Nuclear Resonance Vibrational Spectroscopic Definition of the Facial Triad FeIV═O Intermediate in Taurine Dioxygenase: Evaluation of Structural Contributions to Hydrogen Atom Abstraction

. 2020 Nov 04 ; 142 (44) : 18886-18896. [epub] 20201026

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33103886

Grantová podpora
R01 GM040392 NIGMS NIH HHS - United States
R01 GM055365 NIGMS NIH HHS - United States
R35 GM127079 NIGMS NIH HHS - United States

The α-ketoglutarate (αKG)-dependent oxygenases catalyze a diverse range of chemical reactions using a common high-spin FeIV═O intermediate that, in most reactions, abstract a hydrogen atom from the substrate. Previously, the FeIV═O intermediate in the αKG-dependent halogenase SyrB2 was characterized by nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations, which demonstrated that it has a trigonal-pyramidal geometry with the scissile C-H bond of the substrate calculated to be perpendicular to the Fe-O bond. Here, we have used NRVS and DFT calculations to show that the FeIV═O complex in taurine dioxygenase (TauD), the αKG-dependent hydroxylase in which this intermediate was first characterized, also has a trigonal bipyramidal geometry but with an aspartate residue replacing the equatorial halide of the SyrB2 intermediate. Computational analysis of hydrogen atom abstraction by square pyramidal, trigonal bipyramidal, and six-coordinate FeIV═O complexes in two different substrate orientations (one more along [σ channel] and another more perpendicular [π channel] to the Fe-O bond) reveals similar activation barriers. Thus, both substrate approaches to all three geometries are competent in hydrogen atom abstraction. The equivalence in reactivity between the two substrate orientations arises from compensation of the promotion energy (electronic excitation within the d manifold) required to access the π channel by the significantly larger oxyl character present in the pπ orbital oriented toward the substrate, which leads to an earlier transition state along the C-H coordinate.

Zobrazit více v PubMed

Lando D; Peet DJ; Gorman JJ; Whelan DA; Whitelaw ML; Bruick RK FIH-1 Is an Asparaginyl Hydroxylase Enzyme That Regulates the Transcriptional Activity of Hypoxia-Inducible Factor. Genes Dev. 2002, 16 (12), 1466–1471. PubMed PMC

Gerken T; Girard CA; Tung Y-CL; Webby CJ; Saudek V; Hewitson KS; Yeo GSH; McDonough MA; Cunliffe S; McNeill LA; Galvanovskis J; Rorsman P; Robins P; Prieur X; Coll AP; Ma M; Jovanovic Z; Farooqi IS; Sedgwick B; Barroso I; Lindahl T; Ponting CP; Ashcroft FM; O’Rahilly S; Schofield CJ The Obesity-Associated FTO Gene Encodes a 2-Oxoglutarate-Dependent Nucleic Acid Demethylase. Science 2007, 318 (5855), 1469–1472. PubMed PMC

Vaillancourt FH; Yin J; Walsh CT SyrB2 in Syringomycin E Biosynthesis Is a Nonheme FeII α-Ketoglutarate- and O2-Dependent Halogenase. Proc. Natl. Acad. Sci 2005, 102 (29), 10111–10116. PubMed PMC

Baldwin JE; Abraham E The Biosynthesis of Penicillins and Cephalosporins. Nat. Prod. Rep 1988, 5 (2), 129. PubMed

Vaillancourt FH; Haro M-A; Drouin NM; Karim Z; Maaroufi H; Eltis LD Characterization of Extradiol Dioxygenases from a Polychlorinated Biphenyl-Degrading Strain That Possess Higher Specificities for Chlorinated Metabolites. J. Bacteriol 2003, 185 (4), 1253–1260. PubMed PMC

Keenan BG; Wood TK Orthric Rieske Dioxygenases for Degrading Mixtures of 2,4-Dinitrotoluene/Naphthalene and 2-Amino-4,6-Dinitrotoluene/4-Amino-2,6-Dinitrotoluene. Appl. Microbiol. Biotechnol 2006, 73 (4), 827–838. PubMed

Mishina Y; He C Oxidative Dealkylation DNA Repair Mediated by the Mononuclear Non-Heme Iron AlkB Proteins. J. Inorg. Biochem 2006, 100 (4), 670–678. PubMed PMC

Solomon EI; Goudarzi S; Sutherlin KD O2 Activation by Non-Heme Iron Enzymes. Biochemistry 2016, 55 (46), 6363–6374. PubMed PMC

Solomon EI; Iyer SR Geometric and Electronic Structural Contributions to Fe/O2 Reactivity. Bull. Jpn. Soc. Coord. Chem 2019, 73, 3–14. PubMed PMC

Kal S; Que L Dioxygen Activation by Nonheme Iron Enzymes with the 2-His-1-Carboxylate Facial Triad That Generate High-Valent Oxoiron Oxidants. JB/C J. Biol. Inorg. Chem 2017, 22 (2–3), 339–365. PubMed

Solomon EI; Light KM; Liu LV; Srnec M; Wong SD Geometric and Electronic Structure Non-Heme Iron Enzymes. Acc. Chem. Res 2013, 46, 2725–2739. PubMed PMC

Krebs C; Galonić Fujimori D; Walsh CT; Bollinger JM Jr. Non-Heme Fe(IV)-Oxo Intermediates. Acc. Chem. Res 2007, 40, 484–492. PubMed PMC

Bollinger JM Jr.; Chang W; Matthews ML; Martinie RJ; Boal AK; Krebs C CHAPTER 3 Mechanisms of 2-Oxoglutarate-Dependent Oxygenases: The Hydroxylation Paradigm and Beyond. 2-Oxoglutarate-Dependent Oxygenases; Schofield C, Hausinger R, Eds.; The Royal Society of Chemistry: Cambridge, 2015, pp 95–122.

Hausinger RP FeII/α-Ketoglutarate-Dependent Hydroxylases and Related Enzymes. Crit. Rev. Biochem. Mol. Biol 2004, 39, 21–68. PubMed

Hausinger RP CHAPTER 1 Biochemical Diversity of 2-Oxoglutarate-Dependent Oxygenases. 2-Oxoglutarate-Dependent Oxygenases; Schofield C, Hausinger R, Eds.; The Royal Society of Chemistry: Cambridge, 2015, pp 1–58.

Price JC; Barr EW; Tirupati B; Bollinger JM; Krebs C The First Direct Characterization of a High-Valent Iron Intermediate in the Reaction of an α-Ketoglutarate-Dependent Dioxygenase: A High-Spin Fe(IV) Complex in Taurine/α-Ketoglutarate Dioxygenase (TauD) from Escherichia Coli. Biochemistry 2003, 42 (24), 7497–7508. PubMed

Eichhorn E; van der Ploeg JR; Kertesz MA; Leisinger T Characterization of α-Ketoglutarate-Dependent Taurine Dioxygenase from Escherichia Coli. J. Biol. Chem 1997, 272 (37), 23031–23036. PubMed

Hoffart LM; Barr EW; Guyer RB; Bollinger JM Jr.; Krebs C Direct Spectroscopic Detection of a C-H-Cleaving High-Spin Fe(IV) Complex in a Prolyl-4-Hydroxylase. Proc. Natl. Acad. Sci 2006, 103 (40), 14738–14743. PubMed PMC

Pan J; Wenger ES; Matthews ML; Pollock CJ; Bhardwaj M; Kim AJ; Allen BD; Grossman RB; Krebs C; Bollinger JM Evidence for Modulation of Oxygen Rebound Rate in Control of Outcome by Iron(II)- and 2-Oxoglutarate-Dependent Oxygenases. J. Am. Chem. Soc 2019, 141 (38), 15153–15165. PubMed PMC

Dunham NP; Chang W; Mitchell AJ; Martinie RJ; Zhang B; Bergman JA; Rajakovich LJ; Wang B; Silakov A; Krebs C; Boal AK; Bollinger JM Two Distinct Mechanisms for C-C Desaturation by Iron(II)- and 2-(Oxo)Glutarate-Dependent Oxygenases: Importance of α-Heteroatom Assistance. J. Am. Chem. Soc 2018, 140 (23), 7116–7126. PubMed PMC

Peck SC; Wang C; Dassama LMK; Zhang B; Guo Y; Rajakovich LJ; Bollinger JM; Krebs C; van der Donk WA O-H Activation by an Unexpected Ferryl Intermediate during Catalysis by 2-Hydroxyethylphosphonate Dioxygenase. J. Am. Chem. Soc 2017, 139 (5), 2045–2052. PubMed PMC

Galonić Fujimori D; Barr EW; Matthews ML; Koch GM; Yonce JR; Walsh CT; Bollinger JM; Krebs C; Riggs-Gelasco PJ Spectroscopic Evidence for a High-Spin Br-Fe(IV)-Oxo Intermediate in the α-Ketoglutarate-Dependent Halogenase CytC3 from Streptomyces. J. Am. Chem. Soc 2007, 129 (44), 13408–13409. PubMed

Tamanaha E; Zhang B; Guo Y; Chang W; Barr EW; Xing G; Clair J St.; Ye S; Neese F; Bollinger JM; Krebs C Spectroscopic Evidence for the Two C-H-Cleaving Intermediates of Aspergillus Nidulans Isopenicillin N Synthase. J. Am. Chem. Soc 2016, 138 (28), 8862–8874. PubMed PMC

Eser BE; Barr EW; Frantom PA; Saleh L; Bollinger JM Jr.; Krebs C; Fitzpatrick PF Direct Spectroscopic Evidence for a High-Spin Fe (IV) Intermediate in Tyrosine Hydroxylase. J. Am Chem. Soc 2007, 129, 11334–11335. PubMed PMC

Panay AJ; Lee M; Krebs C; Bollinger JM; Fitzpatrick PF Evidence for a High-Spin Fe(IV) Species in the Catalytic Cycle of a Bacterial Phenylalanine Hydroxylase. Biochemistry 2011, 50 (11), 1928–1933. PubMed PMC

Matthews ML; Krest CM; Barr EW; Vaillancourt FH; Walsh CT; Green MT; Krebs C; Bollinger JM Jr. Substrate-Triggered Formation and Remarkable Stability of the C-H Bond-Cleaving Chloroferryl Intermediate in the Aliphatic Halogenase, SyrB2. Biochemistry 2009, 48, 4331–4343. PubMed PMC

Blasiak LC; Vaillancourt FH; Walsh CT; Drennan CL Crystal Structure of the Non-Haem Iron Halogenase SyrB2 in Syringomycin Biosynthesis. Nature 2006, 440 (7082), 368–371. PubMed

O’Brien JR; Schuller DJ; Yang VS; Dillard BD; Lanzilotta WN Substrate-Induced Conformational Changes in Escherichia Coli Taurine/α-Ketoglutarate Dioxygenase and Insight into the Oligomeric Structure. Biochemistry 2003, 42 (19), 5547–5554. PubMed

Wong SD; Srnec M; Matthews ML; Liu LV; Kwak Y; Park K; Bell III CB; Alp EE; Zhao J; Yoda Y; Kitao S; Seto M; Krebs C; Bollinger JM; Solomon EI Elucidation of the Fe(IV)=O Intermediate in the Catalytic Cycle of the Halogenase SyrB2. Nature 2013, 499, 320–324. PubMed PMC

Srnec M; Wong SD; England J; Que L Jr.; Solomon EI π -Frontier Molecular Orbitals in S=2 Ferryl Species and Elucidation of Their Contributions to Reactivity. Proc. Natl. Acad. Sci. U. S. A 2012, 109, 14326–14331. PubMed PMC

Srnec M; Wong SD; Matthews ML; Krebs C; Bollinger JM; Solomon EI Electronic Structure of the Ferryl Intermediate in the α-Ketoglutarate Dependent Non-Heme Iron Halogenase SyrB2: Contributions to H Atom Abstraction Reactivity. J. Am. Chem. Soc 2016, 138 (15), 5110–5122. PubMed PMC

Srnec M; Solomon EI Frontier Molecular Orbital Contributions to Chlorination versus Hydroxylation Selectivity in the Non-Heme Iron Halogenase SyrB2. J. Am. Chem. Soc 2017, 139 (6), 2396–2407. PubMed PMC

Harlos K; Schofield CJ; Zhang Z; Ren J; Stammers DK; Baldwin JE Structural Origins of the Selectivity of the Trifunctional Oxygenase Clavaminic Acid Synthase. Nat. Struct. Biol 2000, 7 (2), 127–133. PubMed

Elkins JM; Hewitson KS; McNeill LA; Seibel JF; Schlemminger I; Pugh CW; Ratcliffe PJ; Schofield CJ Structure of Factor-Inhibiting Hypoxia-Inducible Factor (HIF) Reveals Mechanism of Oxidative Modification of HIF-1a. J. Biol. Chem 2003, 278, 1802–1806. PubMed

Neugebauer ME; Sumida KH; Pelton JG; McMurry JL; Marchand JA; Chang MCY A Family of Radical Halogenases for the Engineering of Amino-Acid-Based Products. Nat. Chem. Biol 2019, 15 (10), 1009–1016. PubMed

Neidig ML; Decker A; Choroba OW; Huang F; Kavana M; Moran GR; Spencer JB; Solomon EI Spectroscopic and Electronic Structure Studies of Aromatic Electrophilic Attack and Hydrogen-Atom Abstraction by Non-Heme Iron Enzymes. Proc. Natl. Acad. Sci. U. S. A 2006, 103, 12966–12973. PubMed PMC

Martinie RJ; Pollock CJ; Matthews ML; Bollinger JM; Krebs C; Silakov A Vanadyl as a Stable Structural Mimic of Reactive Ferryl Intermediates in Mononuclear Nonheme-Iron Enzymes. Inorg. Chem 2017, 56 (21), 13382–13389. PubMed PMC

Dassama LMK; Yosca TH; Conner DA; Lee MH; Blanc B; Streit BR; Green MT; DuBois JL; Krebs C; Bollinger JM Jr. O2-Evolving Chlorite Dismutase as a Tool for Studying O2-Utilizing Enzymes. Biochemistry 2012, 51 (8), 1607–1616. PubMed PMC

Moënne-Loccoz P; Krebs C; Herlihy K; Edmondson DE; Theil EC; Huynh BH; Loehr TM The Ferroxidase Reaction of Ferritin Reveals a Diferric μ−1,2 Bridging Peroxide Intermediate in Common with Other O2-Activating Non-Heme Diiron Proteins. Biochemistry 1999, 38 (17), 5290–5295. PubMed

Bollinger JM; Tong WH; Ravi N; Huynh BH; Edmonson DE; Stubbe J Mechanism of Assembly of the Tyrosyl Radical-Diiron(III) Cofactor of E. Coli Ribonucleotide Reductase. 2. Kinetics of The Excess Fe2+ Reaction by Optical, EPR, and Mössbauer Spectroscopies. J. Am. Chem. Soc 1994, 116 (18), 8015–8023.

Streit BR; DuBois JL Chemical and Steady-State Kinetic Analyses of a Heterologously Expressed Heme Dependent Chlorite Dismutase. Biochemistry 2008, 47 (19), 5271–5280. PubMed PMC

Park K; Tsugawa T; Furutachi H; Kwak Y; Liu LV; Wong SD; Yoda Y; Kobayashi Y; Saito M; Kurokuzu M; Seto M; Suzuki M; Solomon EI Nuclear Resonance Vibrational Spectroscopy and DFT Study of Peroxo-Bridged Biferric Complexes: Structural Insight into Peroxo Intermediates of Binuclear Non-Heme Iron Enzymes. Angew. Chem. Int. Ed. Engl 2013, 52, 1294–1298. PubMed

Sturhahn W CONUSS and PHOENIX: Evaluation of Nuclear Resonant Scattering Data. Hyperfine Interact 2000, 125 (1–4), 149–172.

Sage JT; Paxson C; Wyllie GRA; Sturhahn W; Durbin SM; Champion PM; Alp EE; Scheidt WR Nuclear Resonance Vibrational Spectroscopy of a Protein Active-Site Mimic. J. Phys. Condens. Matter 2001, 13 (34), 7707–7722.

Bell III CB; Wong SD; Xiao Y; Klinker EJ; Tenderholt AL; Smith MC; Rohde J-U; Que L; Cramer SP; Solomon EI A Combined NRVS and DFT Study of FeIV=O Model Complexes: A Diagnostic Method for the Elucidation of Non-Heme Iron Enzyme Intermediates. Angew. Chemie Int. Ed 2008, 47 (47), 9071–9074. PubMed PMC

Grimme S; Antony J; Ehrlich S; Krieg H A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys 2010, 132 (15), 154104. PubMed

Weigend F; Ahlrichs R Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys 2005, 7 (18), 3297. PubMed

Klamt A; Schüürmann G COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc., Perkin Trans 2 1993, No. 5, 799–805.

Schäfer A; Klamt A; Sattel D; Lohrenz JCW; Eckert F COSMO Implementation in TURBOMOLE: Extension of an Efficient Quantum Chemical Code towards Liquid Systems. Phys. Chem. Chem. Phys 2000, 2 (10), 2187–2193.

Ahlrichs R; Bär M; Häser M; Horn H; Kölmel C Electronic Structure Calculations on Workstation Computers: The Program System Turbomole. Chem. Phys. Lett 1989, 162 (3), 165–169.

Eichkorn K; Treutler O; Öhm H; Häser M; Ahlrichs R Auxiliary Basis Sets to Approximate Coulomb Potentials. Chem. Phys. Lett 1995, 240 (4), 283–290.

Eichkorn K; Weigend F; Treutler O; Ahlrichs R Auxiliary Basis Sets for Main Row Atoms and Transition Metals and Their Use to Approximate Coulomb Potentials. Theor. Chem. Accounts Theory, Comput. Model. (Theoretica Chim. Acta) 1997, 97 (1–4), 119–124.

Tenderholt A gennrvs, Python script, Version 28, 2009. Available at http://www.stanford.edu/group/solomon/gennrvs/gennrvs.py.txt.

Becke AD Density‐functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys 1993, 98 (7), 5648–5652.

Ye S; Neese F Nonheme Oxo-Iron(IV) Intermediates Form an Oxyl Radical upon Approaching the C-H Bond Activation Transition State. Proc. Natl. Acad. Sci 2011, 108 (4), 1228–1233. PubMed PMC

Cossi M; Rega N; Scalmani G; Barone V Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem 2003, 24 (6), 669–681. PubMed

Frisch MJ; Trucks GW; Schlegel HB; Scuseria GE; Robb MA; Cheeseman JR; Scalmani G; Barone V; Mennucci B; Petersson GA; Nakatsuji H; Caricato M; Li X; Hratchian HP; Izmaylov AF; Bloino J; Zheng G; Sonnenberg JL; Hada M; Ehara M; Toyota K; Fukuda R; Hasegawa J; Ishida M; Nakajima T; Honda Y; Kitao O; Nakai H; Vreven T; Montgomery JA Jr.; Peralta JE; Ogliaro F; Bearpark M; Heyd JJ; Brothers E; Kudin KN; Staroverov VN; Kobayashi R; Normand J; Raghavachari K; Rendell A; Burant JC; Iyengar SS; Tomasi J; Cossi M; Rega N; Millam JM; Klene M; Knox JE; Cross JB; Bakken V; Adamo C; Jaramillo J; Gomperts R; Stratmann RE; Yazyev O; Austin AJ; Cammi R; Pomelli C; Ochterski JW; Martin RL; Morokuma K; Zakrzewski VG; Voth GA; Salvador P; Dannenberg JJ; Dapprich S; Daniels AD; Farkas Ö; Foresman JB; Ortiz JV; Cioslowski J; Fox DJ Gaussian 09 Revision E.01; Gaussian Inc.: Wallingford CT, 2009.

Tenderholt AL QMForge, Version 2.4, https://qmforge.net.

Kieber-Emmons MT LUMO, Version 1.0.3, 2014.

Gilbert A IQmol, Version 2.10.0, 2016.

Diebold AR; Brown-Marshall CD; Neidig ML; Brownlee JM; Moran GR; Solomon EI Activation of α-Keto Acid-Dependent Dioxygenases : Application of an {FeNO}7/{FeO2}8 Methodology for Characterizing the Initial Steps of O2 Activation. J. Am. Chem. Soc 2011, 133, 18148–18160. PubMed PMC

Davis KM; Altmyer M; Martinie RJ; Schaperdoth I; Krebs C; Bollinger JM; Boal AK Structure of a Ferryl Mimic in the Archetypal Iron(II)- and 2-(Oxo)-Glutarate-Dependent Dioxygenase, TauD. Biochemistry 2019, 58 (41), 4218–4223. PubMed PMC

Mitchell AJ; Dunham NP; Martinie RJ; Bergman JA; Pollock CJ; Hu K; Allen BD; Chang W-C; Silakov A; Bollinger JM Jr.; Krebs C; Boal AK Visualizing the Reaction Cycle in an Iron(II)- and 2-(Oxo)-Glutarate-Dependent Hydroxylase. J. Am. Chem. Soc 2017, 139 (39), 13830–13836. PubMed PMC

Sinnecker S; Svensen N; Barr EW; Ye S; Bollinger JM; Neese F; Krebs C Spectroscopic and Computational Evaluation of the Structure of the High-Spin Fe(IV)-Oxo Intermediates in Taurine: α-Ketoglutarate Dioxygenase from Escherichia Coli and Its His99Ala Ligand Variant. J. Am. Chem. Soc 2007, 129 (19), 6168–6179. PubMed

Sinnecker S; Slep LD; Bill E; Neese F Performance of Nonrelativistic and Quasi-Relativistic Hybrid DFT for the Prediction of Electric and Magnetic Hyperfine Parameters in 57Fe Mössbauer Spectra. Inorg. Chem 2005, 44 (7), 2245–2254. PubMed

Price JC; Barr EW; Hoffart LM; Krebs C; Bollinger JM Jr. Kinetic Dissection of the Catalytic Mechanism of Taurine:α-Ketoglutarate Dioxygenase (TauD) from Escherichia Coli. Biochemistry 2005, 44 (22), 8138–8147. PubMed

Maldonado-Domínguez M; Bím D; Fučík R; Čurík R; Srnec M Reactive Mode Composition Factor Analysis of Transition States: The Case of Coupled Electron-Proton Transfers. Phys. Chem. Chem. Phys 2019, 21 (45), 24912–24918. PubMed

Eckart C The Penetration of a Potential Barrier by Electrons. Phys. Rev 1930, 35 (11), 1303–1309. 10.1103/PhysRev.35.1303. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...