Frontier Molecular Orbital Contributions to Chlorination versus Hydroxylation Selectivity in the Non-Heme Iron Halogenase SyrB2
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM040392
NIGMS NIH HHS - United States
PubMed
28095695
PubMed Central
PMC5310988
DOI
10.1021/jacs.6b11995
Knihovny.cz E-zdroje
- MeSH
- halogenace MeSH
- hydroxylace MeSH
- kvantová teorie * MeSH
- molekulární konformace MeSH
- nehemové proteiny obsahující železo chemie metabolismus MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- nehemové proteiny obsahující železo MeSH
The ability of an FeIV═O intermediate in SyrB2 to perform chlorination versus hydroxylation was computationally evaluated for different substrates that had been studied experimentally. The π-trajectory for H atom abstraction (FeIV═O oriented perpendicular to the C-H bond of substrate) was found to lead to the S = 2 five-coordinate HO-FeIII-Cl complex with the C• of the substrate, π-oriented relative to both the Cl- and the OH- ligands. From this ferric intermediate, hydroxylation is thermodynamically favored, but chlorination is intrinsically more reactive due to the energy splitting between two key redox-active dπ* frontier molecular orbitals (FMOs). The splitting is determined by the differential ligand field effect of Cl- versus OH- on the Fe center. This makes chlorination effectively competitive with hydroxylation. Chlorination versus hydroxylation selectivity is then determined by the orientation of the substrate with respect to the HO-Fe-Cl plane that controls either the Cl- or the OH- to rebound depending on the relative π-overlap with the substrate C radical. The differential contribution of the two FMOs to chlorination versus hydroxylation selectivity in SyrB2 is related to a reaction mechanism that involves two asynchronous transfers: electron transfer from the substrate radical to the iron center followed by late ligand (Cl- or OH-) transfer to the substrate.
Zobrazit více v PubMed
Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee SK, Lehnert N, Neese F, Skulan AJ, Yang YS, Zhou J. Chem. Rev. 2000;100:235–350. PubMed
Rokob TA, Chalupský J, Bím D, Andrikopoulos PC, Srnec M, Rulíšek L. J. Biol. Inorg. Chem. 2016;21:619–644. PubMed
Vaillancourt FH, Yin J, Walsh CT. Proc. Natl. Acad. Sci. U.S.A. 2005;102:10111–10116. PubMed PMC
Blasiak LC, Vaillancourt FH, Walsh CT, Drennan CL. Nature. 2006;440:368–371. PubMed
Matthews ML, Krest CM, Barr EW, Vaillancourt FH, Walsh CT, Green MT, Krebs C, Bollinger JM., Jr. Biochemistry. 2009;48:4331–4343. PubMed PMC
Wong SD, Srnec M, Matthews ML, Liu LV, Kwak Y, Park K, Bell CB, III, Alp EE, Zhao J, Yoda Y, Kitao S, Seto M, Krebs C, Bollinger JM, Jr., Solomon EI. Nature. 2013;499:320–323. PubMed PMC
Mitchell AJ, Zhu Q, Maggiolo AO, Ananth NR, Hillwig ML, Liu X, Boal AK. Nat. Chem. Biol. 2016;12:636–640. PubMed PMC
Srnec M, Wong SD, Matthews ML, Krebs C, Bollinger JM, Jr., Solomon EI. J. Am. Chem. Soc. 2016;138:5110–5122. PubMed PMC
Matthews ML, Neumann CS, Miles LA, Grove TL, Booker SJ, Krebs C, Walsh CT, Bollinger JM., Jr. Proc. Natl. Acad. Sci. U.S.A. 2009;106:17723–17728. PubMed PMC
Matthews ML, Chang WC, Layne AP, Miles LA, Krebs C, Bollinger JM., Jr. Nat. Chem. Biol. 2014;10:209–215. PubMed PMC
Martinie RJ, Livada J, Chang W, Green MT, Krebs C, Bollinger JM, Jr., Silakov A. J. Am. Chem. Soc. 2015;137:6912–6919. PubMed PMC
Pandian S, Vincent MA, Hillier IH, Burton NA. Dalton Trans. 2009:6201–6207. PubMed
Kulik HJ, Blasiak LC, Marzari N, Drennan CL. J. Am. Chem. Soc. 2009;131:14426–14433. PubMed PMC
Kulik HJ, Drennan CL. J. Biol. Chem. 2013;288:11233–11241. PubMed PMC
Borowski T, Noack H, Radoń M, Zych K, Siegbahn PEM. J. Am. Chem. Soc. 2010;132:12887–12898. PubMed
Huang J, Li C, Wang B, Sharon DA, Wu W, Shaik S. ACS Catalysis. 2016;6:2694–2704.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö , Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian G09. 2009
Becke AD. Phys. Rev. A. 1988;38:3098–3100. PubMed
Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010;132:154104. PubMed
Frequency calculations were performed on top of the optimized cluster models of SyrB2 that include 7 frozen atoms (shown in Figure S1A). Within this approach, 21 degrees of freedom associated with the frozen atoms are projected out from the Hessian. This ensures that all structures (belonging to one catalytic cycle) have the same number of vibrational frequencies, among which there is no or one imaginary frequency depending on whether a minimum or transition state is optimized. Note that ZPVE and other entropic/thermal corrections to Gibbs free energies are considered as crude approximations.
Kaduk B, Kowalczyk T, Van Voorhis T. Chem. Rev. 2012;112:321–370. PubMed
Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA. Comput. Phys. Commun. 2010;181:1477–1489.
CRC Handbook of Chemistry and Physics - W. M. Haynes. 97th. Taylor & Francis Group; 2016. LLC ISBN-13: 978-1-4987-5429-3.
Marcus RA. J. Phys. Chem. 1968;72:891–899.
Gilmore K, Alabugin IV. Chem. Rev. 2011;111:6513–6556. PubMed
Puri M, Biswas AN, Fan R, Guo Y, Que L., Jr. J. Am. Chem. Soc. 2016;138:2484–2487. PubMed
Cho K-B, Wu X, Lee Y-M, Kwon YH, Shaik S, Nam W. J. Am. Chem. Soc. 2012;134:20222–20225. PubMed
Cho K-B, Hirao H, Shaik S, Nam W. Chem. Soc. Rev. 2016;45:1197–1210. PubMed
Radical ligand transfer: mechanism and reactivity governed by three-component thermodynamics