Electronic Structure of the Ferryl Intermediate in the α-Ketoglutarate Dependent Non-Heme Iron Halogenase SyrB2: Contributions to H Atom Abstraction Reactivity
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
Grant support
R01 GM040392
NIGMS NIH HHS - United States
R01 GM069657
NIGMS NIH HHS - United States
R01GM040392
NIGMS NIH HHS - United States
R01GM69657
NIGMS NIH HHS - United States
PubMed
27021969
PubMed Central
PMC4927264
DOI
10.1021/jacs.6b01151
Knihovny.cz E-resources
- MeSH
- Bacterial Proteins chemistry metabolism MeSH
- Circular Dichroism MeSH
- Glutarates chemistry metabolism MeSH
- Quantum Theory MeSH
- Models, Molecular MeSH
- Nonheme Iron Proteins chemistry metabolism MeSH
- Oxidoreductases chemistry metabolism MeSH
- Iron Compounds chemistry metabolism MeSH
- Threonine chemistry metabolism MeSH
- Hydrogen chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Glutarates MeSH
- Nonheme Iron Proteins MeSH
- Oxidoreductases MeSH
- Iron Compounds MeSH
- syringomycin MeSH Browser
- Threonine MeSH
- Hydrogen MeSH
Low temperature magnetic circular dichroism (LT MCD) spectroscopy in combination with quantum-chemical calculations are used to define the electronic structure associated with the geometric structure of the Fe(IV)═O intermediate in SyrB2 that was previously determined by nuclear resonance vibrational spectroscopy. These studies elucidate key frontier molecular orbitals (FMOs) and their contribution to H atom abstraction reactivity. The VT MCD spectra of the enzymatic S = 2 Fe(IV)═O intermediate with Br(-) ligation contain information-rich features that largely parallel the corresponding spectra of the S = 2 model complex (TMG3tren)Fe(IV)═O (Srnec, M.; Wong, S. D.; England, J; Que, L; Solomon, E. I. Proc. Natl. Acad. Sci. USA 2012, 109, 14326-14331). However, quantitative differences are observed that correlate with π-anisotropy and oxo donor strength that perturb FMOs and affect reactivity. Due to π-anisotropy, the Fe(IV)═O active site exhibits enhanced reactivity in the direction of the substrate cavity that proceeds through a π-channel that is controlled by perpendicular orientation of the substrate C-H bond relative to the halide-Fe(IV)═O plane. Also, the increased intrinsic reactivity of the SyrB2 intermediate relative to the ferryl model complex is correlated to a higher oxyl character of the Fe(IV)═O at the transition states resulting from the weaker ligand field of the halogenase.
See more in PubMed
Matthews ML, Neumann CS, Miles LA, Grove TL, Booker SJ, Krebs C, Walsh CT, Bollinger JM., Jr Proc Natl Acad Sci U S A. 2009;106:17723–17728. PubMed PMC
Price JC, Barr EW, Tirupati B, Bollinger JM, Jr, Krebs C. Biochemistry. 2003;42:7497–7508. PubMed
Riggs-Gelasco PJ, Price JC, Guyer RB, Brehm JH, Barr EW, Bollinger JM, Jr, Krebs C. J Am Chem Soc. 2004;126:8108–8109. PubMed
Hoffart LM, Barr EW, Guyer RB, Bollinger JM, Jr, Krebs C. Proc Natl Acad Sci U S A. 2006;103:14738–14743. PubMed PMC
Galonić DP, Barr EW, Walsh CT, Bollinger JM, Jr, Krebs C. Nat Chem Biol. 2007;3:113–116. PubMed
Fujimori DG, Barr EW, Matthews ML, Koch GM, Yonce JR, Walsh CT, Bollinger JM, Jr, Krebs C, Riggs-Gelasco PJ. J Am Chem Soc. 2007;129:13408–13409. PubMed
Matthews ML, Krest CM, Barr EW, Vaillancourt FH, Walsh CT, Green MT, Krebs C, Bollinger JM., Jr Biochemistry. 2009;48:4331–4343. PubMed PMC
Chang W, Guo Y, Wang C, Butch SE, Rosenzweig AC, Boal AK, Krebs C, Bollinger JM., Jr Science. 2014;343:1140–1144. PubMed PMC
Eser BE, Barr EW, Frantom PA, Saleh L, Bollinger JM, Jr, Krebs C, Fitzpatrick PF. J Am Chem Soc. 2007;129:11334–11335. PubMed PMC
Panay AJ, Lee M, Krebs C, Bollinger JM, Jr, Fitzpatrick PF. Biochemistry. 2011;50:1928–1933. PubMed PMC
Blasiak LC, Vaillancourt FH, Walsh CT, Drennan CL. Nature. 2006;440:368–371. PubMed
Vaillancourt FH, Yin J, Walsh CT. Proc Natl Acad Sci U S A. 2005;102:10111–10116. PubMed PMC
McDonald AR, Que L., Jr Coord Chem Rev. 2013;257:414–428.
Jackson TA, Rohde JU, Seo MS, Sastri CV, DeHont R, Ohta T, Kitagawa T, Münck E, Nam W, Que L., Jr J Am Chem Soc. 2008;130:12394–12407. PubMed PMC
Martinho M, Banse F, Bartoli JF, Mattioli TA, Battioni P, Horner O, Bourcier S, Girerd JJ. Inorg Chem. 2005;44:9592–9596. PubMed
Kaizer J, Klinker EJ, Oh NY, Rohde JU, Song WJ, Stubna A, Kim J, Münck E, Nam W, Que L., Jr J Am Chem Soc. 2004;126:472–473. PubMed
England J, Bigelow JO, Van Heuvelen KM, Farquhar ER, Martinho M, Meier KK, Frisch JR, Münck E, Que L., Jr Chem Sci. 2014;5:1204–1215. PubMed PMC
Comba P, Fukuzumi S, Kotani S, Wunderlich S. Angew Chem, Int Ed. 2010;49:2622–2625. PubMed
Rohde J-U, Stubna A, Bominaar EL, Münck E, Nam W, Que L., Jr Inorg Chem. 2006;45:6435–6445. PubMed
Planas O, Clemancey M, Latour J-M, Company A, Costas M. Chem Commun. 2014;50:10887–10890. PubMed
England J, Guo Y, Farquhar ER, Young VG, Jr, Münck E, Que L., Jr J Am Chem Soc. 2010;132:8635–8644. PubMed PMC
Biswas AN, Puri M, Meier KK, Oloo WN, Rohde GT, Bominaar EL, Münck E, Que L., Jr J Am Chem Soc. 2015;137:2428–2431. PubMed
Lacy DC, Gupta R, Stone KL, Greaves J, Ziller JW, Hendrich MP, Borovik AS. J Am Chem Soc. 2010;132:12188–12190. PubMed PMC
England J, Guo Y, Van Heuvelen KM, Cranswick MA, Rohde GT, Bominaar EL, Münck E, Que L., Jr J Am Chem Soc. 2011;133:11880–11883. PubMed PMC
Srnec M, Wong SD, England J, Que L, Jr, Solomon EI. Proc Natl Acad Sci U S A. 2012;109:14326–14331. PubMed PMC
Decker A, Rohde JU, Klinker EJ, Wong SD, Que L, Jr, Solomon EI. J Am Chem Soc. 2007;129:15983–15996. PubMed PMC
Solomon EI, Light KM, Liu LV, Srnec M, Wong SD. Acc Chem Res. 2013;46:2725–2739. PubMed PMC
Shaik S, Chen H, Janardanan D. Nat Chem. 2011;3:19–27. PubMed
Ye S, Neese F. Proc Natl Acad Sci U S A. 2011;108:1228–1233. PubMed PMC
Neidig ML, Decker A, Choroba OW, Huang F, Kavana M, Moran GR, Spencer JB, Solomon EI. Proc Natl Acad Sci U S A. 2006;103:12966–12973. PubMed PMC
Decker A, Clay MD, Solomon EI. J Inorg Biochem. 2006;100:697–706. PubMed
Wong SD, Srnec M, Matthews ML, Liu LV, Kwak Y, Park K, Bell CB, III, Alp EE, Zhao J, Yoda Y, Kitao S, Seto M, Krebs C, Bollinger JM, Jr, Solomon EI. Nature. 2013;499:320–323. PubMed PMC
Diebold AR, Brown-Mashall CD, Neidig ML, Brownlee JM, Moran GR, Solomon EI. J Am Chem Soc. 2011;133:18148–18160. PubMed PMC
The PyMOL Molecular Graphics System, Version 1.5.0.4. Schrödinger, LLC;
Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, Gora A, Sustr V, Klvana M, Medek P, Biedermannova L, Sochor J, Damborsky J. PLoS Comput Biol. 2012;8:e1002708. PubMed PMC
Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C. Chem Phys Lett. 1989;162:165–169.
Becke AD. Phys Rev A: At, Mol, Opt Phys. 1988;38:3098–3100. PubMed
Grimme S. J Comput Chem. 2004;25:1463–1473. PubMed
Grimme S. J Comput Chem. 2006;27:1787–1799. PubMed
Roos BO, Taylor PR, Siegbahn PEM. Chem Phys. 1980;48:157–173.
Siegbahn PEM, Almlöf J, Heiberg A, Roos BO. J Chem Phys. 1981;74:2384–2396.
Andersson K, Malmqvist P-Å, Roos BO, Sadlej AJ, Wolinski K. J Phys Chem. 1990;94:5483–5488.
Andersson K, Malmqvist P-Å, Roos BO. J Chem Phys. 1992;96:1218–1226.
Andersson K. Theor Chim Acta. 1995;91:31–46.
Finley J, Malmqvist P-Å, Roos BO, Serrano-Andrés L. Chem Phys Lett. 1998;288:299–306.
Aquilante F, De Vico L, Ferré N, Ghigo G, Malmqvist P-Å, Neogrády P, Pedersen TB, Pitoňák M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Veryazov V, Lindh R. J Comput Chem. 2010;31:224–247. PubMed
Douglas M, Kroll NM. Ann Phys (Amsterdam, Neth) 1974;82:89–155.
Hess BA. Phys Rev A: At, Mol, Opt Phys. 1986;33:3742–3748. PubMed
Jansen G, Hess BA. Phys Rev A: At, Mol, Opt Phys. 1989;39:6016–6017. PubMed
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian G09, revision D.01. Gaussian Inc; Wallingford, CT: 2009.
Malmqvist P-Å, Rendell A, Roos BO. J Phys Chem. 1990;94:5477–5482.
Pierloot K. Mol Phys. 2003;101:2083–2094.
Hess BA, Marian CM, Wahlgren U, Gropen O. Chem Phys Lett. 1996;251:365–371.
Schimmelpfennig B. AMFI Program. University of Stockholm; Stockholm: 1996.
Malmqvist P-Å, Roos BO, Schimmelphennig B. Chem Phys Lett. 2002;357:230–240.
Roos BO, Andersson K. Chem Phys Lett. 1995;245:215–243.
Forsberg N, Malmqvist P-Å. Chem Phys Lett. 1997;274:196–204.
Neese F, Solomon EI. Inorg Chem. 1999;38:1847–1865. PubMed
Decker A, Rohde JU, Que L, Jr, Solomon EI. J Am Chem Soc. 2004;126:5378–5379. PubMed
Wayner DDM, Clark KB, Rauk A, Yu D, Armstrong DA. J Am Chem Soc. 1997;119:8925–8932.
Burkey TJ, Castelhano AL, Griller D, Lossing FP. J Am Chem Soc. 1983;105:4701–4703.
Marcus RA. J Phys Chem. 1968;72:891–899.
Gilmore K, Alabugin IV. Chem Rev. 2011;111:6513–6556. PubMed
Mono- and binuclear non-heme iron chemistry from a theoretical perspective