knihovny malých molekul MeSH
- nosiče léků MeSH
- radiofarmaka MeSH
- radionuklidy MeSH
- Radium-223 MeSH Prohlížeč
- radium MeSH
This review summarizes recent progress and developments as well as the most important pitfalls in targeted alpha-particle therapy, covering single alpha-particle emitters as well as in vivo alpha-particle generators. It discusses the production of radionuclides like 211At, 223Ra, 225Ac/213Bi, labelling and delivery employing various targeting vectors (small molecules, chelators for alpha-emitting nuclides and their biomolecular targets as well as nanocarriers), general radiopharmaceutical issues, preclinical studies, and clinical trials including the possibilities of therapy prognosis and follow-up imaging. Special attention is given to the nuclear recoil effect and its impacts on the possible use of alpha emitters for cancer treatment, proper dose estimation, and labelling chemistry. The most recent and important achievements in the development of alpha emitters carrying vectors for preclinical and clinical use are highlighted along with an outlook for future developments.
Zobrazit více v PubMed
Song H., Senthamizhchelvan S., Hobbs R.F., Sgouros G. Alpha Particle Emitter Radiolabeled Antibody for Metastatic Cancer: What Can We Learn from Heavy Ion Beam Radiobiology? Antibodies. 2012;1:124–148. doi: 10.3390/antib1020124. DOI
Borchardt P.E., Yuan R.R., Miederer M., McDevitt M.R., Scheinberg D.A. Targeted Actinium-225 In Vivo Generators for Therapy of Ovarian Cancer. Cancer Res. 2003;63:5084–5090. PubMed
Jaggi J.S., Kappel B.J., McDevitt M.R., Sgouros G., Flombaum C.D., Cabassa C., Scheinberg D.A. Efforts to control the errant products of a targeted in vivo generator. Cancer Res. 2005;65:4888–4895. doi: 10.1158/0008-5472.CAN-04-3096. PubMed DOI
Kratochwil C., Bruchertseifer F., Giesel F.L., Weis M., Verburg F.A., Mottaghy F., Kopka K., Apostolidis C., Habekorn U., Morgenstern A. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016;57:1941–1944. doi: 10.2967/jnumed.116.178673. PubMed DOI
Kratochwil C., Bruchertseifer F., Rathke H., Bronzel M., Apostolidis C., Weichert W., Haberkorn U., Giesel F.L., Morgenstern A. Targeted α-Therapy of Metastatic Castration-Resistant Prostate Cancer with 225Ac-PSMA-617: Dosimetry Estimate and Empiric Dose Finding. J. Nucl. Med. 2017;58:1624–1631. doi: 10.2967/jnumed.117.191395. PubMed DOI
Woodward J., Kennel S.J., Stuckey A., Osborne D., Wall J., Rondinone A.J., Standaert R.F., Mirzadeh S. LaPO4 nanoparticles doped with actinium-225 that partially sequester daughter radionuclides. Bioconj. Chem. 2011;22:766–776. doi: 10.1021/bc100574f. PubMed DOI
Kozempel J., Vlk M. Nanoconstructs in Targeted Alpha-Therapy. Rec. Pat. Nanomed. 2014;4:71–76. doi: 10.2174/1877912305666150102000549. DOI
Mokhodoeva O., Vlk M., Málková E., Kukleva E., Mičolová P., Štamberg K., Šlouf M., Dzhenloda R., Kozempel J. Study of Ra-223 uptake mechanism by Fe3O4 nanoparticles: Towards new prospective theranostic SPIONs. J. Nanopart. Res. 2016;18:301. doi: 10.1007/s11051-016-3615-7. DOI
Piotrowska A., Leszczuk E., Bruchertseifer F., Morgenstern A., Bilewicz A. Functionalized NaA nanozeolites labeled with Ra-224,Ra-225 for targeted alpha therapy. J. Nanopart. Res. 2013;15:2082. doi: 10.1007/s11051-013-2082-7. PubMed DOI PMC
Máthé D., Szigeti K., Hegedűs N., Horváth I., Veres D.S., Kovács B., Szűcs Z. Production and in vivo imaging of 203Pb as a surrogate isotope for in vivo 212Pb internal absorbed dose studies. Appl. Radiat. Isot. 2016;114:1–6. doi: 10.1016/j.apradiso.2016.04.015. PubMed DOI
Wick R.R. History and current uses of 224Ra in ankylosing spondylitis and other diseases. Environ. Int. 1993;19:467–473. doi: 10.1016/0160-4120(93)90272-J. DOI
Nedrow J.R., Josefsson A., Park S., Back T., Hobbs R.F., Brayton C., Bruchertseifer F., Morgenstern A., Sgouros G. Pharmacokinetics, microscale distribution, and dosimetry of alpha-emitter-labeled anti-PD-L1 antibodies in an immune competent transgenic breast cancer model. EJNMI Res. 2017;7:57. doi: 10.1186/s13550-017-0303-2. PubMed DOI PMC
Al Darwish R., Staudacher A.H., Li Y., Brown M.P., Bezak E. Development of a transmission alpha particle dosimetry technique using A549 cells and a Ra-223 source for targeted alpha therapy. Med. Phys. 2016;43:6145–6153. doi: 10.1118/1.4965805. PubMed DOI
Ackerman N.L., Graves E.E. The Potential for Cerenkov luminescence imaging of alpha emitting isotopes. Phys. Med. Biol. 2012;57:771–783. doi: 10.1088/0031-9155/57/3/771. PubMed DOI PMC
Jaggi J.S., Seshan S.V., McDevitt M.R., Sgouros G., Hyjek E., Scheinberg D.A. Mitigation of radiation nephropathy after internal α-particle irradiation of kidneys. Int. J. Radiat. Oncol. Biol. Phys. 2006;64:1503–1512. doi: 10.1016/j.ijrobp.2005.11.036. PubMed DOI
Dekempeneer Y., Keyaerts M., Krasniqi A., Puttemans J., Muyldermans S., Lahoutte T., D’huyvetter M., Devoogdt N. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. Expert Opin. Biol. Ther. 2016;16:1035–1047. doi: 10.1080/14712598.2016.1185412. PubMed DOI PMC
Kozempel J., Vlk M., Malková E., Bajzíková A., Bárta J., Santos-Oliveira R., Malta Rossi A. Prospective carriers of 223Ra for targeted alpha particle therapy. J. Radioanal. Nucl. Chem. 2015;304:443–447. doi: 10.1007/s10967-014-3615-y. DOI
Kreyling W.G., Holzwarth U., Haberl N., Kozempel J., Hirn S., Wenk A., Schleh C., Schäffler M., Lipka J., Semmler-Behnke M., et al. Quantitative biokinetics of titanium dioxide nanoparticles after intravenous injection in rats: Part 1. Nanotoxicology. 2017;11:434–442. doi: 10.1080/17435390.2017.1306892. PubMed DOI
Jekunen A., Kairemo K., Karnani P. In Vivo Modulators of Antibody Kinetics. Acta Oncol. 1996;35:267–271. doi: 10.3109/02841869609101640. PubMed DOI
McAlister D.R., Horwitz E.P. Chromatographic generator systems for the actinides and natural decay series elements. Radiochim. Acta. 2017;99:151–159. doi: 10.1524/ract.2011.1804. DOI
Sobolev A.S., Aliev R.A., Kalmykov S.N. Radionuclides emitting short-range particles and modular nanotransporters for their delivery to target cancer cells. Russ. Chem. Rev. 2016;85:1011–1032. doi: 10.1070/RCR4601. DOI
Steinber E.P., Stehney A.F., Stearns C., Spaletto I. Production of 149Tb in gold by high-energy protons and its use as an intensity monitor. Nucl. Phys. A. 1968;113:265–271. doi: 10.1016/0375-9474(68)90405-3. DOI
Beyer G.J., Čomor J.J., Daković M., Soloviev D., Tamburella C., Hagebo E., Allan B., Dmitriev S.N., Zaitseva N.G., Starodub G.Y., et al. Production routes of the alpha emitting 149Tb for medical application. Radiochim. Acta. 2002;90:247–252. doi: 10.1524/ract.2002.90.5_2002.247. DOI
Lebeda O., Jiran R., Ráliš J., Štursa J. A new internal target system for production of At-211 on the cyclotron U-120M. Appl. Radiat. Isot. 2005;63:49–53. doi: 10.1016/j.apradiso.2005.02.006. PubMed DOI
Zalutsky M.R., Pruszynski M. Astatine-211: Production and Availability. Curr. Radiopharm. 2011;4:177–185. doi: 10.2174/1874471011104030177. PubMed DOI PMC
Morgenstern A., Apostolidis C., Molinet R., Luetzenkirchen K. Method for Producing Actinium-225. Dec 28, 2005. EP1610346 A1.
Apostolidis C., Molinet R., Rasmussen G., Morgenstern A. Production of Ac-225 from Th-229 for targeted alpha therapy. Anal. Chem. 2005;77:6288–6291. doi: 10.1021/ac0580114. PubMed DOI
Griswold J.R., Medvedev D.G., Engle J.W., Copping R., Fitzsimmons J.M., Radchenko V., Cooley J.C., Fassbender M.E., Denton D.L., Murphy K.E., et al. Large scale accelerator production of 225Ac: Effective cross sections for 78-192 MeV protons incident on Th-232 targets. Appl. Radiat. Isot. 2016;118:366–374. doi: 10.1016/j.apradiso.2016.09.026. PubMed DOI
Larsen R., Henriksen G. The Preparation and Use of Radium-223 to Target Calcified Tissues for Pain Palliation, Bone Cancer Therapy, and Bone Surface Conditioning. Jul 13, 2000. WO 2000/40275.
Henriksen G., Hoff P., Alstad J., Larsen R.H. 223Ra for endoradiotherapeutic applications prepared from an immobilized 227Ac/227Th source. Radiochim. Acta. 2001;89:661–666. doi: 10.1524/ract.2001.89.10.661. DOI
Guseva L.I., Tikhomirova G.S., Dogadkin N.N. Anion-exchange separation of radium from alkaline-earth metals and actinides in aqueous-methanol solutions of HNO3. 227Ac-223Ra generator. Radiochemistry. 2004;46:58–62. doi: 10.1023/B:RACH.0000024637.39523.e4. DOI
Shishkin D.N., Kupitskii S.V., Kuznetsov S.A. Extraction generator of 223Ra for nuclear medicine. Radiochemistry. 2011;53:343–345. doi: 10.1134/S1066362211040126. DOI
Schwarz U., Daniels R. Novel Radiotherapeutic Formulations Containing 224Ra and a Method for Their Production. Feb 28, 2002. WO 2002/015943.
Šebesta F., Starý J. A generator for preparation of carrier-free 224Ra. J. Radioanal. Chem. 1974;21:151–155. doi: 10.1007/BF02520857. DOI
Larsen R.H. Radiopharmaceutical Solutions with Advantageous Properties. Sep 1, 2016. WO 2016/135200.
Ziegler J.F. SRIM-2013 Code. [(accessed on 11 November 2017)]; Available online: http://www.srim.org/
Frenvik J.O., Dyrstad K., Kristensen S., Ryan O.B. Development of separation technology for the removal of radium-223 from targeted thorium conjugate formulations. Part I: Purification of decayed thorium-227 on cation exchange columns. Drug Dev. Ind. Pharm. 2017;43:225–233. doi: 10.1080/03639045.2016.1234484. PubMed DOI
Frenvik J.O., Dyrstad K., Kristensen S., Ryan O.B. Development of separation technology for the removal of radium-223 from targeted thorium conjugate formulations. Part II: Purification of targeted thorium conjugates on cation exchange columns. Drug Dev. Ind. Pharm. 2017;43:1440–1449. doi: 10.1080/03639045.2017.1318906. PubMed DOI
Ivanov K.P., Kalinina M.K., Levkovich Y.I. Blood flow velocity in capillaries of brain and muscles and its physiological significance. Microvasc. Res. 1981;22:143–155. doi: 10.1016/0026-2862(81)90084-4. PubMed DOI
Maheshwari V., Dearling J.L.J., Treves S.T., Packard A.B. Measurement of the rate of copper(II) exchange for 64Cu complexes of bifunctional chelators. Inorg. Chim. Acta. 2012;393:318–323. doi: 10.1016/j.ica.2012.07.012. DOI
Chakravarty R., Chakraborty S., Ram R., Vatsa R., Bhusari P., Shukla J., Mittal B.R., Dash A. Detailed evaluation of different 68Ge/68Ga generators: An attempt toward achieving efficient 68Ga radiopharmacy. J. Label. Compd. Radiopharm. 2016;59:87. doi: 10.1002/jlcr.3371. PubMed DOI
Notni J., Plutnar J., Wester H.J. Bone-seeking TRAP conjugates: Surprising observations and their implications on the development of gallium-68-labeled bisphosphonates. EJNMMI Res. 2012;2:13. doi: 10.1186/2191-219X-2-13. PubMed DOI PMC
Holub J., Meckel M., Kubíček V., Rösch F., Hermann P. Gallium(III) complexes of NOTA-bis (phosphonate) conjugates as PET radiotracers for bone imaging. Contrast Media Mol. Imaging. 2015;10:122–134. doi: 10.1002/cmmi.1606. PubMed DOI
Chang C.A., Liu Y.L., Chen C.Y., Chou X.M. Ligand Preorganization in Metal Ion Complexation: Molecular Mechanics/Dynamics, Kinetics, and Laser-Excited Luminescence Studies of Trivalent Lanthanide Complex Formation with Macrocyclic Ligands TETA and DOTA. Inorg. Chem. 2001;40:3448–3455. doi: 10.1021/ic001325j. PubMed DOI
Chan H.S., de Blois E., Konijnenberg M., Morgenstern A., Bruchertseifer F., Breeman W., de Jong M. Optimizing labeling conditions of 213Bi-somatostatin analogs for receptor-mediated processes in preclinical models. J. Nucl. Med. 2014;55(Suppl. 1):1179.
Ryan O.B., Cuthbertson A., Herstad G., Grant D., Bjerke R.M. Development of effective chelators for Th-227 to be used in targeted thorium conjugates; Proceedings of the 10th International Symposium on Targeted Alpha Therapy; Kanazawa, Japan. 30 May–1 June 2017; p. 57.
Notni J., Pohle K., Wester H.J. Comparative gallium-68 labeling of TRAP-, NOTA-, and DOTA-peptides: Practical consequences for the future of gallium68-PET. EJNMMI Res. 2012;2:28. doi: 10.1186/2191-219X-2-28. PubMed DOI PMC
Simeček J., Hermann P., Wester H.J., Notni J. How is 68Ga-labeling of macrocyclic chelators influenced by metal ion contaminants in 68Ge/68Ga generator eluates? ChemMedChem. 2013;8:95–103. doi: 10.1002/cmdc.201200471. PubMed DOI
Kratochwil C., Giesel F.L., Bruchertseifer F., Mier W., Apostolidis C., Boll R., Murphy K., Haberkom U., Morgenstern A. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: A first-in-human experience. Eur. J. Nucl. Med. Mol. Imaging. 2014;41:2106–2119. doi: 10.1007/s00259-014-2857-9. PubMed DOI PMC
Sathekge M., Knoesen O., Meckel M., Modiselle M., Vorster M., Marx S. 213Bi-PSMA-617 targeted alpha-radionuclide therapy in metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging. 2017;44:1099–1100. doi: 10.1007/s00259-017-3657-9. PubMed DOI PMC
Müller C., Reber J., Haller S., Dorrer H., Köster U., Johnston K., Zhernosekov K., Türler A., Schibli R. Folate Receptor Targeted Alpha-Therapy Using Terbium-149. Pharmaceuticals. 2014;7:353–365. doi: 10.3390/ph7030353. PubMed DOI PMC
Müller C., Vermeulen C., Köster U., Johnston K., Türler A., Schibli R., Van der Meulen N.P. Alpha-PET with terbium-149: Evidence and perspectives for radiotheragnostics. EJNMMI Radiopharm. Chem. 2016;1:5. doi: 10.1186/s41181-016-0008-2. PubMed DOI PMC
Beyer G.J., Miederer M., Vranješ-Durić S., Čomor J.J., Künzi G., Hartley O., Senekowitsch-Schmidtke R., Soloviev D., Buchegger F. The ISOLDE Collaboration. Targeted alpha therapy in vivo: Direct evidence for single cancer cell kill using 149Tb-rituximab. Eur. J. Nucl. Med. Mol. Imaging. 2004;31:547–554. doi: 10.1007/s00259-003-1413-9. PubMed DOI
Hartman K.B., Hamlin D.K., Wilbur D.S., Wilson L.J. 211AtCl@US-Tube Nanocapsules: A New Concept in Radiotherapeutic-Agent Design. Small. 2007;3:1496–1499. doi: 10.1002/smll.200700153. PubMed DOI
Kučka J., Hrubý M., Koňák Č., Kozempel J., Lebeda O. Astatination of nanoparticles containing silver as possible carriers of 211At. Appl. Radiat. Isot. 2006;64:201–206. doi: 10.1016/j.apradiso.2005.07.021. PubMed DOI
Leszczuk E., Piotrowska A., Bilewicz A. Modified TiO2 nanoparticles as carries for At-211. J. Label. Compd. Radiopharm. 2013;56:S242.
Dziawer L., Koźmiński P., Męczyńska-Wielgosz S., Pruszyński M., Łyczko M., Wąs B., Celichowski G., Grobeny J., Jastrzębsky J., Bilewicz A. Gold nanoparticle bioconjugates labelled with 211At for targeted alpha therapy. RSC Adv. 2017;7:41024–41032. doi: 10.1039/C7RA06376H. DOI
Chang M.-Y., Seideman J., Sofou S. Enhanced Loading Efficiency and Retention of 225Ac in Rigid Liposomes for Potential Targeted Therapy of Micrometastases. Bioconj. Chem. 2008;19:1274–1282. doi: 10.1021/bc700440a. PubMed DOI
Maeda H., Bharate G.Y., Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 2009;71:409–419. doi: 10.1016/j.ejpb.2008.11.010. PubMed DOI
Bae Y.H., Park K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release. 2011;153:198–205. doi: 10.1016/j.jconrel.2011.06.001. PubMed DOI PMC
Baidoo K.E., Yong K., Brechbiel M.W. Molecular Pathways: Targeted α-Particle Radiation Therapy. Clin. Cancer Res. 2013;19:530–537. doi: 10.1158/1078-0432.CCR-12-0298. PubMed DOI PMC
De Kruijff R.M., Wolterbeek H.T., Denkova A.G. A Critical Review of Alpha Radionuclide Therapy—How to Deal with Recoiling Daughters? Pharmaceuticals. 2015;8:321–336. doi: 10.3390/ph8020321. PubMed DOI PMC
Chan H.S., Konijnenberg M.W., de Blois E., Koelewijn S., Baum R.P., Morgenstern A., Bruchertseifer F., Breeman W.A., de Jong M. Influence of tumour size on the efficacy of targeted alpha therapy with 213Bi-[DOTA0,Tyr3]-octreotate. EJNMMI Res. 2016;6:6–15. doi: 10.1186/s13550-016-0162-2. PubMed DOI PMC
Song E.Y., Abbas Rizvi S.M., Qu C.F., Raja C., Brechbiel M.W., Morgenstern A., Apostolidis C., Allen B.J. Pharmacokinetics and toxicity of 213Bi-labeled PAI2 in preclinical targeted alpha therapy for cancer. Cancer Biol. Ther. 2007;6:898–904. doi: 10.4161/cbt.6.6.4097. PubMed DOI
Nedrow J.R., Josefsson A., Park S., Hobbs R.F., Bruchertseifer F., Morgenstern A., Sgouros G. Reducing renal uptake of free 213Bi associated with the decay of 225Ac-labeled radiopharmaceuticals; Proceedings of the 10th International Symposium on Targeted Alpha Therapy; Kanazawa, Japan. 30 May–1 June 2017; p. 67.
Hanadate S., Washiyama K., Yoshimoto M., Matsumoto H., Tsuji A., Higashi T., Yoshii Y. Oral administration of barium sulfate reduces radiation exposure to the large intestine during alpha therapy with radium-223 dichloride. J. Nucl. Med. 2017;58(Suppl. l):1030.
Edem P.E., Fonslet J., Kjaer A., Herth M., Severin G. In Vivo Radionuclide Generators for Diagnostics and Therapy. Bioinorg. Chem. Appl. 2016:6148357. doi: 10.1155/2016/6148357. PubMed DOI PMC
Hindorf C., Chittenden S., Aksnes A.K., Parker C., Flux G.D. Quantitative imaging of 223Ra-chloride (Alpharadin) for targeted alpha-emitting radionuclide therapy of bone metastases. Nucl. Med. Commun. 2012;33:726–732. doi: 10.1097/MNM.0b013e328353bb6e. PubMed DOI
Robertson A.K.H., Ramogida C.F., Rodriguez-Rodriguez C., Blinder S., Kunz P., Sossi V., Schaffer P. Multi-isotope SPECT imaging of the Ac-225 decay chain: Feasibility studies. Phys. Med. Biol. 2017;62:4406–4420. doi: 10.1088/1361-6560/aa6a99. PubMed DOI
Bäck T., Jacobsson L. The α-Camera: A Quantitative Digital Autoradiography Technique Using a Charge-Coupled Device for Ex Vivo High-Resolution Bioimaging of α-Particles. J. Nucl. Med. 2010;51:1616–1623. doi: 10.2967/jnumed.110.077578. PubMed DOI
Altman M.B., Wang S.J., Whitlock J.L., Roeske J.C. Cell detection in phase-contrast images used for alpha-particle track-etch dosimetry: A semi-automated approach. Phys. Med. Biol. 2005;50:305–318. doi: 10.1088/0031-9155/50/2/009. PubMed DOI
Muggiolu G., Pomorski M., Claverie G., Berthet G., Mer-Calfati C., Saada S., Devès G., Simon M., Seznec H., Barberet P. Single α-particle irradiation permits real-time visualization of RNF8 accumulation at DNA damaged sites. Sci. Rep. 2017;7:41764. doi: 10.1038/srep41764. PubMed DOI PMC
Gholami Y., Zhu X., Fulton R., Meikle S., El-Fakhri G., Kuncic Z. Stochastic simulation of radium-223 dichloride therapy at the sub-cellular level. Phys. Med. Biol. 2015;60:6087–6096. doi: 10.1088/0031-9155/60/15/6087. PubMed DOI
Roeske J.C., Stinchcomb T.G. The average number of alpha-particle hits to the cell nucleus required to eradicate a tumour cell population. Phys. Med. Biol. 2006;51:N179–N186. doi: 10.1088/0031-9155/51/9/N02. PubMed DOI
Lazarov E., Arazi L., Efrati M., Cooks T., Schmidt M., Keisari Y., Kelson I. Comparative in vitro microdosimetric study of murine- and human-derived cancer cells exposed to alpha particles. Radiat. Res. 2012;177:280–287. doi: 10.1667/RR2664.1. PubMed DOI
Batra V., Ranieri P., Makvandi M., Tsang M., Hou C., Li Y., Vaidyanathan G., Pryma D.A., Maris J.M. Development of meta-[211At]astatobenzylguanidine ([211At]MABG) as an alpha particle emitting systemic targeted radiotherapeutic for neuroblastoma. Cancer Res. 2015;75(Suppl. 15):1610. doi: 10.1158/1538-7445.AM2015-1610. DOI
Ohshima Y., Watanabe S., Tsuji A., Nagatsu K., Sakashima T., Sugiyama A., Harada Y., Waki A., Yoshinaga K., Ishioka N. Therapeutic efficacy of α-emitter meta-211At-astato-benzylguanidine (MABG) in a pheochromocytoma model. J. Nucl. Med. 2016;57(Suppl. 2):468.
Vaidyanathan G., Affleck D.J., Alston K.L., Zhao X.-G., Hens M., Hunter D.H., Babich J., Zalutsky M.R. A Kit Method for the High Level Synthesis of [211At]MABG. Bioorg. Med. Chem. 2007;15:3430–3436. doi: 10.1016/j.bmc.2007.03.016. PubMed DOI PMC
Nonnekens J., Chatalic K.L.S., Molkenboer-Kuenen J.D.M., Beerens C.E.M.T., Bruchertseifer F., Morgenstern A., Veldhoven-Zweistra J., Schottelius M., Wester H.-J., van Gent D.C., et al. 213Bi-Labeled Prostate-Specific Membrane Antigen-Targeting Agents Induce DNA Double-Strand Breaks in Prostate Cancer Xenografts. Cancer Biother. Radiopharm. 2017;32:67–73. doi: 10.1089/cbr.2016.2155. PubMed DOI
Krolicki L., Bruchertseifer F., Kunikowska J., Koziara H., Królicki B., Jakuciński M., Pawlak D., Apostolidis C., Rola R., Merlo A., et al. Targeted alpha therapy of glioblastoma multiforme: Clinical experience with 213Bi- and 225Ac-Substance P; Proceedings of the 10th International Symposium on Targeted Alpha Therapy; Kanazawa, Japan. 30 May–1 June 2017; p. 24.
Cordier D., Krolicki L., Morgenstern A., Merlo A. Targeted Radiolabeled Compounds in Glioma Therapy. Semin. Nucl. Med. 2016;46:243–249. doi: 10.1053/j.semnuclmed.2016.01.009. PubMed DOI
Marcu L., Bezak E., Allen B.J. Global comparison of targeted alpha vs targeted beta therapy for cancer: In vitro, in vivo and clinical trials. Crit. Rev. Oncol. Hematol. 2018;123:7–20. doi: 10.1016/j.critrevonc.2018.01.001. PubMed DOI
Aghevlian S., Boyle A.J., Reilly R.M. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. Adv. Drug Deliv. Rev. 2017;109:102–118. doi: 10.1016/j.addr.2015.12.003. PubMed DOI
Berger M., Jurcic J., Scheinberg D. Efficacy of Ac-225-labeled anti-CD33 antibody in acute myeloid leukemia (AML) correlates with peripheral blast count; Proceedings of the 10th International Symposium on Targeted Alpha Therapy; Kanazawa, Japan. 30 May–1 June 2017; p. 22.
Actinium Pharmaceuticals Provides Update on Actimab-A Phase 2 Clinical Trial for Patients with Acute Myeloid Leukemia. [(accessed on 31 December 2017)]; Available online: https://ir.actiniumpharma.com/press-releases/detail/247.
Autenrieth M.E., Horn T., Kurtz F., Nguyen K., Morgenstern A., Bruchertseifer F., Schwaiger M., Blechert M., Seidl C., Senekowitsch-Schmidtke R., et al. Intravesical radioimmunotherapy of carcinoma in situ of the urinary bladder after BCG failure. Urol. A. 2017;56:40–43. doi: 10.1007/s00120-016-0273-4. PubMed DOI
Tworowska I., Stallons T., Saidi A., Wagh N., Rojas-Quijano F., Jurek P., Kiefer G., Torgue J., Delpassand E. Pb203-AR-RMX conjugates for image-guided TAT of neuroendocrine tumors (NETs); Proceedings of the American Association for Cancer Research Annual Meeting 2017; Washington, DC, USA. 1–5 April 2017; DOI
RadioMedix and AREVA Med Announce Initiation of Phase 1 Clinical Trial of AlphaMedixTM, a Targeted Alpha Therapy for Patients with Neuroendocrine Tumors. [(accessed on 31 December 2017)]; Available online: http://radiomedix.com/news/radiomedix-and-areva-med-announce-initiation-of-phase-1-clinical-trial-of-alphamedixtm-a-targeted-alpha-therapy-for-patients-with-neuroendocrine-tumors.
Dadachova E., Morgenstern A., Bruchertseifer F., Rickles. D.J. Radioimmunotherapy with novel IgG to melanin and its comparison with immunotherapy. J. Nucl. Med. 2017;58(Suppl. 1):1036.
Boudousq V., Bobyk L., Busson M., Garambois V., Jarlier M., Charalambatou P., Pèlegrin A., Paillas S., Chouin N., Quenet F., et al. Comparison between Internalizing Anti-HER2 mAbs and Non-Internalizing Anti-CEA mAbs in Alpha-Radioimmunotherapy of Small Volume Peritoneal Carcinomatosis Using 212Pb. PLoS ONE. 2013;8:e69613. doi: 10.1371/journal.pone.0069613. PubMed DOI PMC
Ballangrud Å.M., Yang W.-H., Palm S., Enmon R., Borchardt P.E., Pellegrini V.A., McDevitt M.R., Scheinberg D.A., Sgouros G. Alpha-Particle Emitting Atomic Generator (Actinium-225)-Labeled Trastuzumab (Herceptin) Targeting of Breast Cancer Spheroids. Clin. Cancer Res. 2004;10:4489–4497. doi: 10.1158/1078-0432.CCR-03-0800. PubMed DOI
Boskovitz A., McLendon R.E., Okamura T., Sampson J.H., Bigner D.D., Zalutsky M.R. Treatment of HER2-positive breast carcinomatous meningitis with intrathecal administration of α-particle-emitting 211At-labeled trastuzumab. Nucl. Med. Biol. 2009;36:659–669. doi: 10.1016/j.nucmedbio.2009.04.003. PubMed DOI PMC
Pruszyński M., D’Huyvetter M., Cędrowska E., Lahoutte T., Bruchertseifer F., Morgenstern A. Preclinical evaluation of anti-HER2 2Rs15d nanobody labeled with 225Ac; Proceedings of the 10th International Symposium on Targeted Alpha Therapy; Kanazawa, Japan. 30 May–1 June 2017; p. 34.
Dekempeneer Y., D’Huyvetter M., Aneheim E., Xavier C., Lahoutte T., Bäck T., Jensen H., Caveliers V., Lindegren S. Preclinical evaluation of astatinated nanobodies for targeted alpha therapy; Proceedings of the 10th International Symposium on Targeted Alpha Therapy; Kanazawa, Japan. 30 May–1 June 2017; p. 35.
Puentes L., Xu K., Hou C., Mach R.H., Maris J.M., Pryma D.A., Makvandi M. Targeting PARP-1 to deliver alpha-particles to cancer chromatin; Proceedings of the American Association for Cancer Research Annual Meeting 2017; Washington, DC, USA. 1–5 April 2017; DOI
Carrasquillo J.A. Alpha Radionuclide Therapy: Principles and Applications to NETs. In: Pacak K., Taïeb D., editors. Diagnostic and Therapeutic Nuclear Medicine for Neuroendocrine Tumors. Humana Press; Cham, Switzerland: 2017. pp. 429–445.
Norain A., Dadachova E. Targeted Radionuclide Therapy of Melanoma. Semin. Nucl. Med. 2016;46:250–259. doi: 10.1053/j.semnuclmed.2015.12.005. PubMed DOI
Basu S., Banerjee S. Envisaging an alpha therapy programme in the atomic energy establishments: The priorities and the nuances. Eur. J. Nucl. Med. Mol. Imaging. 2017;44:1244–1246. doi: 10.1007/s00259-017-3686-4. PubMed DOI
Koziorowski J., Stanciu A.E., Gomez-Vallejo V., Llop J. Radiolabeled nanoparticles for cancer diagnosis and therapy. Anticancer Agents Med. Chem. 2017;17:333–354. doi: 10.2174/1871520616666160219162902. PubMed DOI
Beeler E., Gabani P., Singh O.M. Implementation of nanoparticles in therapeutic radiation oncology. J. Nanopart. Res. 2017;19:179. doi: 10.1007/s11051-017-3882-y. DOI
Drude N., Tienken L., Mottaghy F.M. Theranostic and nanotheranostic probes in nuclear medicine. Methods. 2017;130:14–22. doi: 10.1016/j.ymeth.2017.07.004. PubMed DOI
McLaughlin M.F., Robertson D., Pevsner P.H., Wall J.S., Mirzadeh S., Kennel S.J. LnPO4 Nanoparticles Doped with Ac-225 and Sequestered Daughters for Targeted Alpha Therapy. Cancer Biother. Radiopharm. 2014;29:34–41. doi: 10.1089/cbr.2013.1546. PubMed DOI
Rojas J.V., Woodward J.D., Chen N., Rondinone A.J., Castano C.H., Mirzadeh S. Synthesis and characterization of lanthanum phosphate nanoparticles as carriers for Ra-223 and Ra-225 for targeted alpha therapy. Nucl. Med. Biol. 2015;42:614–620. doi: 10.1016/j.nucmedbio.2015.03.007. PubMed DOI
Salberg G., Larsen R. Alpha-Emitting Hydroxyapatite Particles. Sep 1, 2015. WO 2005/079867.
Westrøm S., Bønsdorff T.B., Bruland Ø., Larsen R. Therapeutic Effect of α-Emitting Ra-Labeled Calcium Carbonate Microparticles in Mice with Intraperitoneal Ovarian Cancer. Transl. Oncol. 2018;11:259–267. doi: 10.1016/j.tranon.2017.12.011. PubMed DOI PMC
Ostrowski S., Majkowska-Pilip A., Bilewicz A., Dobrowolski J.C. On AunAt clusters as potential astatine carriers. RSC Adv. 2017;7:35854–35857. doi: 10.1039/C7RA05224C. DOI
Piotrowska A., Męczyńska-Wielgosz S., Majkowska-Pilip A., Koźmiński P., Wójciuk G., Cędrowska E., Bruchertseifer F., Morgenstern A., Kruszewski M., Bilewicz A. Nanozeolite bioconjugates labeled with 223Ra for targeted alpha therapy. Nucl. Med. Biol. 2017;47:10–18. doi: 10.1016/j.nucmedbio.2016.11.005. PubMed DOI
De Kruijff R.M., Drost K., Thijssen L., Morgenstern A., Bruchertseifer F., Lathouwers D., Wolterbeek H.T., Denkova A.G. Improved 225Ac daughter retention in LnPO4 containing polymersomes. Appl. Radiat. Isot. 2017;128:183–189. doi: 10.1016/j.apradiso.2017.07.030. PubMed DOI
Zhu C., Bandekar A., Sempkowski M., Banerjee S.R., Pomper M.G., Bruchertseifer F., Morgenstern A., Sofou S. Nanoconjugation of PSMA-targeting ligands enhances perinuclear localization and improves efficacy of delivered alpha-particle emitters against tumor endothelial analogues. Mol. Cancer Ther. 2016;15:106–113. doi: 10.1158/1535-7163.MCT-15-0207. PubMed DOI PMC
Zhu C., Sempkowski M., Holleran T., Linz T., Bertalan T., Josefsson A., Bruchertseifer F., Morgenstern A., Sofou S. Alpha-particle radiotherapy: For large solid tumors diffusion trumps targeting. Biomaterials. 2017;130:67–75. doi: 10.1016/j.biomaterials.2017.03.035. PubMed DOI
Study of 213Bi and 211Pb Recoils Release from 223Ra Labelled TiO2 Nanoparticles
Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology
Surface protolytic property characterization of hydroxyapatite and titanium dioxide nanoparticles